[Mlir-commits] [mlir] 03c2f5d - [mlir][linalg][conv] Flatten the channel dimension when vectorizing (#71918)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Wed Dec 6 13:35:07 PST 2023
Author: Andrzej WarzyĆski
Date: 2023-12-06T21:35:03Z
New Revision: 03c2f5d8bbcf31239a631d9343ac7f4b6b3094c1
URL: https://github.com/llvm/llvm-project/commit/03c2f5d8bbcf31239a631d9343ac7f4b6b3094c1
DIFF: https://github.com/llvm/llvm-project/commit/03c2f5d8bbcf31239a631d9343ac7f4b6b3094c1.diff
LOG: [mlir][linalg][conv] Flatten the channel dimension when vectorizing (#71918)
The current vectorization of 1D depthwise convolutions in Linalg is
_sub-optimal_ for tensor with a low number of channel dimensions, e.g.:
```mlir
linalg.depthwise_conv_1d_nwc_wc
{dilations = dense<1> : vector<1xi64>,
strides = dense<1> : vector<1xi64>}
ins(%input, %filter : tensor<1x8x3xi8>, tensor<1x3xi8>)
outs(%output : tensor<1x8x3xi8>) -> tensor<1x8x3xi8>
```
That's due to the fact that ultimately (i.e. at LLVM level),
vectorization happens along the trailing dimension (i.e. the channel
dimension). In this case it leads to vectors with 3 elements (or worse,
if there's e.g. only 1 channel dimension). For comparison, a 128 bit
wide vector registers can hold 16 x i8.
Instead, this patch adds an option to flatten/collapse the channel
dimension into the width dimension of the input/filter/output using
`vector.shape_cast` operation:
```mlir
%sc_input = vector.shape_cast %input : vector<1x8x3xi8> to vector<1x24xi8>
%sc_output = vector.shape_cast %output : vector<1x8x3xi8> to vector<1x24xi8>
%b_filter = vector.broadcast %filter : vector<3xi8> to vector<1x8x3xi8>
%sc_filter = vector.shape_cast %b_filter : vector<1x8x3xi8> to vector<1x24xi8>
```
This new vectorization mode is implemented in `depthwiseConv` by
inserting `vector.shape_cast` Ops before and after
`depthwiseConv1dSliceAsMulAcc` is invoked. It can be selected through
e.g. a transform dialect attribute:
```mlir
transform.structured.vectorize_children_and_apply_patterns %conv {flatten_1d_depthwise_conv}
```
A forthcoming patch will implement a strategy to automatically switch
between the two implementations, depending on the shape of the input
tensors.
Co-authored by: Bradley Smith <bradley.smith at arm.com>
Added:
mlir/test/Dialect/Linalg/vectorize-convolution-flatten.mlir
Modified:
mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
index 002926ff965fd..de65f3176c46a 100644
--- a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
@@ -2038,6 +2038,7 @@ def VectorizeChildrenAndApplyPatternsOp :
let arguments = (ins TransformHandleTypeInterface:$target,
UnitAttr:$vectorize_padding,
UnitAttr:$vectorize_nd_extract,
+ UnitAttr:$flatten_1d_depthwise_conv,
UnitAttr:$disable_multi_reduction_to_contract_patterns,
UnitAttr:$disable_transfer_permutation_map_lowering_patterns);
let results = (outs TransformHandleTypeInterface:$transformed);
@@ -2049,7 +2050,8 @@ def VectorizeChildrenAndApplyPatternsOp :
let builders = [
OpBuilder<(ins "Value":$target,
CArg<"bool", "false">:$vectorizePadding,
- CArg<"bool", "false">:$vectorizeNDExtract)>,
+ CArg<"bool", "false">:$vectorizeNDExtract,
+ CArg<"bool", "false">:$flatten1DDepthwise)>
];
let extraClassDeclaration = [{
::mlir::DiagnosedSilenceableFailure applyToOne(
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
index 6c4e16bd94f47..3f4dfe42b71fd 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -753,7 +753,8 @@ LogicalResult deallocateGPUPrivateMemory(OpBuilder &, Value /*buffer*/);
LogicalResult vectorize(RewriterBase &rewriter, Operation *op,
ArrayRef<int64_t> inputVectorSizes = {},
ArrayRef<bool> inputScalableVecDims = {},
- bool vectorizeNDExtract = false);
+ bool vectorizeNDExtract = false,
+ bool flatten1DDepthwiseConv = false);
/// Emit a suitable vector form for a Copy op with fully static shape.
