[Mlir-commits] [mlir] 644dfba - Revert "[MLIR][Presburger] Improve unittest parsing"
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu Sep 15 10:43:03 PDT 2022
Author: Groverkss
Date: 2022-09-15T18:42:47+01:00
New Revision: 644dfbac648e5ce0a127d46e1da3cff95b055d11
URL: https://github.com/llvm/llvm-project/commit/644dfbac648e5ce0a127d46e1da3cff95b055d11
DIFF: https://github.com/llvm/llvm-project/commit/644dfbac648e5ce0a127d46e1da3cff95b055d11.diff
LOG: Revert "[MLIR][Presburger] Improve unittest parsing"
This reverts commit 84d07d021333f7b5716f0444d5c09105557272e0.
Reverted to fix a compilation issue on gcc8.
Added:
mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParser.h
mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParserTest.cpp
mlir/unittests/Dialect/Affine/Analysis/CMakeLists.txt
mlir/unittests/Dialect/Affine/CMakeLists.txt
Modified:
mlir/include/mlir/AsmParser/AsmParser.h
mlir/include/mlir/Dialect/Affine/Analysis/AffineStructures.h
mlir/lib/AsmParser/AffineParser.cpp
mlir/lib/Dialect/Affine/Analysis/AffineStructures.cpp
mlir/unittests/Analysis/Presburger/CMakeLists.txt
mlir/unittests/Analysis/Presburger/IntegerPolyhedronTest.cpp
mlir/unittests/Analysis/Presburger/IntegerRelationTest.cpp
mlir/unittests/Analysis/Presburger/PWMAFunctionTest.cpp
mlir/unittests/Analysis/Presburger/PresburgerSetTest.cpp
mlir/unittests/Analysis/Presburger/SimplexTest.cpp
mlir/unittests/Analysis/Presburger/Utils.h
mlir/unittests/Dialect/CMakeLists.txt
Removed:
mlir/unittests/Analysis/Presburger/Parser.h
mlir/unittests/Analysis/Presburger/ParserTest.cpp
################################################################################
diff --git a/mlir/include/mlir/AsmParser/AsmParser.h b/mlir/include/mlir/AsmParser/AsmParser.h
index 60ce797f01589..601e86dd36b50 100644
--- a/mlir/include/mlir/AsmParser/AsmParser.h
+++ b/mlir/include/mlir/AsmParser/AsmParser.h
@@ -76,13 +76,14 @@ Type parseType(llvm::StringRef typeStr, MLIRContext *context);
/// returned in `numRead`.
Type parseType(llvm::StringRef typeStr, MLIRContext *context, size_t &numRead);
-/// This parses a single IntegerSet/AffineMap to an MLIR context if it was
-/// valid. If not, an error message is emitted through a new
-/// SourceMgrDiagnosticHandler constructed from a new SourceMgr with a single
-/// MemoryBuffer wrapping `str`. If the passed `str` has additional tokens that
-/// were not part of the IntegerSet/AffineMap, a failure is returned.
-AffineMap parseAffineMap(llvm::StringRef str, MLIRContext *context);
-IntegerSet parseIntegerSet(llvm::StringRef str, MLIRContext *context);
+/// This parses a single IntegerSet to an MLIR context if it was valid. If not,
+/// an error message is emitted through a new SourceMgrDiagnosticHandler
+/// constructed from a new SourceMgr with a single MemoryBuffer wrapping
+/// `str`. If the passed `str` has additional tokens that were not part of the
+/// IntegerSet, a failure is returned. Diagnostics are printed on failure if
+/// `printDiagnosticInfo` is true.
+IntegerSet parseIntegerSet(llvm::StringRef str, MLIRContext *context,
+ bool printDiagnosticInfo = true);
} // namespace mlir
diff --git a/mlir/include/mlir/Dialect/Affine/Analysis/AffineStructures.h b/mlir/include/mlir/Dialect/Affine/Analysis/AffineStructures.h
index 0e78d4c4cc28c..3c7561ef40d72 100644
--- a/mlir/include/mlir/Dialect/Affine/Analysis/AffineStructures.h
+++ b/mlir/include/mlir/Dialect/Affine/Analysis/AffineStructures.h
@@ -32,10 +32,6 @@ class Value;
class MemRefType;
struct MutableAffineMap;
-namespace presburger {
-class MultiAffineFunction;
-} // namespace presburger
-
/// FlatAffineValueConstraints represents an extension of IntegerPolyhedron
/// where each non-local variable can have an SSA Value attached to it.
class FlatAffineValueConstraints : public presburger::IntegerPolyhedron {
@@ -619,10 +615,6 @@ getFlattenedAffineExprs(IntegerSet set,
std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineValueConstraints *cst = nullptr);
-LogicalResult
-getMultiAffineFunctionFromMap(AffineMap map,
- presburger::MultiAffineFunction &multiAff);
-
/// Re-indexes the dimensions and symbols of an affine map with given `operands`
/// values to align with `dims` and `syms` values.
