[Mlir-commits] [mlir] 103890f - Revert "[mlir][sparse][gpu] end-to-end test for 2:4 sparsity on NVidia GPUs"

Mehdi Amini llvmlistbot at llvm.org
Thu Apr 6 19:11:34 PDT 2023


Author: Mehdi Amini
Date: 2023-04-06T19:11:27-07:00
New Revision: 103890fc0727182b4b80d8559362388e420e10c5

URL: https://github.com/llvm/llvm-project/commit/103890fc0727182b4b80d8559362388e420e10c5
DIFF: https://github.com/llvm/llvm-project/commit/103890fc0727182b4b80d8559362388e420e10c5.diff

LOG: Revert "[mlir][sparse][gpu] end-to-end test for 2:4 sparsity on NVidia GPUs"

This reverts commit a2c63d7f0b77ae92c97974d0630625d83a0745ce.

The bot is broken: https://lab.llvm.org/buildbot/#/builders/61/builds/42062

Added: 
    

Modified: 
    

Removed: 
    mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg
    mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir


################################################################################
diff  --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg
deleted file mode 100644
index 0bdebfedeee36..0000000000000
--- a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/lit.local.cfg
+++ /dev/null
@@ -1,2 +0,0 @@
-if not config.enable_cuda_runner:
-  config.unsupported = True