LogicalResult vectorizeCopy(RewriterBase &builder, memref::CopyOp copyOp);
diff --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index 18ee36efab9d8..e3713457e8412 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -2946,7 +2946,7 @@ LogicalResult TileUsingForallOp::verify() {
void transform::VectorizeChildrenAndApplyPatternsOp::build(
OpBuilder &builder, OperationState &result, Value target,
- bool vectorizePadding, bool vectorizeExtract) {
+ bool vectorizePadding, bool vectorizeExtract, bool flatten1DDepthwiseConv) {
result.addOperands(target);
if (vectorizePadding) {
result.addAttribute(
@@ -2960,6 +2960,12 @@ void transform::VectorizeChildrenAndApplyPatternsOp::build(
result.name),
builder.getUnitAttr());
}
+ if (flatten1DDepthwiseConv) {
+ result.addAttribute(
+ VectorizeChildrenAndApplyPatternsOp::getFlatten_1dDepthwiseConvAttrName(
+ result.name),
+ builder.getUnitAttr());
+ }
result.addTypes(transform::AnyOpType::get(builder.getContext()));
}
@@ -2968,22 +2974,29 @@ namespace {
/// VectorizeChildrenAndApplyPatternsOp::applyToOne.
struct VectorizationPattern : public RewritePattern {
explicit VectorizationPattern(MLIRContext *context,
- bool vectorizeExtract = false)
+ bool vectorizeExtract = false,
+ bool flattenConv = false)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context),
- vectorizeNDExtract(vectorizeExtract) {}
+ vectorizeNDExtract(vectorizeExtract),
+ flatten1DDepthwiseConv(flattenConv) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return rewriter.notifyMatchFailure(op, "expected Linalg Op");
return vectorize(rewriter, linalgOp, /*inputVectorSizes=*/{},
- /*scalableVecDims=*/{}, vectorizeNDExtract);
+ /*scalableVecDims=*/{}, vectorizeNDExtract,
+ flatten1DDepthwiseConv);
}
private:
/// Controls whether to vectorize `tensor.extract` when the input tensor is
/// rank >= 2.
bool vectorizeNDExtract = false;
+ /// Controls whether to "flatten" the channel dimension when vectorising 1D
+ /// depthwise convolutions. This should lead to bette vectorization for
+ /// tensors with a low number of channel dimensions.
+ bool flatten1DDepthwiseConv = false;
};
} // namespace
@@ -3000,7 +3013,8 @@ transform::VectorizeChildrenAndApplyPatternsOp::applyToOne(
MLIRContext *ctx = getContext();
RewritePatternSet patterns(ctx);
- patterns.add<VectorizationPattern>(ctx, getVectorizeNdExtract());
+ patterns.add<VectorizationPattern>(ctx, getVectorizeNdExtract(),
+ getFlatten_1dDepthwiseConv());
if (!getDisableTransferPermutationMapLoweringPatterns())
vector::populateVectorTransferPermutationMapLoweringPatterns(patterns);
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index f9a53a8451a60..c21d007c931b9 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -44,8 +44,9 @@ using namespace mlir::linalg;
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
/// Try to vectorize `convOp` as a convolution.
-static FailureOr<Operation *> vectorizeConvolution(RewriterBase &rewriter,
- LinalgOp convOp);
+static FailureOr<Operation *>
+vectorizeConvolution(RewriterBase &rewriter, LinalgOp convOp,
+ bool flatten1DDepthwiseConv = false);
/// Return the unique instance of OpType in `block` if it is indeed unique.
/// Return null if none or more than 1 instances exist.
@@ -1664,7 +1665,8 @@ static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) {
LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
ArrayRef<int64_t> inputVectorSizes,
ArrayRef<bool> inputScalableVecDims,
- bool vectorizeNDExtract) {
+ bool vectorizeNDExtract,
+ bool flatten1DDepthwiseConv) {
LDBG("Attempting to vectorize:\n" << *op << "\n");
LDBG("Input vector sizes: ");
LLVM_DEBUG(llvm::interleaveComma(inputVectorSizes, llvm::dbgs()));
@@ -1696,8 +1698,8 @@ LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
// TODO: isaConvolutionOpInterface that can also infer from generic
// features. Will require stride/dilation attributes inference.
if (isa<ConvolutionOpInterface>(linalgOp.getOperation())) {
- FailureOr<Operation *> convOr =
- vectorizeConvolution(rewriter, linalgOp);
+ FailureOr<Operation *> convOr = vectorizeConvolution(
+ rewriter, linalgOp, flatten1DDepthwiseConv);
if (succeeded(convOr)) {
llvm::append_range(results, (*convOr)->getResults());
return success();
@@ -2822,7 +2824,7 @@ struct Conv1DGenerator
/// kw is always unrolled.
/// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
/// > 1.
- FailureOr<Operation *> depthwiseConv() {
+ FailureOr<Operation *> depthwiseConv(bool flatten) {
if (!valid)
return rewriter.notifyMatchFailure(op, "unvectorizable depthwise conv");
@@ -2869,6 +2871,9 @@ struct Conv1DGenerator
//===------------------------------------------------------------------===//
// Unroll along kw and read slices of lhs and rhs.
