[Mlir-commits] [mlir] [mlir][sparse] code formatting (NFC) (PR #74779)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu Dec 7 15:17:27 PST 2023
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-sparse
@llvm/pr-subscribers-mlir
Author: Aart Bik (aartbik)
<details>
<summary>Changes</summary>
---
Full diff: https://github.com/llvm/llvm-project/pull/74779.diff
2 Files Affected:
- (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/dual_sparse_conv_2d.mlir (+6-6)
- (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d.mlir (+7-9)
``````````diff
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/dual_sparse_conv_2d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/dual_sparse_conv_2d.mlir
index 7825e8fe9bafa..6c35e2b51ed8f 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/dual_sparse_conv_2d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/dual_sparse_conv_2d.mlir
@@ -41,8 +41,8 @@
module {
func.func @conv2d(%input: tensor<8x8xi32>,
- %filter: tensor<3x3xi32>,
- %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
+ %filter: tensor<3x3xi32>,
+ %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32>, tensor<3x3xi32>)
outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
@@ -50,7 +50,7 @@ module {
}
func.func @conv2d_all_sparse_DCSR(%input: tensor<8x8xi32, #DCSR>,
- %filter: tensor<3x3xi32, #DCSR>) -> tensor<6x6xi32, #DCSR> {
+ %filter: tensor<3x3xi32, #DCSR>) -> tensor<6x6xi32, #DCSR> {
%s = tensor.empty() : tensor<6x6xi32, #DCSR>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #DCSR>, tensor<3x3xi32, #DCSR>)
@@ -59,7 +59,7 @@ module {
}
func.func @conv2d_all_sparse_CSR(%input: tensor<8x8xi32, #CSR>,
- %filter: tensor<3x3xi32, #CSR>) -> tensor<6x6xi32, #CSR> {
+ %filter: tensor<3x3xi32, #CSR>) -> tensor<6x6xi32, #CSR> {
%s = tensor.empty() : tensor<6x6xi32, #CSR>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #CSR>, tensor<3x3xi32, #CSR>)
@@ -68,7 +68,7 @@ module {
}
func.func @conv2d_all_sparse_CD(%input: tensor<8x8xi32, #CDR>,
- %filter: tensor<3x3xi32, #CDR>) -> tensor<6x6xi32, #CDR> {
+ %filter: tensor<3x3xi32, #CDR>) -> tensor<6x6xi32, #CDR> {
%s = tensor.empty() : tensor<6x6xi32, #CDR>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #CDR>, tensor<3x3xi32, #CDR>)
@@ -77,7 +77,7 @@ module {
}
func.func @conv2d_all_sparse_CSC(%input: tensor<8x8xi32, #CSC>,
- %filter: tensor<3x3xi32, #CSC>) -> tensor<6x6xi32, #CSC> {
+ %filter: tensor<3x3xi32, #CSC>) -> tensor<6x6xi32, #CSC> {
%s = tensor.empty() : tensor<6x6xi32, #CSC>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #CSC>, tensor<3x3xi32, #CSC>)
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d.mlir
index 80946f5388520..f2907db7d825b 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d.mlir
@@ -46,8 +46,8 @@
module {
func.func @conv2d(%input: tensor<8x8xi32>,
- %filter: tensor<3x3xi32>,
- %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
+ %filter: tensor<3x3xi32>,
+ %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32>, tensor<3x3xi32>)
outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
@@ -70,7 +70,7 @@ module {
}
func.func @conv2d_sparse_out(%input: tensor<8x8xi32>,
- %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #DCSR> {
+ %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #DCSR> {
%s = tensor.empty() : tensor<6x6xi32, #DCSR>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32>, tensor<3x3xi32>)
@@ -79,7 +79,7 @@ module {
}
func.func @conv2d_all_sparse_DCSR(%input: tensor<8x8xi32, #DCSR>,
- %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #DCSR> {
+ %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #DCSR> {
%s = tensor.empty() : tensor<6x6xi32, #DCSR>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #DCSR>, tensor<3x3xi32>)
@@ -88,7 +88,7 @@ module {
}
func.func @conv2d_all_sparse_CSR(%input: tensor<8x8xi32, #CSR>,
- %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #CSR> {
+ %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #CSR> {
%s = tensor.empty() : tensor<6x6xi32, #CSR>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #CSR>, tensor<3x3xi32>)
@@ -97,7 +97,7 @@ module {
}
func.func @conv2d_all_sparse_CD(%input: tensor<8x8xi32, #CDR>,
- %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #CDR> {
+ %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #CDR> {
%s = tensor.empty() : tensor<6x6xi32, #CDR>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #CDR>, tensor<3x3xi32>)
@@ -106,7 +106,7 @@ module {
}
func.func @conv2d_all_sparse_CSC(%input: tensor<8x8xi32, #CSC>,
- %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #CSC> {
+ %filter: tensor<3x3xi32>) -> tensor<6x6xi32, #CSC> {
%s = tensor.empty() : tensor<6x6xi32, #CSC>
%0 = linalg.conv_2d
ins (%input, %filter: tensor<8x8xi32, #CSC>, tensor<3x3xi32>)
@@ -125,7 +125,6 @@ module {
[ -1, 0, 1 ]
]> : tensor<3x3xi32>
-
%input = arith.constant dense<[
[ 1, 2, 3, 4, 0, 6, 7, 8 ],
[ 2, 2, 4, 4, 0, 0, 6, 8 ],
@@ -270,7 +269,6 @@ module {
: tensor<6x6xi32>, vector<6x6xi32>
vector.print %v : vector<6x6xi32>
-
// Release the resources.
bufferization.dealloc_tensor %sparse_input_DCSR : tensor<8x8xi32, #DCSR>
bufferization.dealloc_tensor %sparse_input_CSR : tensor<8x8xi32, #CSR>
``````````
</details>
https://github.com/llvm/llvm-project/pull/74779
More information about the Mlir-commits
mailing list