diff  --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir
deleted file mode 100644
index 51ad9a4792281..0000000000000
--- a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-mma-2-4-f16.mlir
+++ /dev/null
@@ -1,395 +0,0 @@
-// RUN: mlir-opt \
-// RUN: --pass-pipeline="builtin.module(gpu.module(strip-debuginfo,convert-gpu-to-nvvm,convert-nvgpu-to-nvvm,affine-expand-index-ops,lower-affine,convert-arith-to-llvm),convert-vector-to-llvm,canonicalize,cse,gpu.module(gpu-to-cubin{chip=sm_80 features=+ptx71}))" \
-// RUN: %s \
-// RUN: | mlir-opt --convert-scf-to-cf -convert-cf-to-llvm --convert-vector-to-llvm \
-// RUN:            --convert-arith-to-llvm --gpu-to-llvm --reconcile-unrealized-casts \
-// RUN: | mlir-cpu-runner \
-// RUN:   --shared-libs=%mlir_cuda_runtime \
-// RUN:   --shared-libs=%mlir_runner_utils \
-// RUN:   --e main --entry-point-result=void \
-// RUN: | FileCheck %s
-
-module attributes {gpu.container_module} {
-
-  // Kernels that run on the device.
-
-  gpu.module @kernels {
-
-    //
-    // An NVidia GPU kernel to compute
-    //   C = A x B
-    // (or, technically, D = A x B + C)
-    // using 2:4 structured sparsity for A.
-    //
-    // This kernel provides building block for sparse compilation of a larger
-    // enveloping matrix multiplication computation on a GPU.
-    //
-    // Operand A values (2:4 sparse): row major format, logically "16x32xf16"
-    //                                but "16x16xf16" after compression
-    //
-    // Operand A metadata:
-    //   - The metadata is logically "16x16xi2". Each 2-bit value indicates
-    //     the position of a non-zero value within the respective group of 4 elements.
-    //   - However, we represent it as "16x2xi16".
-    //   - Each sparse instruction type specifies how the metadata should be distributed
-    //     among threads. In this case, within each quad (group of 4 consecutive threads
-    //     starting with a thread ID which is a multiple of 4), thread 4i and 4i+1
-    //     will require to hold the metadata 
diff erent metadata. For uniformity below,
-    //     we just have all threads load metadata, and the way they determine which metadata
-    //     to load is given below.
-    //   - Thread map for the 16x32x16 instruction is:
-    //                     2i -> col 0
-    //                 2i + 1 -> col 1
-    //
-    // Operand B (dense): column major format.
-    //
-    // Operand C (accum): assumed zero on entry, used as output.
-    //
-    gpu.func @mma_sp_sync_f16_16832(
-        %argA: memref<16x16xf16>,
-        %argA_meta: memref<16x2xi16>,
-        %argB: memref<8x32xf16>,
-        %argC: memref<16x8xf16>) kernel {
-      %f0 = arith.constant 0.0 : f16
-      %c4 = arith.constant 4 : index
-      %c8 = arith.constant 8 : index
-
-      // Assume we have a linear thread id and the kernel launches 32 threads (1 warp).
-      // So CUDA launch would be threadblock = (32, 1, 1), grid = (1, 1, 1)
-      %lane_id = gpu.thread_id x
-      // Which group of 4 threads do we belong to?
-      %quad_id = affine.apply affine_map<()[s0]->(s0 floordiv 4)>()[%lane_id]
-      // Are we even group or odd group?
-      %pair_id = affine.apply affine_map<()[s0]->(s0 mod 2)>()[%lane_id]
-
-      // Now we have
-      // MMA lane=0 quad=0 pair=0
-      // MMA lane=1 quad=0 pair=1
-      // MMA lane=2 quad=0 pair=0
-      // MMA lane=3 quad=0 pair=1
-      // MMA lane=4 quad=1 pair=0
-      // MMA lane=5 quad=1 pair=1
-      // ...
-      // MMA lane=30 quad=7 pair=2
-      // MMA lane=31 quad=7 pair=1
-      //
-      // gpu.printf "MMA lane=%lld quad=%lld pair=%lld\n" %lane_id, %quad_id, %pair_id : index, index, index
-
-      //===----------------------------------------------------------------------===//
-      // Load the operandA metadata
-      // (https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#sparse-mma-metadata-16832-f16bf16)
-      //===----------------------------------------------------------------------===//
-
-      // For the 16x2xi16 metadata, all threads that load metadata will load one
-      // i16 value from the first 8 rows, and one i16 value from the second 8 rows.
-      // The i16 values are then put into a i32 with the value from the first 8 rows
-      // going in the lower bits.
-      //
-      // The below IR loads and combines the two pieces of i16 metadata required.
-      // Obviously, it's possible to re-pack the metadata before launching the kernel in
-      // order to eliminate this cost and load a single i32 operand. This just shows
-      // how to put them together if you do the naive load per the diagram in
-      // the PTX docs. Technically only the first two threads in each quad need
-      // to do this, but for simplicity we just have all threads participate since
-      // it can't hurt.
-      //