SmallVector<Value> lhsVals, rhsVals, resVals;
+ auto inOutSliceSizes = SmallVector<int64_t>{nSize, wSizeStep, cSize};
+ auto inOutStrides = SmallVector<int64_t>{1, 1, 1};
+
// Extract lhs slice of size {n, wSizeStep, c}
// @ [0, sw * w + dw * kw, 0].
for (int64_t kw = 0; kw < kwSize; ++kw) {
@@ -2876,8 +2881,7 @@ struct Conv1DGenerator
lhsVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, lhs,
/*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
- /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
- /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
+ inOutSliceSizes, inOutStrides));
}
}
// Extract rhs slice of size {c} @ [kw].
@@ -2889,21 +2893,39 @@ struct Conv1DGenerator
for (int64_t w = 0; w < wSize; w += wSizeStep) {
resVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, res,
- /*offsets=*/ArrayRef<int64_t>{0, w, 0},
- /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
- /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
+ /*offsets=*/ArrayRef<int64_t>{0, w, 0}, inOutSliceSizes,
+ inOutStrides));
}
auto linearIndex = [&](int64_t kw, int64_t w) {
return kw * (wSize / wSizeStep) + w;
};
+ auto inOutFlattenSliceSizes =
+ SmallVector<int64_t>{nSize, wSizeStep * cSize};
+ auto lhsCastType = VectorType::get(inOutFlattenSliceSizes, lhsEltType);
+ auto resCastType = VectorType::get(inOutFlattenSliceSizes, resEltType);
// Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
for (int64_t kw = 0; kw < kwSize; ++kw) {
for (int64_t w = 0; w < wSize; w += wSizeStep) {
- resVals[w] = depthwiseConv1dSliceAsMulAcc(rewriter, loc,
- lhsVals[linearIndex(kw, w)],
- rhsVals[kw], resVals[w]);
+ Value lhsVal = lhsVals[linearIndex(kw, w)];
+ Value resVal = resVals[w];
+ ShapedType filterBCastTy = cast<ShapedType>(resVal.getType());
+ if (flatten) {
+ // Flatten the input and filter vectors (collapse the channel
+ // dimension)
+ lhsVal = rewriter.create<vector::ShapeCastOp>(
+ loc, lhsCastType, lhsVals[linearIndex(kw, w)]);
+ resVal = rewriter.create<vector::ShapeCastOp>(loc, resCastType,
+ resVals[w]);
+ }
+ resVals[w] = depthwiseConv1dSliceAsMulAcc(
+ rewriter, loc, lhsVal, rhsVals[kw], resVal, filterBCastTy, flatten);
+ if (flatten) {
+ // Un-flatten the output vector (restore the channel dimension)
+ resVals[w] = rewriter.create<vector::ShapeCastOp>(
+ loc, VectorType::get(inOutSliceSizes, resEltType), resVals[w]);
+ }
}
}
@@ -2936,9 +2958,13 @@ struct Conv1DGenerator
.getOperation();
}
- /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to MulAcc
+ /// Lower:
+ /// * lhs{n, w, c} * rhs{c} -> res{n, w, c} (flatten = false)
+ /// * lhs{n, w * c} * rhs{c} -> res{n, w * c} (flatten = true)
+ /// to MulAcc.
Value depthwiseConv1dSliceAsMulAcc(RewriterBase &rewriter, Location loc,
- Value lhs, Value rhs, Value res) {
+ Value lhs, Value rhs, Value res,
+ ShapedType bcastTy, bool flatten) {
auto rhsTy = cast<ShapedType>(rhs.getType());
auto resTy = cast<ShapedType>(res.getType());
@@ -2946,7 +2972,13 @@ struct Conv1DGenerator
lhs = promote(rewriter, loc, lhs, resTy);
rhs = rewriter.create<vector::BroadcastOp>(
- loc, resTy.clone(rhsTy.getElementType()), rhs);
+ loc, bcastTy.clone(rhsTy.getElementType()), rhs);
+ if (flatten) {
+ // Flatten the channel dimension
+ rhs = rewriter.create<vector::ShapeCastOp>(
+ loc, resTy.clone(rhsTy.getElementType()), rhs);
+ }
+
rhs = promote(rewriter, loc, rhs, resTy);
if (!lhs || !rhs)
@@ -3049,7 +3081,7 @@ struct Conv1DGenerator
/// Entry point that transposes into the common form:
/// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
- FailureOr<Operation *> generateDilatedConv() {
+ FailureOr<Operation *> generateDilatedConv(bool flatten = false) {
AffineExpr n, w, c, kw;
bindDims(ctx, n, w, c, kw);
if (!iters({Par(), Par(), Par(), Red()}))
@@ -3060,7 +3092,7 @@ struct Conv1DGenerator
if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
/*rhsIndex*/ {kw, c},
/*resIndex*/ {n, w, c}}))
- return depthwiseConv();
+ return depthwiseConv(flatten);
return rewriter.notifyMatchFailure(op, "not a depthwise::Nwc layout");
}
@@ -3125,8 +3157,9 @@ struct Conv1DGenerator
/// Helper function to vectorize a LinalgOp with convolution semantics.