///
diff --git a/mlir/lib/AsmParser/AffineParser.cpp b/mlir/lib/AsmParser/AffineParser.cpp
index c6af9ee50db15..0480ee48ec7d4 100644
--- a/mlir/lib/AsmParser/AffineParser.cpp
+++ b/mlir/lib/AsmParser/AffineParser.cpp
@@ -734,8 +734,8 @@ Parser::parseAffineExprOfSSAIds(AffineExpr &expr,
.parseAffineExprOfSSAIds(expr);
}
-static void parseAffineMapOrIntegerSet(StringRef inputStr, MLIRContext *context,
- AffineMap &map, IntegerSet &set) {
+IntegerSet mlir::parseIntegerSet(StringRef inputStr, MLIRContext *context,
+ bool printDiagnosticInfo) {
llvm::SourceMgr sourceMgr;
auto memBuffer = llvm::MemoryBuffer::getMemBuffer(
inputStr, /*BufferName=*/"<mlir_parser_buffer>",
@@ -747,31 +747,17 @@ static void parseAffineMapOrIntegerSet(StringRef inputStr, MLIRContext *context,
/*codeCompleteContext=*/nullptr);
Parser parser(state);
- SourceMgrDiagnosticHandler handler(sourceMgr, context, llvm::errs());
- if (parser.parseAffineMapOrIntegerSetReference(map, set))
- return;
+ raw_ostream &os = printDiagnosticInfo ? llvm::errs() : llvm::nulls();
+ SourceMgrDiagnosticHandler handler(sourceMgr, context, os);
+ IntegerSet set;
+ if (parser.parseIntegerSetReference(set))
+ return IntegerSet();
Token endTok = parser.getToken();
if (endTok.isNot(Token::eof)) {
parser.emitError(endTok.getLoc(), "encountered unexpected token");
- return;
+ return IntegerSet();
}
-}
-
-AffineMap mlir::parseAffineMap(StringRef inputStr, MLIRContext *context) {
- AffineMap map;
- IntegerSet set;
- parseAffineMapOrIntegerSet(inputStr, context, map, set);
- assert(!set &&
- "expected string to represent AffineMap, but got IntegerSet instead");
- return map;
-}
-IntegerSet mlir::parseIntegerSet(StringRef inputStr, MLIRContext *context) {
- AffineMap map;
- IntegerSet set;
- parseAffineMapOrIntegerSet(inputStr, context, map, set);
- assert(!map &&
- "expected string to represent IntegerSet, but got AffineMap instead");
return set;
}
diff --git a/mlir/lib/Dialect/Affine/Analysis/AffineStructures.cpp b/mlir/lib/Dialect/Affine/Analysis/AffineStructures.cpp
index 76e9625fd34ff..9e86d1ea58c63 100644
--- a/mlir/lib/Dialect/Affine/Analysis/AffineStructures.cpp
+++ b/mlir/lib/Dialect/Affine/Analysis/AffineStructures.cpp
@@ -1801,31 +1801,3 @@ LogicalResult mlir::getRelationFromMap(const AffineValueMap &map,
return success();
}
-
-LogicalResult
-mlir::getMultiAffineFunctionFromMap(AffineMap map,
- MultiAffineFunction &multiAff) {
- FlatAffineValueConstraints cst;
- std::vector<SmallVector<int64_t, 8>> flattenedExprs;
- LogicalResult result = getFlattenedAffineExprs(map, &flattenedExprs, &cst);
-
- if (result.failed())
- return failure();
-
- DivisionRepr divs = cst.getLocalReprs();
- assert(divs.hasAllReprs() &&
- "AffineMap cannot produce divs without local representation");
-
- // TODO: We shouldn't have to do this conversion.
- Matrix mat(map.getNumResults(), map.getNumInputs() + divs.getNumDivs() + 1);
- for (unsigned i = 0, e = flattenedExprs.size(); i < e; ++i)
- for (unsigned j = 0, f = flattenedExprs[i].size(); j < f; ++j)
- mat(i, j) = flattenedExprs[i][j];
-
- multiAff = MultiAffineFunction(
- PresburgerSpace::getRelationSpace(map.getNumDims(), map.getNumResults(),
- map.getNumSymbols(), divs.getNumDivs()),
- mat, divs);
-
- return success();
-}
diff --git a/mlir/unittests/Analysis/Presburger/CMakeLists.txt b/mlir/unittests/Analysis/Presburger/CMakeLists.txt
index 5af423295c0b6..c7fc5f0c9b161 100644
--- a/mlir/unittests/Analysis/Presburger/CMakeLists.txt
+++ b/mlir/unittests/Analysis/Presburger/CMakeLists.txt
@@ -4,12 +4,11 @@ add_mlir_unittest(MLIRPresburgerTests
LinearTransformTest.cpp
MatrixTest.cpp
MPIntTest.cpp
- Parser.h
- ParserTest.cpp
PresburgerSetTest.cpp
PresburgerSpaceTest.cpp
PWMAFunctionTest.cpp
SimplexTest.cpp
+ ../../Dialect/Affine/Analysis/AffineStructuresParser.cpp
)
target_link_libraries(MLIRPresburgerTests
diff --git a/mlir/unittests/Analysis/Presburger/IntegerPolyhedronTest.cpp b/mlir/unittests/Analysis/Presburger/IntegerPolyhedronTest.cpp
index 1be5a3f04bf59..82be6f02eeb58 100644
--- a/mlir/unittests/Analysis/Presburger/IntegerPolyhedronTest.cpp
+++ b/mlir/unittests/Analysis/Presburger/IntegerPolyhedronTest.cpp
@@ -6,8 +6,7 @@
//
//===----------------------------------------------------------------------===//
-#include "Parser.h"
-#include "Utils.h"
+#include "./Utils.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/Simplex.h"
@@ -201,53 +200,46 @@ TEST(IntegerPolyhedronTest, removeIdRange) {
TEST(IntegerPolyhedronTest, FindSampleTest) {
// Bounded sets with only inequalities.
// 0 <= 7x <= 5
- checkSample(true,
- parseIntegerPolyhedron("(x) : (7 * x >= 0, -7 * x + 5 >= 0)"));
+ checkSample(true, parsePoly("(x) : (7 * x >= 0, -7 * x + 5 >= 0)"));
// 1 <= 5x and 5x <= 4 (no solution).
- checkSample(
- false, parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)"));
+ checkSample(false, parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)"));
// 1 <= 5x and 5x <= 9 (solution: x = 1).
- checkSample(
- true, parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)"));
+ checkSample(true, parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)"));
// Bounded sets with equalities.
// x >= 8 and 40 >= y and x = y.