-      // The mapping is
-      // Lower i16 bits <- (thread_id) -> load A_meta[ quad_id    , pair_id]
-      // Lower i16 bits <- (thread_id) -> load A_meta[ quad_id + 8, pair_id]
-
-      %quad_id_plus_8 = affine.apply affine_map<()[s0]->(s0 + 8)>()[%quad_id]
-      %meta_A_per_thread0 = memref.load %argA_meta[%quad_id       , %pair_id] : memref<16x2xi16>
-      %meta_A_per_thread1 = memref.load %argA_meta[%quad_id_plus_8, %pair_id] : memref<16x2xi16>
-
-      %low_i32  = arith.extui %meta_A_per_thread0 : i16 to i32
-      %high_i32 = arith.extui %meta_A_per_thread1 : i16 to i32
-
-      %meta_init = arith.constant dense<0> : vector<2xi16>
-      %meta_low  = vector.insert %meta_A_per_thread0, %meta_init[0] : i16 into vector<2xi16>
-      %meta      = vector.insert %meta_A_per_thread1, %meta_low[1]  : i16 into vector<2xi16>
-
-      //===----------------------------------------------------------------------===//
-      // Load operandA
-      //===----------------------------------------------------------------------===//
-
-      // Load the actual fragments for the sparse values. This can be done using ldmatrix,
-      // but here we just do naive individual loads, which would also be required for
-      // a layout/element type that is not compatible with ldmatrix (e.g. i8 transpose load).
-      //
-      // The thread map here is 
diff erent that operandA metadata. Each thread will
-      // load one 2xf16 vector from each of the four (8x8xf16) quadrants fo the 16x16xf16
-      // operand.
-      //
-      // The (thread_id)->(row, col) map within each 8x4x(2xf16) quadrant is (t)->(t/4, t%4). We
-      // can use "affine.delinearize_index" which means the same thing.
-
-      %quad_row, %col_8x4 = affine.delinearize_index %lane_id into (%c8, %c4) : index, index
-      %quad_col = affine.apply affine_map<()[s0]->(s0 * 2)>()[%col_8x4] // account for 2xf16/col
-
-      // Load quad (0, 0)
-      %A_quad00 = vector.transfer_read %argA[%quad_row, %quad_col], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
-
-      // Load quad (1, 0). Just shift row down 8.
-      %quad_row_plus_8 = affine.apply affine_map<(d0)[]->(d0+8)>(%quad_row)[]
-      %A_quad10 = vector.transfer_read %argA[%quad_row_plus_8, %quad_col], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
-
-      // Load quad (0, 1). Just shift col right 8 (4 2xf16 values)
-      %quad_col_plus_8 = affine.apply affine_map<(d0)[]->(d0+8)>(%quad_col)[]
-      %A_quad01 = vector.transfer_read %argA[%quad_row, %quad_col_plus_8], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
-
-      // Load quad (1, 1)
-      %A_quad11 = vector.transfer_read %argA[%quad_row_plus_8, %quad_col_plus_8], %f0 {in_bounds = [true]} : memref<16x16xf16>, vector<2xf16>
-
-      // Assemble the elements into a vector
-      %A_init0 = arith.constant dense<0.0> : vector<4x2xf16>
-      %A_data0 = vector.insert %A_quad00, %A_init0[0] : vector<2xf16> into vector<4x2xf16>
-      %A_data1 = vector.insert %A_quad10, %A_data0[1] : vector<2xf16> into vector<4x2xf16>
-      %A_data2 = vector.insert %A_quad01, %A_data1[2] : vector<2xf16> into vector<4x2xf16>
-      %A_data  = vector.insert %A_quad11, %A_data2[3] : vector<2xf16> into vector<4x2xf16>
-
-      //===----------------------------------------------------------------------===//
-      // Load operand B
-      //===----------------------------------------------------------------------===//
-
-      // Load the actual fragments for the dense values. This can be done using ldmatrix,
-      // but here we just do naive individual loads, as would be required if we could
-      // not use ldmatrix.
-      //
-      // The thread map here is 
diff erent from operandA. This operand is in the form
-      // memref<8x32xf16> (col major). Each thread load a 2xf16 vector from a
-      // 8x8xf16 quadrant.
-      //
-      // The (thread_id)->(col, row) map within each 8x4x(2xf16) quadrant is
-      // (t) -> (t/4, t % 4). So we can re-use some of the calculation from A.
-
-      // Load quad (0, 0)
-      %B_quad0 = vector.transfer_read %argB[%quad_row, %quad_col],  %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
-
-      // Load quad (0, 1)
-      %B_quad1 = vector.transfer_read %argB[%quad_row, %quad_col_plus_8],  %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
-
-      // Load quad (0, 2)
-      %quad_col_plus_16 = affine.apply affine_map<()[s0]->(s0 + 16)>()[%quad_col]
-      %B_quad2 = vector.transfer_read %argB[%quad_row, %quad_col_plus_16], %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
-
-      // Load quad (0, 3)
-      %quad_col_plus_24 = affine.apply affine_map<()[s0]->(s0 + 24)>()[%quad_col]
-      %B_quad3 = vector.transfer_read %argB[%quad_row, %quad_col_plus_24], %f0 {in_bounds = [true]} : memref<8x32xf16>, vector<2xf16>
-