// TODO: extend the generic vectorization to support windows and drop this.
-static FailureOr<Operation *> vectorizeConvolution(RewriterBase &rewriter,
- LinalgOp op) {
+static FailureOr<Operation *>
+vectorizeConvolution(RewriterBase &rewriter, LinalgOp op,
+ bool flatten1DDepthwiseConv) {
// The ConvolutionOpInterface gives us guarantees of existence for
// strides/dilations. However, we do not need to rely on those, we can simply
// use them if present, otherwise use the default and let the generic conv.
@@ -3151,7 +3184,7 @@ static FailureOr<Operation *> vectorizeConvolution(RewriterBase &rewriter,
res = e.generateNcwPooling();
if (succeeded(res))
return res;
- return e.generateDilatedConv();
+ return e.generateDilatedConv(flatten1DDepthwiseConv);
}
struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> {
diff --git a/mlir/test/Dialect/Linalg/vectorize-convolution-flatten.mlir b/mlir/test/Dialect/Linalg/vectorize-convolution-flatten.mlir
new file mode 100644
index 0000000000000..a242d09671825
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/vectorize-convolution-flatten.mlir
@@ -0,0 +1,309 @@
+// RUN: mlir-opt -split-input-file -transform-interpreter %s | FileCheck %s
+
+func.func @depthwise_conv1d_nwc_wc_1x8x3xi8_tensor(%input: tensor<1x8x3xi8>,
+ %filter: tensor<1x3xi8>,
+ %output: tensor<1x8x3xi8>) -> (tensor<1x8x3xi8>) {
+ %res = linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<1> : vector<1xi64>,
+ strides = dense<1> : vector<1xi64>}
+ ins(%input, %filter : tensor<1x8x3xi8>, tensor<1x3xi8>)
+ outs(%output : tensor<1x8x3xi8>) -> tensor<1x8x3xi8>
+ return %res : tensor<1x8x3xi8>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+ %2 = transform.structured.vectorize_children_and_apply_patterns %1 {flatten_1d_depthwise_conv} : (!transform.any_op) -> !transform.any_op
+ transform.yield
+ }
+}
+// CHECK-LABEL: func.func @depthwise_conv1d_nwc_wc_1x8x3xi8_tensor
+// CHECK-SAME: %[[INPUT:.*]]: tensor<1x8x3xi8>,
+// CHECK-SAME: %[[FILTER:.*]]: tensor<1x3xi8>,
+// CHECK-SAME: %[[OUTPUT:.*]]: tensor<1x8x3xi8>) -> tensor<1x8x3xi8> {
+
+// CHECK-DAG: %[[C0_IDX:.*]] = arith.constant 0 : index
+
+/// Read the whole data in one shot.
+// CHECK: %[[V_INPUT_R:.*]] = vector.transfer_read %[[INPUT]][%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]]
+// CHECK: %[[V_FILTER_R:.*]] = vector.transfer_read %[[FILTER]][%[[C0_IDX]], %[[C0_IDX]]]
+// CHECK: %[[V_OUTPUT_R:.*]] = vector.transfer_read %[[OUTPUT]][%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]]
+
+// CHECK: %[[V_FILTER_0:.*]] = vector.extract %[[V_FILTER_R]][0] : vector<3xi8> from vector<1x3xi8>
+
+/// w == 0, kw = 0
+// CHECK: %[[SC_INPUT:.*]] = vector.shape_cast %[[V_INPUT_R]] : vector<1x8x3xi8> to vector<1x24xi8>
+// CHECK: %[[SC_OUTPUT:.*]] = vector.shape_cast %[[V_OUTPUT_R]] : vector<1x8x3xi8> to vector<1x24xi8>
+// CHECK: %[[B_FILTER:.*]] = vector.broadcast %[[V_FILTER_0]] : vector<3xi8> to vector<1x8x3xi8>
+// CHECK: %[[SC_FILTER:.*]] = vector.shape_cast %[[B_FILTER]] : vector<1x8x3xi8> to vector<1x24xi8>
+// CHECK: %[[MULI:.*]] = arith.muli %[[SC_INPUT]], %[[SC_FILTER]] : vector<1x24xi8>
+// CHECK: %[[ADDI:.*]] = arith.addi %[[MULI]], %[[SC_OUTPUT]] : vector<1x24xi8>
+
+// Write the result back in one shot.