- checkSample(true, parseIntegerPolyhedron(
- "(x,y) : (x - 8 >= 0, -y + 40 >= 0, x - y == 0)"));
+ checkSample(true,
+ parsePoly("(x,y) : (x - 8 >= 0, -y + 40 >= 0, x - y == 0)"));
// x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
// solution: x = y = z = 10.
- checkSample(true,
- parseIntegerPolyhedron("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
- "z - 10 >= 0, x + 2 * y - 3 * z == 0)"));
+ checkSample(true, parsePoly("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
+ "z - 10 >= 0, x + 2 * y - 3 * z == 0)"));
// x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
// This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
- checkSample(false,
- parseIntegerPolyhedron("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
- "z - 11 >= 0, x + 2 * y - 3 * z == 0)"));
+ checkSample(false, parsePoly("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
+ "z - 11 >= 0, x + 2 * y - 3 * z == 0)"));
// 0 <= r and r <= 3 and 4q + r = 7.
// Solution: q = 1, r = 3.
- checkSample(true, parseIntegerPolyhedron(
- "(q,r) : (r >= 0, -r + 3 >= 0, 4 * q + r - 7 == 0)"));
+ checkSample(true,
+ parsePoly("(q,r) : (r >= 0, -r + 3 >= 0, 4 * q + r - 7 == 0)"));
// 4q + r = 7 and r = 0.
// Solution: q = 1, r = 3.
- checkSample(false,
- parseIntegerPolyhedron("(q,r) : (4 * q + r - 7 == 0, r == 0)"));
+ checkSample(false, parsePoly("(q,r) : (4 * q + r - 7 == 0, r == 0)"));
// The next two sets are large sets that should take a long time to sample
// with a naive branch and bound algorithm but can be sampled efficiently with
// the GBR algorithm.
//
// This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
- checkSample(
- true, parseIntegerPolyhedron("(x,y) : (y >= 0, "
- "300000 * x - 299999 * y - 100000 >= 0, "
- "-300000 * x + 299998 * y + 200000 >= 0)"));
+ checkSample(true, parsePoly("(x,y) : (y >= 0, "
+ "300000 * x - 299999 * y - 100000 >= 0, "
+ "-300000 * x + 299998 * y + 200000 >= 0)"));
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
@@ -265,12 +257,12 @@ TEST(IntegerPolyhedronTest, FindSampleTest) {
{});
// Same thing with some spurious extra dimensions equated to constants.
- checkSample(true,
- parseIntegerPolyhedron(
- "(a,b,c,d,e) : (b + d - e >= 0, -b + c - d + e >= 0, "
- "300000 * a - 299998 * b - c - 9 * d + 21 * e - 112000 >= 0, "
- "-150000 * a + 149999 * b - 15 * d + 47 * e + 68000 >= 0, "
- "d - e == 0, d + e - 2000 == 0)"));
+ checkSample(
+ true,
+ parsePoly("(a,b,c,d,e) : (b + d - e >= 0, -b + c - d + e >= 0, "
+ "300000 * a - 299998 * b - c - 9 * d + 21 * e - 112000 >= 0, "
+ "-150000 * a + 149999 * b - 15 * d + 47 * e + 68000 >= 0, "
+ "d - e == 0, d + e - 2000 == 0)"));
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
@@ -287,24 +279,22 @@ TEST(IntegerPolyhedronTest, FindSampleTest) {
// empty.
// This is a line segment from (0, 1/3) to (100, 100 + 1/3).
- checkSample(false,
- parseIntegerPolyhedron(
- "(x,y) : (x >= 0, -x + 100 >= 0, 3 * x - 3 * y + 1 == 0)"));
+ checkSample(
+ false,
+ parsePoly("(x,y) : (x >= 0, -x + 100 >= 0, 3 * x - 3 * y + 1 == 0)"));
// A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
- checkSample(false, parseIntegerPolyhedron(
- "(x,y) : (x >= 0, -x + 100 >= 0, "
- "3 * x - 3 * y + 2 >= 0, -3 * x + 3 * y - 1 >= 0)"));
+ checkSample(false,
+ parsePoly("(x,y) : (x >= 0, -x + 100 >= 0, "
+ "3 * x - 3 * y + 2 >= 0, -3 * x + 3 * y - 1 >= 0)"));
- checkSample(true,
- parseIntegerPolyhedron("(x,y) : (2 * x >= 0, -2 * x + 99 >= 0, "
- "2 * y >= 0, -2 * y + 99 >= 0)"));
+ checkSample(true, parsePoly("(x,y) : (2 * x >= 0, -2 * x + 99 >= 0, "
+ "2 * y >= 0, -2 * y + 99 >= 0)"));
// 2D cone with apex at (10000, 10000) and
// edges passing through (1/3, 0) and (2/3, 0).
- checkSample(true, parseIntegerPolyhedron(
- "(x,y) : (300000 * x - 299999 * y - 100000 >= 0, "
- "-300000 * x + 299998 * y + 200000 >= 0)"));
+ checkSample(true, parsePoly("(x,y) : (300000 * x - 299999 * y - 100000 >= 0, "
+ "-300000 * x + 299998 * y + 200000 >= 0)"));
// Cartesian product of a tetrahedron and a 2D cone.
// The tetrahedron has vertices at
@@ -417,68 +407,70 @@ TEST(IntegerPolyhedronTest, FindSampleTest) {
},
{});
- checkSample(true, parseIntegerPolyhedron(
- "(x, y, z) : (2 * x - 1 >= 0, x - y - 1 == 0, "
- "y - z == 0)"));
+ checkSample(true, parsePoly("(x, y, z) : (2 * x - 1 >= 0, x - y - 1 == 0, "
+ "y - z == 0)"));
// Test with a local id.
- checkSample(true, parseIntegerPolyhedron("(x) : (x == 5*(x floordiv 2))"));
+ checkSample(true, parsePoly("(x) : (x == 5*(x floordiv 2))"));
// Regression tests for the computation of dual coefficients.
