[Mlir-commits] [mlir] c02d07f - [mlir][vector] Add pattern to drop unit dim from elementwise(a, b)) (#74817)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Wed Dec 13 12:29:17 PST 2023


Author: Andrzej WarzyƄski
Date: 2023-12-13T20:29:12Z
New Revision: c02d07fdf007afc6b928cda0342751889cc2604b

URL: https://github.com/llvm/llvm-project/commit/c02d07fdf007afc6b928cda0342751889cc2604b
DIFF: https://github.com/llvm/llvm-project/commit/c02d07fdf007afc6b928cda0342751889cc2604b.diff

LOG: [mlir][vector] Add pattern to drop unit dim from elementwise(a, b)) (#74817)

For vectors with either leading or trailing unit dim, replaces:

    elementwise(a, b)

with:

    sc_a = shape_cast(a)
    sc_b = shape_cast(b)
    res = elementwise(sc_a, sc_b)
    return shape_cast(res)

The newly inserted shape_cast Ops fold (before elementwise Op) and then
restore (after elementwise Op) the unit dim. Vectors `a` and `b` are
required to be rank > 1.

Example:
```mlir
  %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32>
  %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32>
```

gets converted to:

```mlir
  %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32>
  %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32>
  %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32>
  %mul_sc = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32>
  %cast = vector.shape_cast %mul_sc : vector<1x[4]xf32> to vector<[4]xf32>
```

In practice, the bottom 2 shape_cast(s) will be folded away.

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
    mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp
    mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
    mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
    mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h b/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
index 08c08172d0531e..17173c01ab762a 100644
--- a/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
+++ b/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
@@ -294,6 +294,15 @@ void populateCastAwayVectorLeadingOneDimPatterns(RewritePatternSet &patterns,
 void populateVectorTransferDropUnitDimsPatterns(RewritePatternSet &patterns,
                                                 PatternBenefit benefit = 1);
 
+/// Collect a set of patterns that use vector.shape_cast to help fold unit dims.
+///
+/// These patterns use vector.shape_cast to remove unit dims from e.g.
+/// arithmetic operations on Vectors. The newly inserted shape_casts will either
+/// cancel each other out or will be folded away when combined with other
+/// patterns.
+void populateDropUnitDimWithShapeCastPatterns(RewritePatternSet &patterns,
+                                              PatternBenefit benefit = 1);
+
 /// Collect a set of patterns to flatten n-D vector transfers on contiguous
 /// memref.
 ///

diff  --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp
index ed42e6508b4310..b761d1ed888973 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp
@@ -922,4 +922,5 @@ void mlir::vector::populateFlattenVectorTransferPatterns(
                FlattenContiguousRowMajorTransferWritePattern>(
       patterns.getContext(), benefit);
   populateShapeCastFoldingPatterns(patterns, benefit);
+  populateDropUnitDimWithShapeCastPatterns(patterns, benefit);
 }

diff  --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
index 6e7fab293d3a1c..b468d874bcf306 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
@@ -1446,6 +1446,90 @@ struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> {
   }
 };
 
