[Mlir-commits] [mlir] [mlir][sparse] fix bug in custom reduction scalarization code (PR #74898)
Aart Bik
llvmlistbot at llvm.org
Fri Dec 8 15:43:15 PST 2023
https://github.com/aartbik created https://github.com/llvm/llvm-project/pull/74898
Bug found with BSR of "spy" SDDMM method
>From 802b106f4fb16da1396bc9c925a2be3686f3d6c4 Mon Sep 17 00:00:00 2001
From: Aart Bik <ajcbik at google.com>
Date: Fri, 8 Dec 2023 15:40:35 -0800
Subject: [PATCH] [mlir][sparse] fix bug in custom reduction scalarization code
Bug found with BSR of "spy" SDDMM method
---
.../Transforms/Sparsification.cpp | 24 ++--
.../Dialect/SparseTensor/spy_sddmm_bsr.mlir | 103 ++++++++++++++++++
2 files changed, 120 insertions(+), 7 deletions(-)
create mode 100755 mlir/test/Dialect/SparseTensor/spy_sddmm_bsr.mlir
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
index 6c9adf9fa21a0..992be434fc623 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
@@ -673,25 +673,35 @@ static void genInvariants(CodegenEnv &env, OpBuilder &builder, ExprId exp,
// All exhausted at current level.
if (!isCurrentLoop)
return;
+ // Generate code for a scalarized reduction or invariant. Note that
+ // because custom reduction lhs may occur several times in the IR,
+ // we have a built-in safety for only initializing and wrapping-up
+ // the scalarized reduction once.
OpOperand *lhs = op.getDpsInitOperand(0);
if (lhs == &t) {
// Start or end a scalarized reduction.
if (isStart) {
- Value load = env.isCustomReduc() ? env.getCustomRedId()
- : genTensorLoad(env, builder, exp);
- env.startReduc(exp, load);
+ if (env.isCustomReduc()) {
+ if (!env.isReduc())
+ env.startReduc(exp, env.getCustomRedId());
+ } else {
+ env.startReduc(exp, genTensorLoad(env, builder, exp));
+ }
if (env.hasSparseOutput())
env.setValidLexInsert(constantI1(builder, env.op().getLoc(), false));
} else {
- genTensorStore(env, builder, exp, env.endReduc());
- env.clearValidLexInsert();
+ if (!env.isCustomReduc() || env.isReduc())
+ genTensorStore(env, builder, exp, env.endReduc());
+ if (env.hasSparseOutput())
+ env.clearValidLexInsert();
}
} else {
// Start or end loop invariant hoisting of a tensor load.
- if (isStart)
+ if (isStart) {
env.merger().setExprValue(exp, genTensorLoad(env, builder, exp));
- else
+ } else {
env.merger().clearExprValue(exp);
+ }
}
} else if (env.exp(exp).kind != TensorExp::Kind::kInvariant &&
env.exp(exp).kind != TensorExp::Kind::kLoopVar &&
diff --git a/mlir/test/Dialect/SparseTensor/spy_sddmm_bsr.mlir b/mlir/test/Dialect/SparseTensor/spy_sddmm_bsr.mlir
new file mode 100755
index 0000000000000..ed8d639878967
--- /dev/null
+++ b/mlir/test/Dialect/SparseTensor/spy_sddmm_bsr.mlir
@@ -0,0 +1,103 @@
+// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s
+
+//
+// A SDDMM implementation with "spy" function and
+// in-place update of the sampling sparse matrix.
+//
+
+#BSR = #sparse_tensor.encoding<{
+ map = (i, j) -> (
+ i floordiv 2 : dense,
+ j floordiv 2 : compressed,
+ i mod 2 : dense,
+ j mod 2 : dense)
+}>
+
+#trait_SDDMM = {
+ indexing_maps = [
+ affine_map<(i,j,k) -> (i,k)>, // A
+ affine_map<(i,j,k) -> (k,j)>, // B
+ affine_map<(i,j,k) -> (i,j)> // S (in/out)
+ ],
+ iterator_types = ["parallel", "parallel", "reduction"],
+ doc = "S(i,j) += spy[S(i,j)] x SUM_k A(i,k) B(k,j)"
+}
+
+//
+// CHECK: #[[$BSR:.+]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense) }>
+// CHECK: #[[$MAP:.+]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3) -> (d0 : dense, d1 : compressed, d2 : dense, d3 : dense) }>
+//
+// CHECK-LABEL: func.func @SDDMM_block(
+// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xf32, #[[$BSR]]>,
+// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xf32>,
+// CHECK-SAME: %[[VAL_2:.*]]: tensor<?x?xf32>) -> tensor<?x?xf32, #[[$BSR]]> {
+// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
+// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index
+// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[VAL_7:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<?x?xf32, #[[$BSR]]> to tensor<?x?x2x2xf32, #[[$MAP]]>
+// CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor<?x?xf32>
+// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<?x?xf32>
+// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<?x?xf32>
+// CHECK: %[[VAL_11:.*]] = sparse_tensor.lvl %[[VAL_7]], %[[VAL_4]] : tensor<?x?x2x2xf32, #[[$MAP]]>
+// CHECK: %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_7]] {level = 1 : index} : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xindex>
+// CHECK: %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_7]] {level = 1 : index} : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xindex>
+// CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_7]] : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xf32>
+// CHECK: scf.for %[[VAL_15:.*]] = %[[VAL_4]] to %[[VAL_11]] step %[[VAL_3]] {
+// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_15]]] : memref<?xindex>
+// CHECK: %[[VAL_17:.*]] = arith.addi %[[VAL_15]], %[[VAL_3]] : index
+// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_17]]] : memref<?xindex>
+// CHECK: scf.for %[[VAL_19:.*]] = %[[VAL_16]] to %[[VAL_18]] step %[[VAL_3]] {
+// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_19]]] : memref<?xindex>
+// CHECK: scf.for %[[VAL_21:.*]] = %[[VAL_4]] to %[[VAL_5]] step %[[VAL_3]] {
+// CHECK: %[[VAL_22:.*]] = arith.muli %[[VAL_19]], %[[VAL_5]] : index
+// CHECK: %[[VAL_23:.*]] = arith.addi %[[VAL_22]], %[[VAL_21]] : index
+// CHECK: scf.for %[[VAL_24:.*]] = %[[VAL_4]] to %[[VAL_5]] step %[[VAL_3]] {
+// CHECK: %[[VAL_25:.*]] = arith.muli %[[VAL_23]], %[[VAL_5]] : index
+// CHECK: %[[VAL_26:.*]] = arith.addi %[[VAL_25]], %[[VAL_24]] : index
+// CHECK: %[[VAL_27:.*]] = scf.for %[[VAL_28:.*]] = %[[VAL_4]] to %[[VAL_8]] step %[[VAL_3]] iter_args(%[[VAL_29:.*]] = %[[VAL_6]]) -> (f32) {
+// CHECK: %[[VAL_30:.*]] = arith.muli %[[VAL_15]], %[[VAL_5]] : index
+// CHECK: %[[VAL_31:.*]] = arith.addi %[[VAL_30]], %[[VAL_21]] : index
+// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_31]], %[[VAL_28]]] : memref<?x?xf32>
+// CHECK: %[[VAL_33:.*]] = arith.muli %[[VAL_20]], %[[VAL_5]] : index
+// CHECK: %[[VAL_34:.*]] = arith.addi %[[VAL_33]], %[[VAL_24]] : index
+// CHECK: %[[VAL_35:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_28]], %[[VAL_34]]] : memref<?x?xf32>
+// CHECK: %[[VAL_36:.*]] = arith.mulf %[[VAL_32]], %[[VAL_35]] : f32
+// CHECK: %[[VAL_37:.*]] = arith.addf %[[VAL_29]], %[[VAL_36]] : f32
+// CHECK: scf.yield %[[VAL_37]] : f32
+// CHECK: } {"Emitted from" = "linalg.generic"}
+// CHECK: memref.store %[[VAL_27]], %[[VAL_14]]{{\[}}%[[VAL_26]]] : memref<?xf32>
+// CHECK: } {"Emitted from" = "linalg.generic"}
+// CHECK: } {"Emitted from" = "linalg.generic"}
+// CHECK: } {"Emitted from" = "linalg.generic"}
+// CHECK: } {"Emitted from" = "linalg.generic"}
+// CHECK: %[[VAL_38:.*]] = sparse_tensor.load %[[VAL_7]] : tensor<?x?x2x2xf32, #[[$MAP]]>
+// CHECK: %[[VAL_39:.*]] = sparse_tensor.reinterpret_map %[[VAL_38]] : tensor<?x?x2x2xf32, #[[$MAP]]> to tensor<?x?xf32, #[[$BSR]]>
+// CHECK: return %[[VAL_39]] : tensor<?x?xf32, #[[$BSR]]>
+// CHECK: }
+module {
+ func.func @SDDMM_block(%args: tensor<?x?xf32, #BSR>,
+ %arga: tensor<?x?xf32>,
+ %argb: tensor<?x?xf32>) -> tensor<?x?xf32, #BSR> {
+ %result = linalg.generic #trait_SDDMM
+ ins(%arga, %argb: tensor<?x?xf32>, tensor<?x?xf32>)
+ outs(%args: tensor<?x?xf32, #BSR>) {
+ ^bb(%a: f32, %b: f32, %s: f32):
+ %f0 = arith.constant 0.0 : f32
+ %u = sparse_tensor.unary %s : f32 to f32
+ present={
+ ^bb0(%p: f32):
+ %mul = arith.mulf %a, %b : f32
+ sparse_tensor.yield %mul : f32
+ }
+ absent={}
+ %r = sparse_tensor.reduce %s, %u, %f0 : f32 {
+ ^bb0(%p: f32, %q: f32):
+ %add = arith.addf %p, %q : f32
+ sparse_tensor.yield %add : f32
+ }
+ linalg.yield %r : f32
+ } -> tensor<?x?xf32, #BSR>
+ return %result : tensor<?x?xf32, #BSR>
+ }
+}
More information about the Mlir-commits
mailing list