- checkSample(false, parseIntegerPolyhedron("(x, y, z) : ("
- "6*x - 4*y + 9*z + 2 >= 0,"
- "x + 5*y + z + 5 >= 0,"
- "-4*x + y + 2*z - 1 >= 0,"
- "-3*x - 2*y - 7*z - 1 >= 0,"
- "-7*x - 5*y - 9*z - 1 >= 0)"));
- checkSample(true, parseIntegerPolyhedron("(x, y, z) : ("
- "3*x + 3*y + 3 >= 0,"
- "-4*x - 8*y - z + 4 >= 0,"
- "-7*x - 4*y + z + 1 >= 0,"
- "2*x - 7*y - 8*z - 7 >= 0,"
- "9*x + 8*y - 9*z - 7 >= 0)"));
+ checkSample(false, parsePoly("(x, y, z) : ("
+ "6*x - 4*y + 9*z + 2 >= 0,"
+ "x + 5*y + z + 5 >= 0,"
+ "-4*x + y + 2*z - 1 >= 0,"
+ "-3*x - 2*y - 7*z - 1 >= 0,"
+ "-7*x - 5*y - 9*z - 1 >= 0)"));
+ checkSample(true, parsePoly("(x, y, z) : ("
+ "3*x + 3*y + 3 >= 0,"
+ "-4*x - 8*y - z + 4 >= 0,"
+ "-7*x - 4*y + z + 1 >= 0,"
+ "2*x - 7*y - 8*z - 7 >= 0,"
+ "9*x + 8*y - 9*z - 7 >= 0)"));
+
+ checkSample(
+ true,
+ parsePoly(
+ "(x) : (1152921504606846977*(x floordiv 1152921504606846977) == x, "
+ "1152921504606846976*(x floordiv 1152921504606846976) == x)"));
}
TEST(IntegerPolyhedronTest, IsIntegerEmptyTest) {
// 1 <= 5x and 5x <= 4 (no solution).
- EXPECT_TRUE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)")
- .isIntegerEmpty());
+ EXPECT_TRUE(
+ parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)").isIntegerEmpty());
// 1 <= 5x and 5x <= 9 (solution: x = 1).
- EXPECT_FALSE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)")
- .isIntegerEmpty());
+ EXPECT_FALSE(
+ parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)").isIntegerEmpty());
// Unbounded sets.
- EXPECT_TRUE(
- parseIntegerPolyhedron("(x,y,z) : (2 * y - 1 >= 0, -2 * y + 1 >= 0, "
- "2 * z - 1 >= 0, 2 * x - 1 == 0)")
- .isIntegerEmpty());
+ EXPECT_TRUE(parsePoly("(x,y,z) : (2 * y - 1 >= 0, -2 * y + 1 >= 0, "
+ "2 * z - 1 >= 0, 2 * x - 1 == 0)")
+ .isIntegerEmpty());
- EXPECT_FALSE(parseIntegerPolyhedron(
- "(x,y,z) : (2 * x - 1 >= 0, -3 * x + 3 >= 0, "
- "5 * z - 6 >= 0, -7 * z + 17 >= 0, 3 * y - 2 >= 0)")
+ EXPECT_FALSE(parsePoly("(x,y,z) : (2 * x - 1 >= 0, -3 * x + 3 >= 0, "
+ "5 * z - 6 >= 0, -7 * z + 17 >= 0, 3 * y - 2 >= 0)")
.isIntegerEmpty());
- EXPECT_FALSE(parseIntegerPolyhedron(
- "(x,y,z) : (2 * x - 1 >= 0, x - y - 1 == 0, y - z == 0)")
- .isIntegerEmpty());
+ EXPECT_FALSE(
+ parsePoly("(x,y,z) : (2 * x - 1 >= 0, x - y - 1 == 0, y - z == 0)")
+ .isIntegerEmpty());
// IntegerPolyhedron::isEmpty() does not detect the following sets to be
// empty.
// 3x + 7y = 1 and 0 <= x, y <= 10.
// Since x and y are non-negative, 3x + 7y can never be 1.
- EXPECT_TRUE(parseIntegerPolyhedron(
- "(x,y) : (x >= 0, -x + 10 >= 0, y >= 0, -y + 10 >= 0, "
- "3 * x + 7 * y - 1 == 0)")
+ EXPECT_TRUE(parsePoly("(x,y) : (x >= 0, -x + 10 >= 0, y >= 0, -y + 10 >= 0, "
+ "3 * x + 7 * y - 1 == 0)")
.isIntegerEmpty());
// 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
// Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
// Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
- EXPECT_TRUE(parseIntegerPolyhedron(
- "(x,y,z) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
- "2 * x - 3 * y == 0, x - y - 1 == 0, x + y - 6 * z - 2 == 0)")
- .isIntegerEmpty());
+ EXPECT_TRUE(
+ parsePoly("(x,y,z) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
+ "2 * x - 3 * y == 0, x - y - 1 == 0, x + y - 6 * z - 2 == 0)")
+ .isIntegerEmpty());
// 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
// 2x = 3y implies x is a multiple of 3 and y is even.
@@ -486,19 +478,18 @@ TEST(IntegerPolyhedronTest, IsIntegerEmptyTest) {
// y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
// x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
EXPECT_TRUE(
- parseIntegerPolyhedron(
+ parsePoly(
"(x,y,z,q) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
"2 * x - 3 * y == 0, x - y + 6 * z - 1 == 0, x + y - 6 * q - 2 == 0)")
.isIntegerEmpty());
// Set with symbols.
- EXPECT_FALSE(parseIntegerPolyhedron("(x)[s] : (x + s >= 0, x - s == 0)")
- .isIntegerEmpty());
+ EXPECT_FALSE(parsePoly("(x)[s] : (x + s >= 0, x - s == 0)").isIntegerEmpty());
}
TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
IntegerPolyhedron poly =
- parseIntegerPolyhedron("(x) : (x - 2 >= 0, -x + 2 >= 0, x - 2 == 0)");
+ parsePoly("(x) : (x - 2 >= 0, -x + 2 >= 0, x - 2 == 0)");
poly.removeRedundantConstraints();
// Both inequalities are redundant given the equality. Both have been removed.