+// CHECK: %[[SC_ADDI:.*]] = vector.shape_cast %[[ADDI]] : vector<1x24xi8> to vector<1x8x3xi8>
+// CHECK: vector.transfer_write %[[SC_ADDI]], %[[OUTPUT]][%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]]
+
+//------
+
+func.func @depthwise_conv1d_nwc_wc_3x5x4xf32_memref_dillation_2(%input: memref<3x5x4xf32>,
+ %filter: memref<2x4xf32>,
+ %output: memref<3x2x4xf32>) {
+ linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
+ ins(%input, %filter : memref<3x5x4xf32>, memref<2x4xf32>)
+ outs(%output : memref<3x2x4xf32>)
+ return
+}
+
+// CHECK: func @depthwise_conv1d_nwc_wc_3x5x4xf32_memref_dillation_2
+// CHECK-SAME: (%[[INPUT:[0-9a-z]+]]: memref<3x5x4xf32>, %[[FILTER:[0-9a-z]+]]: memref<2x4xf32>, %[[OUTPUT:[0-9a-z]+]]: memref<3x2x4xf32>)
+
+// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
+// CHECK-DAG: %[[F0:.+]] = arith.constant 0.000000e+00 : f32
+
+/// Read the whole data in one shot.
+// CHECK-DAG: %[[V_INPUT_R:.+]] = vector.transfer_read %[[INPUT]][%[[C0]], %[[C0]], %[[C0]]]
+// CHECK-DAG: %[[V_FILTER_R:.+]] = vector.transfer_read %[[FILTER]][%[[C0]], %[[C0]]]
+// CHECK-DAG: %[[V_OUTPUT_R:.+]] = vector.transfer_read %[[OUTPUT]][%[[C0]], %[[C0]], %[[C0]]]
+
+// CHECK: %[[V_INPUT_0:.+]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 0, 0], sizes = [3, 2, 4], strides = [1, 1, 1]} : vector<3x4x4xf32> to vector<3x2x4xf32>
+// CHECK: %[[V_INPUT_1:.+]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 2, 0], sizes = [3, 2, 4], strides = [1, 1, 1]} : vector<3x4x4xf32> to vector<3x2x4xf32>
+
+// CHECK: %[[V_FILTER_0:.+]] = vector.extract %[[V_FILTER_R]][0] : vector<4xf32> from vector<2x4xf32>
+// CHECK: %[[V_FILTER_1:.+]] = vector.extract %[[V_FILTER_R]][1] : vector<4xf32> from vector<2x4xf32>
+
+
+/// w == 0, kw = 0
+// CHECK: %[[SC_V_INPUT_0:.*]] = vector.shape_cast %[[V_INPUT_0]] : vector<3x2x4xf32> to vector<3x8xf32>
+// CHECK: %[[SC_V_OUTPUT_R:.*]] = vector.shape_cast %[[V_OUTPUT_R]] : vector<3x2x4xf32> to vector<3x8xf32>
+// CHECK: %[[B_FILTER_0:.*]] = vector.broadcast %[[V_FILTER_0]] : vector<4xf32> to vector<3x2x4xf32>
+// CHECK: %[[SC_B_FILTER_0:.*]] = vector.shape_cast %[[B_FILTER_0]] : vector<3x2x4xf32> to vector<3x8xf32>
+// CHECK: %[[FMA_0:.*]] = vector.fma %[[SC_V_INPUT_0]], %[[SC_B_FILTER_0]], %[[SC_V_OUTPUT_R]] : vector<3x8xf32>
+
+/// w == 0, kw = 1
+// CHECK: %[[SC_V_INPUT_1:.*]] = vector.shape_cast %[[V_INPUT_1]] : vector<3x2x4xf32> to vector<3x8xf32>
+// CHECK: %[[B_V_FILTER_1:.*]] = vector.broadcast %[[V_FILTER_1]] : vector<4xf32> to vector<3x2x4xf32>
+// CHECK: %[[SC_B_FILTER_1:.*]] = vector.shape_cast %[[B_V_FILTER_1]] : vector<3x2x4xf32> to vector<3x8xf32>
+// CHECK: %[[FMA_1:.*]] = vector.fma %[[SC_V_INPUT_1]], %[[SC_B_FILTER_1]], %[[FMA_0]] : vector<3x8xf32>
+
+// Write the result back in one shot.
+// CHECK: %[[SC_FMA_1:.*]] = vector.shape_cast %[[FMA_1]] : vector<3x8xf32> to vector<3x2x4xf32>
+// CHECK: vector.transfer_write %[[SC_FMA_1]], %[[OUTPUT]][%[[C0]], %[[C0]], %[[C0]]]
+
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+ %2 = transform.structured.vectorize_children_and_apply_patterns %1 {flatten_1d_depthwise_conv} : (!transform.any_op) -> !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @depthwise_conv1d_nwc_wc_3x5x4xi8_memref_dilation_2(%input: memref<3x5x4xi8>,
+ %filter: memref<2x4xi8>,
+ %output: memref<3x2x4xi32>) {
+ linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
+ ins(%input, %filter : memref<3x5x4xi8>, memref<2x4xi8>)
+ outs(%output : memref<3x2x4xi32>)
+ return
+}
+
+// CHECK: func @depthwise_conv1d_nwc_wc_3x5x4xi8_memref_dilation_2
+// CHECK-SAME: (%[[INPUT:[0-9a-z]+]]: memref<3x5x4xi8>, %[[FILTER:[0-9a-z]+]]: memref<2x4xi8>, %[[OUTPUT:[0-9a-z]+]]: memref<3x2x4xi32>)
+
+// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
+
+/// Read the whole data in one shot.
