[Mlir-commits] [mlir] [mlir][python] python binding wrapper for the affine.AffineForOp (PR #74408)

Oleksandr Alex Zinenko llvmlistbot at llvm.org
Tue Dec 5 02:00:01 PST 2023


================
@@ -3,3 +3,141 @@
 #  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
 from ._affine_ops_gen import *
+from ._affine_ops_gen import _Dialect, AffineForOp
+from .arith import constant
+
+try:
+    from ..ir import *
+    from ._ods_common import (
+        get_op_result_or_value as _get_op_result_or_value,
+        get_op_results_or_values as _get_op_results_or_values,
+        _cext as _ods_cext,
+    )
+except ImportError as e:
+    raise RuntimeError("Error loading imports from extension module") from e
+
+from typing import Optional, Sequence, Union
+
+
+ at _ods_cext.register_operation(_Dialect, replace=True)
+class AffineForOp(AffineForOp):
+    """Specialization for the Affine for op class"""
+
+    def __init__(
+        self,
+        lower_bound,
+        upper_bound,
+        step,
+        iter_args: Optional[Union[Operation, OpView, Sequence[Value]]] = None,
+        *,
+        lower_bound_operands=[],
+        upper_bound_operands=[],
+        loc=None,
+        ip=None,
+    ):
+        """Creates an Affine `for` operation.
+
+        - `lower_bound` is the affine map to use as lower bound of the loop.
+        - `upper_bound` is the affine map to use as upper bound of the loop.
+        - `step` is the value to use as loop step.
+        - `iter_args` is a list of additional loop-carried arguments or an operation
+          producing them as results.
+        - `lower_bound_operands` is the list of arguments to substitute the dimensions,
+          then symbols in the `lower_bound` affine map, in an increasing order
+        - `upper_bound_operands` is the list of arguments to substitute the dimensions,
+          then symbols in the `upper_bound` affine map, in an increasing order
+        """
+
+        if iter_args is None:
+            iter_args = []
+        iter_args = _get_op_results_or_values(iter_args)
+        if len(lower_bound_operands) != lower_bound.n_inputs:
+            raise ValueError(
+                f"Wrong number of lower bound operands passed to AffineForOp. "
+                + "Expected {lower_bound.n_symbols}, got {len(lower_bound_operands)}."
+            )
+
+        if len(upper_bound_operands) != upper_bound.n_inputs:
+            raise ValueError(
+                f"Wrong number of upper bound operands passed to AffineForOp. "
+                + "Expected {upper_bound.n_symbols}, got {len(upper_bound_operands)}."
+            )
+
+        results = [arg.type for arg in iter_args]
+        super().__init__(
+            results_=results,
+            lowerBoundOperands=_get_op_results_or_values(lower_bound_operands),
+            upperBoundOperands=_get_op_results_or_values(upper_bound_operands),
+            inits=list(iter_args),
+            lowerBoundMap=AffineMapAttr.get(lower_bound),
+            upperBoundMap=AffineMapAttr.get(upper_bound),
+            step=IntegerAttr.get(IndexType.get(), step),
+            loc=loc,
+            ip=ip,
+        )
+        self.regions[0].blocks.append(IndexType.get(), *results)
+
+    @property
+    def body(self):
+        """Returns the body (block) of the loop."""
+        return self.regions[0].blocks[0]
+
+    @property
+    def induction_variable(self):
+        """Returns the induction variable of the loop."""
+        return self.body.arguments[0]
+
+    @property
+    def inner_iter_args(self):
+        """Returns the loop-carried arguments usable within the loop.
+
+        To obtain the loop-carried operands, use `iter_args`.
+        """
+        return self.body.arguments[1:]
+
+
+def for_(
+    start,
+    stop=None,
+    step=None,
+    iter_args: Optional[Sequence[Value]] = None,
+    *,
+    loc=None,
+    ip=None,
+):
+    if step is None:
+        step = 1
+    if stop is None:
+        stop = start
+        start = 0
+    params = [start, stop]
+    for i, p in enumerate(params):
+        if isinstance(p, int):
+            p = constant(IntegerAttr.get(IndexType.get(), p))
+        elif isinstance(p, float):
+            raise ValueError(f"{p=} must be int.")
+        params[i] = p
+
+    start, stop = params
+    s0 = AffineSymbolExpr.get(0)
+    lbmap = AffineMap.get(0, 1, [s0])
+    ubmap = AffineMap.get(0, 1, [s0])
----------------
ftynse wrote:

There is no need to create a constant operation and feed as a symbol into an affine map. Affine maps can have constant expressions and we should use that. I also suspect canonicalization or constant folding will immediately remove those constants.

https://github.com/llvm/llvm-project/pull/74408


More information about the Mlir-commits mailing list