-      // Assemble into vector
-      %B_init0 = arith.constant dense<0.0> : vector<4x2xf16>
-      %B_data0 = vector.insert %B_quad0, %B_init0[0] : vector<2xf16> into vector<4x2xf16>
-      %B_data1 = vector.insert %B_quad1, %B_data0[1] : vector<2xf16> into vector<4x2xf16>
-      %B_data2 = vector.insert %B_quad2, %B_data1[2] : vector<2xf16> into vector<4x2xf16>
-      %B_data  = vector.insert %B_quad3, %B_data2[3] : vector<2xf16> into vector<4x2xf16>
-
-      // For now just say accum is a zero-d register
-      %accum = arith.constant dense<0.0> : vector<2x2xf16>
-
-      gpu.barrier
-
-      // Sparsity selector. For 16x8x32, the default "0" means threads T0/T1
-      // within each group of four threads contribute metadata.
-      %d = nvgpu.mma.sp.sync(%A_data, %B_data, %accum)
-           metadata(%meta)
-           {mmaShape = [16, 8, 32]} : (vector<4x2xf16>, vector<4x2xf16>, vector<2x2xf16>) -> vector<2x2xf16>
-
-      //===----------------------------------------------------------------------===//
-      // Write back results to gpu global memory
-      //===----------------------------------------------------------------------===//
-
-      // The mma instruction gave us two 2xf16 vectors per thread. These values
-      // correspond to 
diff erent positions in the 16x8xf16 result matrix. Each value belongs
-      // to one of the 8x4x(2xf16) halves. The halves are indexed as follows (as you might guess):
-      // vector0: (tid) -> (tid / 4    ,  tid %4)
-      // vector1: (tid) -> (tid / 4 + 8,  tid %4)
-      %C_0 = vector.extract %d[0] : vector<2x2xf16>
-      %C_1 = vector.extract %d[1] : vector<2x2xf16>
-      vector.transfer_write %C_0, %argC[%quad_row,        %quad_col] {in_bounds = [true]} : vector<2xf16>, memref<16x8xf16>
-      vector.transfer_write %C_1, %argC[%quad_row_plus_8, %quad_col] {in_bounds = [true]} : vector<2xf16>, memref<16x8xf16>
-
-      gpu.return
-    }
-  }
-
-  // Code than runs on the host.
-
-  //
-  // This test performs a matrix multiplication
-  //   C = A x B
-  // using NVidia 2:4 structured sparsity for A.
-  //
-  func.func @main() {
-    %f0  = arith.constant 0.0 : f16
-    %c0  = arith.constant 0   : index
-    %c1  = arith.constant 1   : index
-    %c2  = arith.constant 2   : index
-    %c8  = arith.constant 8   : index
-    %c16 = arith.constant 16  : index
-    %c32 = arith.constant 32  : index
-    %c64 = arith.constant 64  : index
-
-    // Matrices A, B, C (16x32, 32x8, 16x8).
-    %a = memref.alloc() : memref<16x16xf16>  // 16x32 but 2:4, row-major
-    %b = memref.alloc() : memref<8x32xf16>   // regular dense  column-major
-    %c = memref.alloc() : memref<16x8xf16>   // accumulator    row-major
-
-    // Metadata for A.
-    %m = memref.alloc() : memref<16x2xi16>
-
-    //
-    // Setup matrix A.
-    //
-    scf.for %ai = %c0 to %c16 step %c1 {
-      scf.for %aj = %c0 to %c16 step %c1 {
-        %a0 = arith.addi %ai, %aj : index
-        %a1 = arith.addi %a0, %c1 : index
-        %a2 = arith.index_cast %a1 : index to i32
-        %a3 = arith.sitofp %a2 : i32 to f16
-        memref.store %a3, %a[%ai, %aj] : memref<16x16xf16>
-      }
-    }
-
-    //
-    // Setup metadata for matrix A.
-    //
-    // Here we assume that all 2:4 elements are in pos 0 and 2,
-    // viz. in matrix
-    //   | A 0 B 0 |
-    //   { 0   2   }
-    //
-    // Note that within each i16, we need little-endian
-    // storage of the indices, as follows:
-    //
-    //   10 00 10 00 10 00 10 00 10 00 10 00 = 0x8888
-    //
-    %bits = arith.constant 0x8888 : i16
-    scf.for %mi = %c0 to %c16 step %c1 {
-      memref.store %bits, %m[%mi, %c0] : memref<16x2xi16>
-      memref.store %bits, %m[%mi, %c1] : memref<16x2xi16>
-    }
-
-    //
-    // Setup matrix B.
-    //
-    scf.for %bi = %c0 to %c8 step %c1 {
-      scf.for %bj = %c0 to %c32 step %c1 {
-        %b0 = arith.subi %bi, %bj : index
-        %b1 = arith.index_cast %b0 : index to i32
-        %b2 = arith.sitofp %b1 : i32 to f16
-        memref.store %b2, %b[%bi, %bj] : memref<8x32xf16>
-      }
-    }
-
-    //
-    // Reset matrix C.
-    //
-    scf.for %ci = %c0 to %c16 step %c1 {
-      scf.for %cj = %c0 to %c8 step %c1 {
-        memref.store %f0, %c[%ci, %cj] : memref<16x8xf16>
-      }
-    }
-
-    //
-    // Sanity check on **compressed** input matrix A.
-    //
-    // Note that it really is a 16x32 matrix:
-    //   | 1 0 2 0 3 0 ...
-    //   | 2 0 3 0 4 0 ...
-    //   etc.
-    //
-    // CHECK:      ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 )
-    // CHECK-NEXT: ( 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 )
-    // CHECK-NEXT: ( 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 )
-    // CHECK-NEXT: ( 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 )
-    // CHECK-NEXT: ( 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 )