+// CHECK-DAG: %[[V_INPUT_R:.+]] = vector.transfer_read %[[INPUT]][%[[C0]], %[[C0]], %[[C0]]]
+// CHECK-DAG: %[[V_FILTER_R:.+]] = vector.transfer_read %[[FILTER]][%[[C0]], %[[C0]]]
+// CHECK-DAG: %[[V_OUTPUT_R:.+]] = vector.transfer_read %[[OUTPUT]][%[[C0]], %[[C0]], %[[C0]]]
+
+// CHECK: %[[V_INPUT_0:.+]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 0, 0], sizes = [3, 2, 4], strides = [1, 1, 1]} : vector<3x4x4xi8> to vector<3x2x4xi8>
+// CHECK: %[[V_INPUT_1:.+]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 2, 0], sizes = [3, 2, 4], strides = [1, 1, 1]} : vector<3x4x4xi8> to vector<3x2x4xi8>
+
+// CHECK: %[[V_FILTER_0:.+]] = vector.extract %[[V_FILTER_R]][0] : vector<4xi8> from vector<2x4xi8>
+// CHECK: %[[V_FILTER_1:.+]] = vector.extract %[[V_FILTER_R]][1] : vector<4xi8> from vector<2x4xi8>
+
+/// w == 0, kw = 0
+// CHECK: %[[SC_V_INPUT_0:.*]] = vector.shape_cast %[[V_INPUT_0]] : vector<3x2x4xi8> to vector<3x8xi8>
+// CHECK: %[[SC_V_OUTPUT_R:.*]] = vector.shape_cast %[[V_OUTPUT_R]] : vector<3x2x4xi32> to vector<3x8xi32>
+// CHECK: %[[EXT_INPUT_0:.*]] = arith.extsi %[[SC_V_INPUT_0]] : vector<3x8xi8> to vector<3x8xi32>
+// CHECK: %[[B_FILTER_0:.*]] = vector.broadcast %[[V_FILTER_0]] : vector<4xi8> to vector<3x2x4xi8>
+// CHECK: %[[SC_B_FILTER_0:.*]] = vector.shape_cast %[[B_FILTER_0]] : vector<3x2x4xi8> to vector<3x8xi8>
+// CHECK: %[[EXT_FILTER_0:.*]] = arith.extsi %[[SC_B_FILTER_0]] : vector<3x8xi8> to vector<3x8xi32>
+// CHECK: %[[MUL_0:.*]] = arith.muli %[[EXT_INPUT_0]], %[[EXT_FILTER_0]] : vector<3x8xi32>
+// CHECK: %[[ADD_0:.*]] = arith.addi %[[MUL_0]], %[[SC_V_OUTPUT_R]] : vector<3x8xi32>
+
+/// w == 0, kw = 1
+// CHECK: %[[SC_V_INPUT_1:.*]] = vector.shape_cast %[[V_INPUT_1]] : vector<3x2x4xi8> to vector<3x8xi8>
+// CHECK: %[[EXT_INPUT_1:.*]] = arith.extsi %[[SC_V_INPUT_1]] : vector<3x8xi8> to vector<3x8xi32>
+// CHECK: %[[B_FILTER_1:.*]] = vector.broadcast %[[V_FILTER_1]] : vector<4xi8> to vector<3x2x4xi8>
+// CHECK: %[[SC_B_FILTER_1:.*]] = vector.shape_cast %[[B_FILTER_1]] : vector<3x2x4xi8> to vector<3x8xi8>
+// CHECK: %[[EXT_FILTER_1:.*]] = arith.extsi %[[SC_B_FILTER_1]] : vector<3x8xi8> to vector<3x8xi32>
+// CHECK: %[[MUL_1:.*]] = arith.muli %[[EXT_INPUT_1]], %[[EXT_FILTER_1]] : vector<3x8xi32>
+// CHECK: %[[ADD_1:.*]] = arith.addi %[[MUL_1]], %[[ADD_0]] : vector<3x8xi32>
+
+// Write the result back in one shot.
