[Mlir-commits] [mlir] 8cacabe - [mlir] Add an integration test for masked vectorisation for linalg.matmul

Andrzej Warzynski llvmlistbot at llvm.org
Thu Aug 3 13:15:33 PDT 2023


Author: Andrzej Warzynski
Date: 2023-08-03T20:14:35Z
New Revision: 8cacabe473c27428fd93c41130a80399ceddbb83

URL: https://github.com/llvm/llvm-project/commit/8cacabe473c27428fd93c41130a80399ceddbb83
DIFF: https://github.com/llvm/llvm-project/commit/8cacabe473c27428fd93c41130a80399ceddbb83.diff

LOG: [mlir] Add an integration test for masked vectorisation for linalg.matmul

Differential Revision: https://reviews.llvm.org/D156823

Added: 
    mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir

Modified: 
    

Removed: 
    


################################################################################
diff  --git a/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir
new file mode 100644
index 00000000000000..8a95d1c864d21c
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir
@@ -0,0 +1,58 @@
+// RUN: mlir-opt %s -test-transform-dialect-interpreter -test-transform-dialect-erase-schedule -one-shot-bufferize -func-bufferize -lower-vector-mask --test-lower-to-llvm | \
+// RUN: mlir-cpu-runner -e main -entry-point-result=void --shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \
+// RUN: FileCheck %s
+
+func.func private @printMemrefF32(%ptr : tensor<*xf32>)
+
+func.func @main() {
+  %c4 = arith.constant 4 : index
+  %c8 = arith.constant 8 : index
+
+  %A = arith.constant dense<[
+          [ 1.1, 2.1 ],
+          [ 1.2, 2.2 ],
+          [ 1.3, 2.3 ],
+          [ 1.4, 2.4 ],
+          [ 1.5, 2.5 ],
+          [ 1.6, 2.6 ],
+          [ 1.7, 2.7 ],
+          [ 1.8, 2.8 ]
+      ]> : tensor<8x2xf32>
+  %B = arith.constant dense<[
+          [ 10.1, 11.1, 12.1, 13.1 ],
+          [ 10.2, 11.2, 12.2, 13.2 ]
+      ]> : tensor<2x4xf32>
+  %C_dyn = bufferization.alloc_tensor(%c8, %c4) : tensor<?x?xf32>
+
+  %A_dyn = tensor.cast %A : tensor<8x2xf32> to tensor<?x?xf32>
+  %B_dyn = tensor.cast %B : tensor<2x4xf32> to tensor<?x?xf32>
+
+  %c0_i32 = arith.constant  0 : i32
+  %C_init = linalg.fill ins(%c0_i32 : i32) outs(%C_dyn : tensor<?x?xf32>) -> tensor<?x?xf32>
+
+  %res = linalg.matmul ins(%A_dyn, %B_dyn: tensor<?x?xf32>, tensor<?x?xf32>)
+            outs(%C_init: tensor<?x?xf32>) -> tensor<?x?xf32>
+  %xf = tensor.cast %res : tensor<?x?xf32> to tensor<*xf32>
+
+  // CHECK:      {{\[}}[32.53,   35.73,   38.93,   42.13],
+  // CHECK-NEXT: [34.56,   37.96,   41.36,   44.76],
+  // CHECK-NEXT: [36.59,   40.19,   43.79,   47.39],
+  // CHECK-NEXT: [38.62,   42.42,   46.22,   50.02],
+  // CHECK-NEXT: [0,   0,   0,   0],
+  // CHECK-NEXT: [0,   0,   0,   0],
+  // CHECK-NEXT: [0,   0,   0,   0],
+  // CHECK-NEXT: [0,   0,   0,   0]]
+  call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
+
+  return
+}
+
+transform.sequence failures(propagate) {
+^bb1(%arg1: !transform.any_op):
+  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+  %func_op = get_parent_op %0 : (!transform.any_op) -> !transform.op<"func.func">
+  transform.structured.masked_vectorize %0 vector_sizes [4, 4, 2] : !transform.any_op
+  transform.apply_patterns to %func_op {
+    transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerreduction"
+  } : !transform.op<"func.func">
+}


        


More information about the Mlir-commits mailing list