-    // CHECK-NEXT: ( 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 )
-    // CHECK-NEXT: ( 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 )
-    // CHECK-NEXT: ( 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 )
-    // CHECK-NEXT: ( 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 )
-    // CHECK-NEXT: ( 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 )
-    // CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 )
-    // CHECK-NEXT: ( 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 )
-    // CHECK-NEXT: ( 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 )
-    // CHECK-NEXT: ( 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 )
-    // CHECK-NEXT: ( 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 )
-    // CHECK-NEXT: ( 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 )
-    //
-    scf.for %pai = %c0 to %c16 step %c1 {
-      %pa0 = vector.transfer_read %a[%pai, %c0], %f0 : memref<16x16xf16>, vector<16xf16>
-      vector.print %pa0 : vector<16xf16>
-    }
-
-    //
-    // Sanity check on input matrix 32x8 B.
-    // Note that this is really shown as B^T
-    //
-    // CHECK-NEXT: ( 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31 )
-    // CHECK-NEXT: ( 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30 )
-    // CHECK-NEXT: ( 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29 )
-    // CHECK-NEXT: ( 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28 )
-    // CHECK-NEXT: ( 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27 )
-    // CHECK-NEXT: ( 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26 )
-    // CHECK-NEXT: ( 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25 )
-    // CHECK-NEXT: ( 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24 )
-    //
-    //
-    scf.for %pbi = %c0 to %c8 step %c1 {
-      %pb0 = vector.transfer_read %b[%pbi, %c0], %f0 : memref<8x32xf16>, vector<32xf16>
-      vector.print %pb0 : vector<32xf16>
-    }
-
-    // Maps the provided host buffer into the device address space.
-    // Writes from the host are guaranteed to be visible to device
-    // kernels that are launched afterwards. Writes from the device
-    // are guaranteed to be visible on the host after synchronizing
-    // with the device kernel completion.
-    %cast_a = memref.cast %a : memref<16x16xf16> to memref<*xf16>
-    gpu.host_register %cast_a : memref<*xf16>
-    %cast_m = memref.cast %m : memref<16x2xi16> to memref<*xi16>
-    gpu.host_register %cast_m : memref<*xi16>
-    %cast_b = memref.cast %b : memref<8x32xf16> to memref<*xf16>
-    gpu.host_register %cast_b : memref<*xf16>
-    %cast_c = memref.cast %c : memref<16x8xf16> to memref<*xf16>
-    gpu.host_register %cast_c : memref<*xf16>
-
-    // Call the kernel, using a single warp of 32 threads.
-    %t1  = arith.constant 1  : index
-    %t32 = arith.constant 32 : index
-    gpu.launch_func
-            @kernels::@mma_sp_sync_f16_16832
-            blocks  in (%t1,  %t1, %t1) // gridSizeX,Y,Z
-            threads in (%t32, %t1, %t1) // blockSizeX,Y,Z
-            args(%a : memref<16x16xf16>,
-                 %m : memref<16x2xi16>,
-                 %b : memref<8x32xf16>,
-                 %c : memref<16x8xf16>)
-
-    //
-    // Verify computed matrix C.
-    //
-    // CHECK-NEXT: ( -2720, -2584, -2448, -2312, -2176, -2040, -1904, -1768 )
-    // CHECK-NEXT: ( -2960, -2808, -2656, -2504, -2352, -2200, -2048, -1896 )
-    // CHECK-NEXT: ( -3200, -3032, -2864, -2696, -2528, -2360, -2192, -2024 )
-    // CHECK-NEXT: ( -3440, -3256, -3072, -2888, -2704, -2520, -2336, -2152 )
-    // CHECK-NEXT: ( -3680, -3480, -3280, -3080, -2880, -2680, -2480, -2280 )
-    // CHECK-NEXT: ( -3920, -3704, -3488, -3272, -3056, -2840, -2624, -2408 )
-    // CHECK-NEXT: ( -4160, -3928, -3696, -3464, -3232, -3000, -2768, -2536 )
-    // CHECK-NEXT: ( -4400, -4152, -3904, -3656, -3408, -3160, -2912, -2664 )
-    // CHECK-NEXT: ( -4640, -4376, -4112, -3848, -3584, -3320, -3056, -2792 )
-    // CHECK-NEXT: ( -4880, -4600, -4320, -4040, -3760, -3480, -3200, -2920 )
-    // CHECK-NEXT: ( -5120, -4824, -4528, -4232, -3936, -3640, -3344, -3048 )
-    // CHECK-NEXT: ( -5360, -5048, -4736, -4424, -4112, -3800, -3488, -3176 )
-    // CHECK-NEXT: ( -5600, -5272, -4944, -4616, -4288, -3960, -3632, -3304 )
-    // CHECK-NEXT: ( -5840, -5496, -5152, -4808, -4464, -4120, -3776, -3432 )
-    // CHECK-NEXT: ( -6080, -5720, -5360, -5000, -4640, -4280, -3920, -3560 )
-    // CHECK-NEXT: ( -6320, -5944, -5568, -5192, -4816, -4440, -4064, -3688 )
-    //
-    scf.for %pci = %c0 to %c16 step %c1 {
-      %pc0 = vector.transfer_read %c[%pci, %c0], %f0 : memref<16x8xf16>, vector<8xf16>
-      vector.print %pc0 : vector<8xf16>
-    }
-
-    return
-  }
-}


        


More information about the Mlir-commits mailing list