+// CHECK: %[[SC_ADD_1:.*]] = vector.shape_cast %[[ADD_1]] : vector<3x8xi32> to vector<3x2x4xi32>
+// CHECK: vector.transfer_write %[[SC_ADD_1]], %[[OUTPUT]][%[[C0]], %[[C0]], %[[C0]]]
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+ %2 = transform.structured.vectorize_children_and_apply_patterns %1 {flatten_1d_depthwise_conv} : (!transform.any_op) -> !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @depthwise_conv1d_nwc_wc_3x9x4xi8_tensor_stride_2(%input: tensor<3x9x4xi8>,
+ %filter: tensor<3x4xi8>,
+ %output: tensor<3x3x4xi8>) -> tensor<3x3x4xi8> {
+ %res = linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<1> : tensor<1xi64>, strides = dense<2> : tensor<1xi64>}
+ ins(%input, %filter : tensor<3x9x4xi8>, tensor<3x4xi8>)
+ outs(%output : tensor<3x3x4xi8>) -> tensor<3x3x4xi8>
+ return %res : tensor<3x3x4xi8>
+}
+// CHECK-LABEL: func.func @depthwise_conv1d_nwc_wc_3x9x4xi8_tensor_stride_2
+// CHECK-SAME: %[[INPUT:.*]]: tensor<3x9x4xi8>,
+// CHECK-SAME: %[[FILTER:.*]]: tensor<3x4xi8>,
+// CHECK-SAME: %[[OUTPUT:.*]]: tensor<3x3x4xi8>) -> tensor<3x3x4xi8> {
+
+// CHECK-DAG: %[[C0_IDX:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[C0_I8:.*]] = arith.constant 0 : i8
+
+/// Read the whole data in one shot.
+// CHECK: %[[V_INPUT_R:.*]] = vector.transfer_read %[[INPUT]][%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]], %[[C0_I8]]
+// CHECK: %[[V_FILTER_R:.*]] = vector.transfer_read %[[FILTER]][%[[C0_IDX]], %[[C0_IDX]]], %[[C0_I8]]
+// CHECK: %[[V_OUTPUT_R:.*]] = vector.transfer_read %[[OUTPUT]][%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]], %[[C0_I8]]
+
+// CHECK: %[[V_INPUT_0:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 0, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_1:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 2, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_2:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 4, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_3:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 1, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_4:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 3, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_5:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 5, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_6:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 2, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_7:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 4, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_INPUT_8:.*]] = vector.extract_strided_slice %[[V_INPUT_R]]
+// CHECK-SAME: {offsets = [0, 6, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x7x4xi8> to vector<3x1x4xi8>
+
+// CHECK: %[[V_FILTER_0:.*]] = vector.extract %[[V_FILTER_R]][0] : vector<4xi8> from vector<3x4xi8>
+// CHECK: %[[V_FILTER_1:.*]] = vector.extract %[[V_FILTER_R]][1] : vector<4xi8> from vector<3x4xi8>
+// CHECK: %[[V_FILTER_2:.*]] = vector.extract %[[V_FILTER_R]][2] : vector<4xi8> from vector<3x4xi8>
+
+// CHECK: %[[V_OUTPUT_0:.*]] = vector.extract_strided_slice %[[V_OUTPUT_R]]
+// CHECK-SAME: {offsets = [0, 0, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x3x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_OUTPUT_1:.*]] = vector.extract_strided_slice %[[V_OUTPUT_R]]
+// CHECK-SAME: {offsets = [0, 1, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x3x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[V_OUTPUT_2:.*]] = vector.extract_strided_slice %[[V_OUTPUT_R]]
+// CHECK-SAME: {offsets = [0, 2, 0], sizes = [3, 1, 4], strides = [1, 1, 1]} : vector<3x3x4xi8> to vector<3x1x4xi8>
+
+/// w == 0, kw == 0
+// CHECK: %[[VAL_23:.*]] = vector.shape_cast %[[V_INPUT_0]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_24:.*]] = vector.shape_cast %[[V_OUTPUT_0]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_0:.*]] = vector.broadcast %[[V_FILTER_0]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_26:.*]] = vector.shape_cast %[[B_FILTER_0]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_27:.*]] = arith.muli %[[VAL_23]], %[[VAL_26]] : vector<3x4xi8>
+// CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_27]], %[[VAL_24]] : vector<3x4xi8>
+
+/// w == 1, kw == 0
+// CHECK: %[[VAL_29:.*]] = vector.shape_cast %[[V_INPUT_1]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_30:.*]] = vector.shape_cast %[[V_OUTPUT_1]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_0:.*]] = vector.broadcast %[[V_FILTER_0]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_32:.*]] = vector.shape_cast %[[B_FILTER_0]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_33:.*]] = arith.muli %[[VAL_29]], %[[VAL_32]] : vector<3x4xi8>
+// CHECK: %[[VAL_34:.*]] = arith.addi %[[VAL_33]], %[[VAL_30]] : vector<3x4xi8>
