[Mlir-commits] [mlir] [mlir][TilingInterface] Early return cloned ops if tile sizes are zeros. (PR #75410)
Han-Chung Wang
llvmlistbot at llvm.org
Wed Dec 13 16:10:38 PST 2023
https://github.com/hanhanW created https://github.com/llvm/llvm-project/pull/75410
It is a trivial early-return case. If the cloned ops are not returned, it will generate `extract_slice` op that extracts the whole slice. However, it is not folded away. Early-return to avoid the case.
E.g.,
```mlir
func.func @matmul_tensors(
%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>)
-> tensor<?x?xf32> {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%arg2: tensor<?x?xf32>)
-> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.tile_using_for %0 [0, 0, 0] : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}
```
Apply the transforms and canonicalize the IR:
```
mlir-opt --transform-interpreter -canonicalize input.mlir
```
we will get
```mlir
module {
func.func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>) -> tensor<?x?xf32> {
%c1 = arith.constant 1 : index
%c0 = arith.constant 0 : index
%dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
%dim_1 = tensor.dim %arg1, %c1 : tensor<?x?xf32>
%extracted_slice = tensor.extract_slice %arg0[0, 0] [%dim, %dim_0] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%extracted_slice_2 = tensor.extract_slice %arg1[0, 0] [%dim_0, %dim_1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%extracted_slice_3 = tensor.extract_slice %arg2[0, 0] [%dim, %dim_1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%0 = linalg.matmul ins(%extracted_slice, %extracted_slice_2 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%extracted_slice_3 : tensor<?x?xf32>) -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
}
```
>From c07f7e1c5c6f8bbc7189e96096004d39a0a1aa3f Mon Sep 17 00:00:00 2001
From: hanhanW <hanhan0912 at gmail.com>
Date: Wed, 13 Dec 2023 15:59:48 -0800
Subject: [PATCH] [mlir][TilingInterface] Early return cloned ops if tile sizes
are zeros.
It is a trivial early-return case. If the cloned ops are not returned,
it will generate `extract_slice` op that extracts the whole slice.
However, it is not folded away. Early-return to avoid the case.
E.g.,
```mlir
func.func @matmul_tensors(
%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>)
-> tensor<?x?xf32> {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%arg2: tensor<?x?xf32>)
-> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.tile_using_for %0 [0, 0, 0] : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}
```
Apply the transforms and canonicalize the IR:
```
mlir-opt --transform-interpreter -canonicalize input.mlir
```
we will get
```mlir
module {
func.func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>) -> tensor<?x?xf32> {
%c1 = arith.constant 1 : index
%c0 = arith.constant 0 : index
%dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
%dim_1 = tensor.dim %arg1, %c1 : tensor<?x?xf32>
%extracted_slice = tensor.extract_slice %arg0[0, 0] [%dim, %dim_0] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%extracted_slice_2 = tensor.extract_slice %arg1[0, 0] [%dim_0, %dim_1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%extracted_slice_3 = tensor.extract_slice %arg2[0, 0] [%dim, %dim_1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%0 = linalg.matmul ins(%extracted_slice, %extracted_slice_2 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%extracted_slice_3 : tensor<?x?xf32>) -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
}
```
---
.../SCF/Transforms/TileUsingInterface.cpp | 11 ++++++--
mlir/test/Dialect/Linalg/tile-tensors.mlir | 27 +++++++++++++++++++
2 files changed, 36 insertions(+), 2 deletions(-)
diff --git a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
index 8057b3898012d4..20413aba8730be 100644
--- a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
@@ -362,14 +362,21 @@ mlir::scf::tileUsingSCFForOp(RewriterBase &rewriter, TilingInterface op,
auto clonedOp = cast<TilingInterface>(
cloneOpAndUpdateDestinationArgs(rewriter, op, clonedOpDestination));
- // 5b. Tile the cloned operation.
+ // 5b. Early return cloned op if tiling is not happenning.
+ if (llvm::all_of(tileSizeVector,
+ [](OpFoldResult v) { return isZeroIndex(v); })) {
+ return scf::SCFTilingResult{/*tiledOps=*/{clonedOp}, /*loops=*/{},
+ clonedOp->getResults()};
+ }
+
+ // 5c. Tile the cloned operation.
FailureOr<TilingResult> tiledImplementation =
clonedOp.getTiledImplementation(rewriter, offsets, sizes);
if (failed(tiledImplementation)) {
return rewriter.notifyMatchFailure(op, "failed to tile operation");
}
- // 5c. Delete the cloned operation.
+ // 5d. Delete the cloned operation.
rewriter.eraseOp(clonedOp);
// If loops are empty, the tiled op is used as the replacement for the untiled
diff --git a/mlir/test/Dialect/Linalg/tile-tensors.mlir b/mlir/test/Dialect/Linalg/tile-tensors.mlir
index e0429b1f873298..e8e63302286400 100644
--- a/mlir/test/Dialect/Linalg/tile-tensors.mlir
+++ b/mlir/test/Dialect/Linalg/tile-tensors.mlir
@@ -37,6 +37,33 @@ module attributes {transform.with_named_sequence} {
// -----
+// CHECK-LABEL: func @matmul_tensors_with_size_zeros(
+// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
+// CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor<?x?xf32>
+// CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
+func.func @matmul_tensors_with_size_zeros(
+ %arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>)
+ -> tensor<?x?xf32> {
+
+// CHECK: %[[RES:.*]] = linalg.matmul ins(%[[TA]], %[[TB]] : tensor<?x?xf32>, tensor<?x?xf32>)
+// CHECK-SAME: outs(%[[TC]] : tensor<?x?xf32>) -> tensor<?x?xf32>
+// CHECK: return %[[RES]]
+ %0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
+ outs(%arg2: tensor<?x?xf32>)
+ -> tensor<?x?xf32>
+ return %0 : tensor<?x?xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.structured.tile_using_for %0 [0, 0, 0] : (!transform.any_op) -> (!transform.any_op)
+ transform.yield
+ }
+}
+
+// -----
+
func.func @generic_op_tensors(
%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%c0 = arith.constant 0 : index
More information about the Mlir-commits
mailing list