@@ -506,7 +497,7 @@ TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
EXPECT_EQ(poly.getNumEqualities(), 1u);
IntegerPolyhedron poly2 =
- parseIntegerPolyhedron("(x,y) : (x - 3 >= 0, y - 2 >= 0, x - y == 0)");
+ parsePoly("(x,y) : (x - 3 >= 0, y - 2 >= 0, x - y == 0)");
poly2.removeRedundantConstraints();
// The second inequality is redundant and should have been removed. The
@@ -516,52 +507,52 @@ TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
EXPECT_EQ(poly2.getNumEqualities(), 1u);
IntegerPolyhedron poly3 =
- parseIntegerPolyhedron("(x,y,z) : (x - y == 0, x - z == 0, y - z == 0)");
+ parsePoly("(x,y,z) : (x - y == 0, x - z == 0, y - z == 0)");
poly3.removeRedundantConstraints();
// One of the three equalities can be removed.
EXPECT_EQ(poly3.getNumInequalities(), 0u);
EXPECT_EQ(poly3.getNumEqualities(), 2u);
- IntegerPolyhedron poly4 = parseIntegerPolyhedron(
- "(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) : ("
- "b - 1 >= 0,"
- "-b + 500 >= 0,"
- "-16 * d + f >= 0,"
- "f - 1 >= 0,"
- "-f + 998 >= 0,"
- "16 * d - f + 15 >= 0,"
- "-16 * e + g >= 0,"
- "g - 1 >= 0,"
- "-g + 998 >= 0,"
- "16 * e - g + 15 >= 0,"
- "h >= 0,"
- "-h + 1 >= 0,"
- "j - 1 >= 0,"
- "-j + 500 >= 0,"
- "-f + 16 * l + 15 >= 0,"
- "f - 16 * l >= 0,"
- "-16 * m + o >= 0,"
- "o - 1 >= 0,"
- "-o + 998 >= 0,"
- "16 * m - o + 15 >= 0,"
- "p >= 0,"
- "-p + 1 >= 0,"
- "-g - h + 8 * q + 8 >= 0,"
- "-o - p + 8 * q + 8 >= 0,"
- "o + p - 8 * q - 1 >= 0,"
- "g + h - 8 * q - 1 >= 0,"
- "-f + n >= 0,"
- "f - n >= 0,"
- "k - 10 >= 0,"
- "-k + 10 >= 0,"
- "i - 13 >= 0,"
- "-i + 13 >= 0,"
- "c - 10 >= 0,"
- "-c + 10 >= 0,"
- "a - 13 >= 0,"
- "-a + 13 >= 0"
- ")");
+ IntegerPolyhedron poly4 =
+ parsePoly("(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) : ("
+ "b - 1 >= 0,"
+ "-b + 500 >= 0,"
+ "-16 * d + f >= 0,"
+ "f - 1 >= 0,"
+ "-f + 998 >= 0,"
+ "16 * d - f + 15 >= 0,"
+ "-16 * e + g >= 0,"
+ "g - 1 >= 0,"
+ "-g + 998 >= 0,"
+ "16 * e - g + 15 >= 0,"
+ "h >= 0,"
+ "-h + 1 >= 0,"
+ "j - 1 >= 0,"
+ "-j + 500 >= 0,"
+ "-f + 16 * l + 15 >= 0,"
+ "f - 16 * l >= 0,"
+ "-16 * m + o >= 0,"
+ "o - 1 >= 0,"
+ "-o + 998 >= 0,"
+ "16 * m - o + 15 >= 0,"
+ "p >= 0,"
+ "-p + 1 >= 0,"
+ "-g - h + 8 * q + 8 >= 0,"
+ "-o - p + 8 * q + 8 >= 0,"
+ "o + p - 8 * q - 1 >= 0,"
+ "g + h - 8 * q - 1 >= 0,"
+ "-f + n >= 0,"
+ "f - n >= 0,"
+ "k - 10 >= 0,"
+ "-k + 10 >= 0,"
+ "i - 13 >= 0,"
+ "-i + 13 >= 0,"
+ "c - 10 >= 0,"
+ "-c + 10 >= 0,"
+ "a - 13 >= 0,"
+ "-a + 13 >= 0"
+ ")");
// The above is a large set of constraints without any redundant constraints,
// as verified by the Fourier-Motzkin based removeRedundantInequalities.
@@ -576,7 +567,7 @@ TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
EXPECT_EQ(poly4.getNumInequalities(), nIneq);
EXPECT_EQ(poly4.getNumEqualities(), nEq);
- IntegerPolyhedron poly5 = parseIntegerPolyhedron(
+ IntegerPolyhedron poly5 = parsePoly(
"(x,y) : (128 * x + 127 >= 0, -x + 7 >= 0, -128 * x + y >= 0, y >= 0)");
// 128x + 127 >= 0 implies that 128x >= 0, since x has to be an integer.
// (This should be caught by GCDTightenInqualities().)