+/// For vectors with either leading or trailing unit dim, replaces:
+///   elementwise(a, b)
+/// with:
+///   sc_a = shape_cast(a)
+///   sc_b = shape_cast(b)
+///   res = elementwise(sc_a, sc_b)
+///   return shape_cast(res)
+/// The newly inserted shape_cast Ops fold (before elementwise Op) and then
+/// restore (after elementwise Op) the unit dim. Vectors `a` and `b` are
+/// required to be rank > 1.
+///
+/// Ex:
+/// ```
+///  %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32>
+///  %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32>
+/// ```
+///
+/// gets converted to:
+///
+/// ```
+///  %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32>
+///  %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32>
+///  %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32>
+///  %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32>
+///  %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32>
+/// ```
+///
+/// Patterns for folding shape_casts should instantly eliminate `%cast_new` and
+/// `%cast`.
+struct DropUnitDimFromElementwiseOps final
+    : public OpTraitRewritePattern<OpTrait::Elementwise> {
+  using OpTraitRewritePattern::OpTraitRewritePattern;
+  LogicalResult matchAndRewrite(Operation *op,
+                                PatternRewriter &rewriter) const override {
+    if (op->getNumResults() != 1)
+      return failure();
+
+    // Check the pre-condiitions. For `Elementwise` Ops all operands
+    // are guaranteed to have identical shapes and it suffices to only check the
+    // first one.
+    auto op1 = op->getOperands()[0];
+    auto sourceVectorType = dyn_cast<VectorType>(op1.getType());
+    if (!sourceVectorType)
+      return failure();
+
+    if (sourceVectorType.getRank() < 2)
+      return failure();
+
+    bool hasTrailingDimUnitFixed =
+        ((sourceVectorType.getShape().back() == 1) &&
+         (!sourceVectorType.getScalableDims().back()));
+    bool hasLeadingDimUnitFixed =
+        ((sourceVectorType.getShape().front() == 1) &&
+         (!sourceVectorType.getScalableDims().front()));
+    if (!hasLeadingDimUnitFixed && !hasTrailingDimUnitFixed)
+      return failure();
+
+    // Drop leading/trailing unit dim by applying vector.shape_cast to all
+    // operands
+    auto elTy = sourceVectorType.getElementType();
+    int64_t dim = hasLeadingDimUnitFixed ? 0 : sourceVectorType.getRank() - 1;
+    VectorType newVType = VectorType::Builder(sourceVectorType).dropDim(dim);
+
+    SmallVector<Value> newOperands;
+    auto loc = op->getLoc();
+    for (auto operand : op->getOperands()) {
+      auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand);
+      newOperands.push_back(opSC);
+    }
+
+    // Create an updated elementwise Op without leading/trailing unit dim
+    Operation *elementwiseOp =
+        rewriter.create(loc, op->getName().getIdentifier(), newOperands,
+                        newVType, op->getAttrs());
+
+    // Restore the leading/trailing unit dim by applying vector.shape_cast to
+    // the result
+    rewriter.replaceOpWithNewOp<ShapeCastOp>(op, sourceVectorType,
+                                             elementwiseOp->getResult(0));
+
+    return success();
+  }
+};
+
 /// Pattern to eliminate redundant zero-constants added to reduction operands.
 /// It's enough for there to be one initial zero value, so we can eliminate the
 /// extra ones that feed into `vector.reduction <add>`. These get created by the
@@ -1514,6 +1598,12 @@ void mlir::vector::populateShapeCastFoldingPatterns(RewritePatternSet &patterns,
   patterns.add<ShapeCastOpFolder>(patterns.getContext(), benefit);
 }
 
+void mlir::vector::populateDropUnitDimWithShapeCastPatterns(
+    RewritePatternSet &patterns, PatternBenefit benefit) {
+  patterns.add<DropUnitDimFromElementwiseOps, ShapeCastOpFolder>(
+      patterns.getContext(), benefit);
+}
+
 void mlir::vector::populateBubbleVectorBitCastOpPatterns(
     RewritePatternSet &patterns, PatternBenefit benefit) {
   patterns.add<BubbleDownVectorBitCastForExtract,

diff  --git a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
index ebec2274655e46..b81491b9c07404 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
@@ -254,3 +254,91 @@ func.func @transfer_read_flattenable_negative2(
 