+
+/// w == 2, kw == 0
+// CHECK: %[[VAL_35:.*]] = vector.shape_cast %[[V_INPUT_2]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_36:.*]] = vector.shape_cast %[[V_OUTPUT_2]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_0:.*]] = vector.broadcast %[[V_FILTER_0]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_38:.*]] = vector.shape_cast %[[B_FILTER_0]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_39:.*]] = arith.muli %[[VAL_35]], %[[VAL_38]] : vector<3x4xi8>
+// CHECK: %[[VAL_40:.*]] = arith.addi %[[VAL_39]], %[[VAL_36]] : vector<3x4xi8>
+
+/// w == 3, kw == 1
+// CHECK: %[[VAL_41:.*]] = vector.shape_cast %[[V_INPUT_3]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_1:.*]] = vector.broadcast %[[V_FILTER_1]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_43:.*]] = vector.shape_cast %[[B_FILTER_1]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_44:.*]] = arith.muli %[[VAL_41]], %[[VAL_43]] : vector<3x4xi8>
+// CHECK: %[[VAL_45:.*]] = arith.addi %[[VAL_44]], %[[VAL_28]] : vector<3x4xi8>
+
+/// w == 4, kw == 1
+// CHECK: %[[VAL_46:.*]] = vector.shape_cast %[[V_INPUT_4]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_1:.*]] = vector.broadcast %[[V_FILTER_1]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_48:.*]] = vector.shape_cast %[[B_FILTER_1]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_49:.*]] = arith.muli %[[VAL_46]], %[[VAL_48]] : vector<3x4xi8>
+// CHECK: %[[VAL_50:.*]] = arith.addi %[[VAL_49]], %[[VAL_34]] : vector<3x4xi8>
+
+/// w == 5, kw == 1
+// CHECK: %[[VAL_51:.*]] = vector.shape_cast %[[V_INPUT_5]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_1:.*]] = vector.broadcast %[[V_FILTER_1]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_53:.*]] = vector.shape_cast %[[B_FILTER_1]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_54:.*]] = arith.muli %[[VAL_51]], %[[VAL_53]] : vector<3x4xi8>
+// CHECK: %[[VAL_55:.*]] = arith.addi %[[VAL_54]], %[[VAL_40]] : vector<3x4xi8>
+
+/// w == 6, kw == 2
+// CHECK: %[[VAL_56:.*]] = vector.shape_cast %[[V_INPUT_6]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_2:.*]] = vector.broadcast %[[V_FILTER_2]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_58:.*]] = vector.shape_cast %[[B_FILTER_2]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_59:.*]] = arith.muli %[[VAL_56]], %[[VAL_58]] : vector<3x4xi8>
+// CHECK: %[[VAL_60:.*]] = arith.addi %[[VAL_59]], %[[VAL_45]] : vector<3x4xi8>
+
+/// w == 7, kw == 2
+// CHECK: %[[VAL_61:.*]] = vector.shape_cast %[[VAL_60]] : vector<3x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_62:.*]] = vector.shape_cast %[[V_INPUT_7]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_2:.*]] = vector.broadcast %[[V_FILTER_2]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_64:.*]] = vector.shape_cast %[[B_FILTER_2]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_65:.*]] = arith.muli %[[VAL_62]], %[[VAL_64]] : vector<3x4xi8>
+// CHECK: %[[VAL_66:.*]] = arith.addi %[[VAL_65]], %[[VAL_50]] : vector<3x4xi8>
+
+/// w == 8, kw == 2
+// CHECK: %[[VAL_67:.*]] = vector.shape_cast %[[VAL_66]] : vector<3x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_68:.*]] = vector.shape_cast %[[V_INPUT_8]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[B_FILTER_2:.*]] = vector.broadcast %[[V_FILTER_2]] : vector<4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_70:.*]] = vector.shape_cast %[[B_FILTER_2]] : vector<3x1x4xi8> to vector<3x4xi8>
+// CHECK: %[[VAL_71:.*]] = arith.muli %[[VAL_68]], %[[VAL_70]] : vector<3x4xi8>
+// CHECK: %[[VAL_72:.*]] = arith.addi %[[VAL_71]], %[[VAL_55]] : vector<3x4xi8>
+
+// Write the result back.
+// CHECK: %[[VAL_73:.*]] = vector.shape_cast %[[VAL_72]] : vector<3x4xi8> to vector<3x1x4xi8>
+// CHECK: %[[VAL_74:.*]] = vector.insert_strided_slice %[[VAL_61]], %[[V_OUTPUT_R]]
+// CHECK-SAME: {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<3x1x4xi8> into vector<3x3x4xi8>
+// CHECK: %[[VAL_75:.*]] = vector.insert_strided_slice %[[VAL_67]], %[[VAL_74]]
+// CHECK-SAME: {offsets = [0, 1, 0], strides = [1, 1, 1]} : vector<3x1x4xi8> into vector<3x3x4xi8>
+// CHECK: %[[VAL_76:.*]] = vector.insert_strided_slice %[[VAL_73]], %[[VAL_75]]
+// CHECK-SAME: {offsets = [0, 2, 0], strides = [1, 1, 1]} : vector<3x1x4xi8> into vector<3x3x4xi8>
+// CHECK: %[[VAL_77:.*]] = vector.transfer_write %[[VAL_76]], %[[OUTPUT]][%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]]
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+ %2 = transform.structured.vectorize_children_and_apply_patterns %1 {flatten_1d_depthwise_conv} : (!transform.any_op) -> !transform.any_op
+ transform.yield
+ }
+}
+
More information about the Mlir-commits
mailing list