@@ -704,7 +695,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprRecursive) {
TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) {
{
- IntegerPolyhedron poly = parseIntegerPolyhedron("(i) : (i mod 3 - 1 >= 0)");
+ IntegerPolyhedron poly = parsePoly("(i) : (i mod 3 - 1 >= 0)");
// The set formed by the poly is:
// 3q - i + 2 >= 0 <-- Division lower bound
@@ -724,8 +715,8 @@ TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) {
}
{
- IntegerPolyhedron poly = parseIntegerPolyhedron(
- "(i, j, q) : (4*q - i - j + 2 >= 0, -4*q + i + j >= 0)");
+ IntegerPolyhedron poly =
+ parsePoly("(i, j, q) : (4*q - i - j + 2 >= 0, -4*q + i + j >= 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@@ -739,8 +730,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) {
TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
{
- IntegerPolyhedron poly =
- parseIntegerPolyhedron("(i, j, q) : (-4*q + i + j == 0)");
+ IntegerPolyhedron poly = parsePoly("(i, j, q) : (-4*q + i + j == 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@@ -750,8 +740,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
checkDivisionRepresentation(poly, divisions, denoms);
}
{
- IntegerPolyhedron poly =
- parseIntegerPolyhedron("(i, j, q) : (4*q - i - j == 0)");
+ IntegerPolyhedron poly = parsePoly("(i, j, q) : (4*q - i - j == 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@@ -761,8 +750,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
checkDivisionRepresentation(poly, divisions, denoms);
}
{
- IntegerPolyhedron poly =
- parseIntegerPolyhedron("(i, j, q) : (3*q + i + j - 2 == 0)");
+ IntegerPolyhedron poly = parsePoly("(i, j, q) : (3*q + i + j - 2 == 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@@ -776,8 +764,8 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
TEST(IntegerPolyhedronTest, computeLocalReprFromEqualityAndInequality) {
{
IntegerPolyhedron poly =
- parseIntegerPolyhedron("(i, j, q, k) : (-3*k + i + j == 0, 4*q - "
- "i - j + 2 >= 0, -4*q + i + j >= 0)");
+ parsePoly("(i, j, q, k) : (-3*k + i + j == 0, 4*q - "
+ "i - j + 2 >= 0, -4*q + i + j >= 0)");
// Convert `q` and `k` to local variables.
poly.convertToLocal(VarKind::SetDim, 2, 4);
@@ -791,7 +779,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEqualityAndInequality) {
TEST(IntegerPolyhedronTest, computeLocalReprNoRepr) {
IntegerPolyhedron poly =
- parseIntegerPolyhedron("(x, q) : (x - 3 * q >= 0, -x + 3 * q + 3 >= 0)");
+ parsePoly("(x, q) : (x - 3 * q >= 0, -x + 3 * q + 3 >= 0)");
// Convert q to a local variable.
poly.convertToLocal(VarKind::SetDim, 1, 2);
@@ -803,8 +791,8 @@ TEST(IntegerPolyhedronTest, computeLocalReprNoRepr) {
}
TEST(IntegerPolyhedronTest, computeLocalReprNegConstNormalize) {
- IntegerPolyhedron poly = parseIntegerPolyhedron(
- "(x, q) : (-1 - 3*x - 6 * q >= 0, 6 + 3*x + 6*q >= 0)");
+ IntegerPolyhedron poly =
+ parsePoly("(x, q) : (-1 - 3*x - 6 * q >= 0, 6 + 3*x + 6*q >= 0)");
// Convert q to a local variable.
poly.convertToLocal(VarKind::SetDim, 1, 2);
@@ -1099,36 +1087,32 @@ void expectNoRationalLexMin(OptimumKind kind, const IntegerPolyhedron &poly) {
TEST(IntegerPolyhedronTest, findRationalLexMin) {
expectRationalLexMin(
- parseIntegerPolyhedron(
- "(x, y, z) : (x + 10 >= 0, y + 40 >= 0, z + 30 >= 0)"),
+ parsePoly("(x, y, z) : (x + 10 >= 0, y + 40 >= 0, z + 30 >= 0)"),
{{-10, 1}, {-40, 1}, {-30, 1}});
expectRationalLexMin(
- parseIntegerPolyhedron(
+ parsePoly(
"(x, y, z) : (2*x + 7 >= 0, 3*y - 5 >= 0, 8*z + 10 >= 0, 9*z >= 0)"),
{{-7, 2}, {5, 3}, {0, 1}});
- expectRationalLexMin(
- parseIntegerPolyhedron("(x, y) : (3*x + 2*y + 10 >= 0, -3*y + 10 >= "
- "0, 4*x - 7*y - 10 >= 0)"),
- {{-50, 29}, {-70, 29}});
+ expectRationalLexMin(parsePoly("(x, y) : (3*x + 2*y + 10 >= 0, -3*y + 10 >= "
+ "0, 4*x - 7*y - 10 >= 0)"),
+ {{-50, 29}, {-70, 29}});
// Test with some locals. This is basically x >= 11, 0 <= x - 2e <= 1.
// It'll just choose x = 11, e = 5.5 since it's rational lexmin.
expectRationalLexMin(
- parseIntegerPolyhedron(
+ parsePoly(
"(x, y) : (x - 2*(x floordiv 2) == 0, y - 2*x >= 0, x - 11 >= 0)"),
{{11, 1}, {22, 1}});
- expectRationalLexMin(
- parseIntegerPolyhedron("(x, y) : (3*x + 2*y + 10 >= 0,"
- "-4*x + 7*y + 10 >= 0, -3*y + 10 >= 0)"),
- {{-50, 9}, {10, 3}});
+ expectRationalLexMin(parsePoly("(x, y) : (3*x + 2*y + 10 >= 0,"
+ "-4*x + 7*y + 10 >= 0, -3*y + 10 >= 0)"),
+ {{-50, 9}, {10, 3}});
// Cartesian product of above with itself.
expectRationalLexMin(
- parseIntegerPolyhedron(
- "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
- "-3*y + 10 >= 0, 3*z + 2*w + 10 >= 0, -4*z + 7*w + 10 >= 0,"
- "-3*w + 10 >= 0)"),
+ parsePoly("(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
+ "-3*y + 10 >= 0, 3*z + 2*w + 10 >= 0, -4*z + 7*w + 10 >= 0,"
+ "-3*w + 10 >= 0)"),
{{-50, 9}, {10, 3}, {-50, 9}, {10, 3}});
// Same as above but for the constraints on z and w, we express "10" in terms
@@ -1137,7 +1121,7 @@ TEST(IntegerPolyhedronTest, findRationalLexMin) {
// minimized first. Accordingly, the values -9x - 12y, -9x - 0y - 10,
// and -9x - 15y + 10 are all equal to 10.
