[Mlir-commits] [mlir] 8cacabe - [mlir] Add an integration test for masked vectorisation for linalg.matmul
Andrzej Warzynski
llvmlistbot at llvm.org
Thu Aug 3 13:15:33 PDT 2023
Author: Andrzej Warzynski
Date: 2023-08-03T20:14:35Z
New Revision: 8cacabe473c27428fd93c41130a80399ceddbb83
URL: https://github.com/llvm/llvm-project/commit/8cacabe473c27428fd93c41130a80399ceddbb83
DIFF: https://github.com/llvm/llvm-project/commit/8cacabe473c27428fd93c41130a80399ceddbb83.diff
LOG: [mlir] Add an integration test for masked vectorisation for linalg.matmul
Differential Revision: https://reviews.llvm.org/D156823
Added:
mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir
Modified:
Removed:
################################################################################
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir
new file mode 100644
index 00000000000000..8a95d1c864d21c
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir
@@ -0,0 +1,58 @@
+// RUN: mlir-opt %s -test-transform-dialect-interpreter -test-transform-dialect-erase-schedule -one-shot-bufferize -func-bufferize -lower-vector-mask --test-lower-to-llvm | \
+// RUN: mlir-cpu-runner -e main -entry-point-result=void --shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \
+// RUN: FileCheck %s
+
+func.func private @printMemrefF32(%ptr : tensor<*xf32>)
+
+func.func @main() {
+ %c4 = arith.constant 4 : index
+ %c8 = arith.constant 8 : index
+
+ %A = arith.constant dense<[
+ [ 1.1, 2.1 ],
+ [ 1.2, 2.2 ],
+ [ 1.3, 2.3 ],
+ [ 1.4, 2.4 ],
+ [ 1.5, 2.5 ],
+ [ 1.6, 2.6 ],
+ [ 1.7, 2.7 ],
+ [ 1.8, 2.8 ]
+ ]> : tensor<8x2xf32>
+ %B = arith.constant dense<[
+ [ 10.1, 11.1, 12.1, 13.1 ],
+ [ 10.2, 11.2, 12.2, 13.2 ]
+ ]> : tensor<2x4xf32>
+ %C_dyn = bufferization.alloc_tensor(%c8, %c4) : tensor<?x?xf32>
+
+ %A_dyn = tensor.cast %A : tensor<8x2xf32> to tensor<?x?xf32>
+ %B_dyn = tensor.cast %B : tensor<2x4xf32> to tensor<?x?xf32>
+
+ %c0_i32 = arith.constant 0 : i32
+ %C_init = linalg.fill ins(%c0_i32 : i32) outs(%C_dyn : tensor<?x?xf32>) -> tensor<?x?xf32>
+
+ %res = linalg.matmul ins(%A_dyn, %B_dyn: tensor<?x?xf32>, tensor<?x?xf32>)
+ outs(%C_init: tensor<?x?xf32>) -> tensor<?x?xf32>
+ %xf = tensor.cast %res : tensor<?x?xf32> to tensor<*xf32>
+
+ // CHECK: {{\[}}[32.53, 35.73, 38.93, 42.13],
+ // CHECK-NEXT: [34.56, 37.96, 41.36, 44.76],
+ // CHECK-NEXT: [36.59, 40.19, 43.79, 47.39],
+ // CHECK-NEXT: [38.62, 42.42, 46.22, 50.02],
+ // CHECK-NEXT: [0, 0, 0, 0],
+ // CHECK-NEXT: [0, 0, 0, 0],
+ // CHECK-NEXT: [0, 0, 0, 0],
+ // CHECK-NEXT: [0, 0, 0, 0]]
+ call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
+
+ return
+}
+
+transform.sequence failures(propagate) {
+^bb1(%arg1: !transform.any_op):
+ %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ %func_op = get_parent_op %0 : (!transform.any_op) -> !transform.op<"func.func">
+ transform.structured.masked_vectorize %0 vector_sizes [4, 4, 2] : !transform.any_op
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerreduction"
+ } : !transform.op<"func.func">
+}
More information about the Mlir-commits
mailing list