 // CHECK-LABEL: func @transfer_read_flattenable_negative2
 //       CHECK:   vector.transfer_read {{.*}} vector<5x4x3x2xi8>
+
+// -----
+
+func.func @fold_unit_dim_add_basic(%arg0 : vector<1x8xi32>) -> vector<1x8xi32> {
+   %add = arith.addi %arg0, %arg0 : vector<1x8xi32>
+   return %add : vector<1x8xi32>
+}
+// CHECK-LABEL:   func.func @fold_unit_dim_add_basic(
+// CHECK-SAME:      %[[VAL_0:.*]]: vector<1x8xi32>) -> vector<1x8xi32> {
+// CHECK:           %[[VAL_1:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x8xi32> to vector<8xi32>
+// CHECK:           %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x8xi32> to vector<8xi32>
+// CHECK:           %[[VAL_3:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : vector<8xi32>
+// CHECK:           %[[VAL_4:.*]] = vector.shape_cast %[[VAL_3]] : vector<8xi32> to vector<1x8xi32>
+// CHECK:           return %[[VAL_4]] : vector<1x8xi32>
+
+// -----
+
+func.func @fold_unit_dim_add_leading_and_trailing(%arg0 : vector<1x8x1xi32>) -> vector<1x8x1xi32> {
+   %add = arith.addi %arg0, %arg0 : vector<1x8x1xi32>
+   return %add : vector<1x8x1xi32>
+}
+// CHECK-LABEL:   func.func @fold_unit_dim_add_leading_and_trailing(
+// CHECK-SAME:      %[[VAL_0:.*]]: vector<1x8x1xi32>) -> vector<1x8x1xi32> {
+// CHECK:           %[[VAL_1:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x8x1xi32> to vector<8xi32>
+// CHECK:           %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x8x1xi32> to vector<8xi32>
+// CHECK:           %[[VAL_3:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : vector<8xi32>
+// CHECK:           %[[VAL_4:.*]] = vector.shape_cast %[[VAL_3]] : vector<8xi32> to vector<1x8x1xi32>
+// CHECK:           return %[[VAL_4]] : vector<1x8x1xi32>
+
+// -----
+
+func.func @fold_unit_dim_add(%arg0 : vector<8x1xi32>,
+                             %arg1 : vector<1x8xi32>) -> vector<8xi32> {
+   %sc_arg0 = vector.shape_cast %arg0 : vector<8x1xi32> to vector<1x8xi32>
+   %add = arith.addi %sc_arg0, %arg1 : vector<1x8xi32>
+   %res = vector.shape_cast %add : vector<1x8xi32> to vector<8xi32>
+   return %res : vector<8xi32>
+}
+
+// CHECK-LABEL:   func.func @fold_unit_dim_add(
+// CHECK-SAME:      %[[VAL_0:.*]]: vector<8x1xi32>,
+// CHECK-SAME:      %[[VAL_1:.*]]: vector<1x8xi32>) -> vector<8xi32> {
+// CHECK:           %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x1xi32> to vector<8xi32>
+// CHECK:           %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8xi32> to vector<8xi32>
+// CHECK:           %[[VAL_4:.*]] = arith.addi %[[VAL_2]], %[[VAL_3]] : vector<8xi32>
+// CHECK:           return %[[VAL_4]] : vector<8xi32>
+
+// -----
+
+func.func @fold_unit_dim_mulf(%arg0 : vector<8x[2]x1xf32>,
+                              %arg1 : vector<1x8x[2]xf32>) -> vector<8x[2]xf32> {
+   %sc_arg0 = vector.shape_cast %arg0 : vector<8x[2]x1xf32> to vector<1x8x[2]xf32>
+   %add = arith.mulf %sc_arg0, %arg1 : vector<1x8x[2]xf32>
+   %res = vector.shape_cast %add : vector<1x8x[2]xf32> to vector<8x[2]xf32>
+   return %res : vector<8x[2]xf32>
+}
+
+// CHECK-LABEL:   func.func @fold_unit_dim_mulf(
+// CHECK-SAME:      %[[VAL_0:.*]]: vector<8x[2]x1xf32>,
+// CHECK-SAME:      %[[VAL_1:.*]]: vector<1x8x[2]xf32>) -> vector<8x[2]xf32> {
+// CHECK:           %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x[2]x1xf32> to vector<8x[2]xf32>
+// CHECK:           %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8x[2]xf32> to vector<8x[2]xf32>
+// CHECK:           %[[VAL_4:.*]] = arith.mulf %[[VAL_2]], %[[VAL_3]] : vector<8x[2]xf32>
+// CHECK:           return %[[VAL_4]] : vector<8x[2]xf32>
+
+// -----
+
+// All shape casts are folded away
+
+func.func @fold_unit_dims_entirely(%arg0 : vector<8xi32>,
+                                   %arg1 : vector<8xi32>,
+                                   %arg2 : vector<8xi32>) -> vector<8xi32> {
+   %sc_arg0 = vector.shape_cast %arg0 : vector<8xi32> to vector<1x8xi32>
+   %sc_arg1 = vector.shape_cast %arg1 : vector<8xi32> to vector<1x8xi32>
+   %sc_arg2 = vector.shape_cast %arg2 : vector<8xi32> to vector<1x8xi32>
+   %mul = arith.muli %sc_arg0, %sc_arg1 : vector<1x8xi32>
+   %add = arith.addi %mul, %sc_arg2 : vector<1x8xi32>
+   %res = vector.shape_cast %add : vector<1x8xi32> to vector<8xi32>
+   return %res : vector<8xi32>
+}
+
+// CHECK-LABEL:   func.func @fold_unit_dims_entirely(
+// CHECK-SAME:      %[[VAL_0:.*]]: vector<8xi32>, %[[VAL_1:.*]]: vector<8xi32>,
+// CHECK-SAME:      %[[VAL_2:.*]]: vector<8xi32>) -> vector<8xi32> {
+// CHECK:           %[[VAL_3:.*]] = arith.muli %[[VAL_0]], %[[VAL_1]] : vector<8xi32>
+// CHECK:           %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_2]] : vector<8xi32>
+// CHECK:           return %[[VAL_4]] : vector<8xi32>
+

diff  --git a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
index e593c0defcd29e..a643343e9342ad 100644
--- a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
+++ b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
@@ -455,6 +455,7 @@ struct TestFlattenVectorTransferPatterns
   void getDependentDialects(DialectRegistry &registry) const override {
     registry.insert<memref::MemRefDialect>();
     registry.insert<affine::AffineDialect>();
+    registry.insert<vector::VectorDialect>();
   }
   void runOnOperation() override {
     RewritePatternSet patterns(&getContext());


        


More information about the Mlir-commits mailing list