expectRationalLexMin(
- parseIntegerPolyhedron(
+ parsePoly(
"(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0, "
"-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
"-4*z + 7*w + - 9*x - 9*y - 10 >= 0, -3*w - 9*x - 15*y + 10 >= 0)"),
@@ -1146,22 +1130,19 @@ TEST(IntegerPolyhedronTest, findRationalLexMin) {
// Same as above with one constraint removed, making the lexmin unbounded.
expectNoRationalLexMin(
OptimumKind::Unbounded,
- parseIntegerPolyhedron(
- "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
- "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
- "-4*z + 7*w + - 9*x - 9*y - 10>= 0)"));
+ parsePoly("(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
+ "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
+ "-4*z + 7*w + - 9*x - 9*y - 10>= 0)"));
// Again, the lexmin is unbounded.
expectNoRationalLexMin(
OptimumKind::Unbounded,
- parseIntegerPolyhedron(
- "(x, y, z) : (2*x + 5*y + 8*z - 10 >= 0,"
- "2*x + 10*y + 8*z - 10 >= 0, 2*x + 5*y + 10*z - 10 >= 0)"));
+ parsePoly("(x, y, z) : (2*x + 5*y + 8*z - 10 >= 0,"
+ "2*x + 10*y + 8*z - 10 >= 0, 2*x + 5*y + 10*z - 10 >= 0)"));
// The set is empty.
- expectNoRationalLexMin(
- OptimumKind::Empty,
- parseIntegerPolyhedron("(x) : (2*x >= 0, -x - 1 >= 0)"));
+ expectNoRationalLexMin(OptimumKind::Empty,
+ parsePoly("(x) : (2*x >= 0, -x - 1 >= 0)"));
}
void expectIntegerLexMin(const IntegerPolyhedron &poly, ArrayRef<int64_t> min) {
@@ -1177,99 +1158,108 @@ void expectNoIntegerLexMin(OptimumKind kind, const IntegerPolyhedron &poly) {
}
TEST(IntegerPolyhedronTest, findIntegerLexMin) {
- expectIntegerLexMin(
- parseIntegerPolyhedron("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 >= "
- "0, 11*z + 5*y - 3*x + 7 >= 0)"),
- {-6, -4, 0});
+ expectIntegerLexMin(parsePoly("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 >= "
+ "0, 11*z + 5*y - 3*x + 7 >= 0)"),
+ {-6, -4, 0});
// Similar to above but no lower bound on z.
- expectNoIntegerLexMin(
- OptimumKind::Unbounded,
- parseIntegerPolyhedron("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 "
- ">= 0, -11*z + 5*y - 3*x + 7 >= 0)"));
+ expectNoIntegerLexMin(OptimumKind::Unbounded,
+ parsePoly("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 "
+ ">= 0, -11*z + 5*y - 3*x + 7 >= 0)"));
}
void expectSymbolicIntegerLexMin(
StringRef polyStr,
- ArrayRef<std::pair<StringRef, StringRef>> expectedLexminRepr,
+ ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
+ expectedLexminRepr,
ArrayRef<StringRef> expectedUnboundedDomainRepr) {
- IntegerPolyhedron poly = parseIntegerPolyhedron(polyStr);
+ IntegerPolyhedron poly = parsePoly(polyStr);
ASSERT_NE(poly.getNumDimVars(), 0u);
ASSERT_NE(poly.getNumSymbolVars(), 0u);
+ PWMAFunction expectedLexmin =
+ parsePWMAF(/*numInputs=*/0,
+ /*numOutputs=*/poly.getNumDimVars(), expectedLexminRepr,
+ /*numSymbols=*/poly.getNumSymbolVars());
+
+ PresburgerSet expectedUnboundedDomain = parsePresburgerSetFromPolyStrings(
+ /*numDims=*/0, expectedUnboundedDomainRepr, poly.getNumSymbolVars());
+
SymbolicLexMin result = poly.findSymbolicIntegerLexMin();
- if (expectedLexminRepr.empty()) {
- EXPECT_TRUE(result.lexmin.getDomain().isIntegerEmpty());
- } else {
- PWMAFunction expectedLexmin = parsePWMAF(expectedLexminRepr);
- EXPECT_TRUE(result.lexmin.isEqual(expectedLexmin));
+ EXPECT_TRUE(result.lexmin.isEqual(expectedLexmin));
+ if (!result.lexmin.isEqual(expectedLexmin)) {
+ llvm::errs() << "got:\n";
+ result.lexmin.dump();
+ llvm::errs() << "expected:\n";
+ expectedLexmin.dump();
}
- if (expectedUnboundedDomainRepr.empty()) {
- EXPECT_TRUE(result.unboundedDomain.isIntegerEmpty());
- } else {
- PresburgerSet expectedUnboundedDomain =
- parsePresburgerSet(expectedUnboundedDomainRepr);
- EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain));
- }
+ EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain));
+ if (!result.unboundedDomain.isEqual(expectedUnboundedDomain))
+ result.unboundedDomain.dump();
}
void expectSymbolicIntegerLexMin(
- StringRef polyStr, ArrayRef<std::pair<StringRef, StringRef>> result) {
+ StringRef polyStr,
+ ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
+ result) {
expectSymbolicIntegerLexMin(polyStr, result, {});
}
TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
expectSymbolicIntegerLexMin("(x)[a] : (x - a >= 0)",
{
- {"()[a] : ()", "()[a] -> (a)"},
+ {"()[a] : ()", {{1, 0}}}, // a
});
expectSymbolicIntegerLexMin(
"(x)[a, b] : (x - a >= 0, x - b >= 0)",
{
- {"()[a, b] : (a - b >= 0)", "()[a, b] -> (a)"},
- {"()[a, b] : (b - a - 1 >= 0)", "()[a, b] -> (b)"},
+ {"()[a, b] : (a - b >= 0)", {{1, 0, 0}}}, // a
+ {"()[a, b] : (b - a - 1 >= 0)", {{0, 1, 0}}}, // b
});
expectSymbolicIntegerLexMin(
"(x)[a, b, c] : (x -a >= 0, x - b >= 0, x - c >= 0)",
{
- {"()[a, b, c] : (a - b >= 0, a - c >= 0)", "()[a, b, c] -> (a)"},
- {"()[a, b, c] : (b - a - 1 >= 0, b - c >= 0)", "()[a, b, c] -> (b)"},
+ {"()[a, b, c] : (a - b >= 0, a - c >= 0)", {{1, 0, 0, 0}}}, // a
+ {"()[a, b, c] : (b - a - 1 >= 0, b - c >= 0)", {{0, 1, 0, 0}}}, // b
{"()[a, b, c] : (c - a - 1 >= 0, c - b - 1 >= 0)",
- "()[a, b, c] -> (c)"},
+ {{0, 0, 1, 0}}}, // c
});
expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0)",
{
- {"()[a] : ()", "()[a] -> (a, -a)"},
+ {"()[a] : ()", {{1, 0}, {-1, 0}}}, // (a, -a)
});
- expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)",
- {
- {"()[a] : (a >= 0)", "()[a] -> (a, 0)"},
- {"()[a] : (-a - 1 >= 0)", "()[a] -> (a, -a)"},
- });
+ expectSymbolicIntegerLexMin(
+ "(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)",
+ {
+ {"()[a] : (a >= 0)", {{1, 0}, {0, 0}}}, // (a, 0)
+ {"()[a] : (-a - 1 >= 0)", {{1, 0}, {-1, 0}}}, // (a, -a)
+ });
expectSymbolicIntegerLexMin(
"(x, y)[a, b, c] : (x - a >= 0, y - b >= 0, c - x - y >= 0)",
{
- {"()[a, b, c] : (c - a - b >= 0)", "()[a, b, c] -> (a, b)"},
+ {"()[a, b, c] : (c - a - b >= 0)",
+ {{1, 0, 0, 0}, {0, 1, 0, 0}}}, // (a, b)
});
expectSymbolicIntegerLexMin(
"(x, y, z)[a, b, c] : (c - z >= 0, b - y >= 0, x + y + z - a == 0)",
{
- {"()[a, b, c] : ()", "()[a, b, c] -> (a - b - c, b, c)"},
+ {"()[a, b, c] : ()",
+ {{1, -1, -1, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}}, // (a - b - c, b, c)
});
expectSymbolicIntegerLexMin(
"(x)[a, b] : (a >= 0, b >= 0, x >= 0, a + b + x - 1 >= 0)",
{
- {"()[a, b] : (a >= 0, b >= 0, a + b - 1 >= 0)", "()[a, b] -> (0)"},
- {"()[a, b] : (a == 0, b == 0)", "()[a, b] -> (1)"},
+ {"()[a, b] : (a >= 0, b >= 0, a + b - 1 >= 0)", {{0, 0, 0}}}, // 0
+ {"()[a, b] : (a == 0, b == 0)", {{0, 0, 1}}}, // 1
});
expectSymbolicIntegerLexMin(
@@ -1278,8 +1268,8 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
{
{"()[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, a + b - 1 >= "
"0)",
- "()[a, b] -> (0)"},
- {"()[a, b] : (a == 0, b == 0)", "()[a, b] -> (1)"},
+ {{0, 0, 0}}}, // 0
+ {"()[a, b] : (a == 0, b == 0)", {{0, 0, 1}}}, // 1
});
expectSymbolicIntegerLexMin(
@@ -1287,51 +1277,50 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
"y + z - 1 >= 0)",
{
{"()[a, b] : (a >= 0, b >= 0, 1 - a - b >= 0)",
- "()[a, b] -> (a, b, 1 - a - b)"},
+ {{1, 0, 0}, {0, 1, 0}, {-1, -1, 1}}}, // (a, b, 1 - a - b)
{"()[a, b] : (a >= 0, b >= 0, a + b - 2 >= 0)",
- "()[a, b] -> (a, b, 0)"},
+ {{1, 0, 0}, {0, 1, 0}, {0, 0, 0}}}, // (a, b, 0)
});
- expectSymbolicIntegerLexMin(
- "(x)[a, b] : (x - a == 0, x - b >= 0)",
- {
- {"()[a, b] : (a - b >= 0)", "()[a, b] -> (a)"},
- });
+ expectSymbolicIntegerLexMin("(x)[a, b] : (x - a == 0, x - b >= 0)",
+ {
+ {"()[a, b] : (a - b >= 0)", {{1, 0, 0}}}, // a
+ });
expectSymbolicIntegerLexMin(
"(q)[a] : (a - 1 - 3*q == 0, q >= 0)",
{
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (a floordiv 3)"},
+ {{0, 1, 0}}}, // a floordiv 3
});
expectSymbolicIntegerLexMin(
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, 1 - r >= 0, r >= 0)",
{
{"()[a] : (a - 0 - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (0, a floordiv 3)"},
+ {{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3)
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (1, a floordiv 3)"}, // (1 a floordiv 3)
+ {{0, 0, 1}, {0, 1, 0}}}, // (1 a floordiv 3)
});
expectSymbolicIntegerLexMin(
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, 2 - r >= 0, r - 1 >= 0)",
{
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (1, a floordiv 3)"},
+ {{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3)
{"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (2, a floordiv 3)"},
+ {{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3)
});
expectSymbolicIntegerLexMin(
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, r >= 0)",
{
{"()[a] : (a - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (0, a floordiv 3)"},
+ {{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3)
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (1, a floordiv 3)"},
+ {{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3)
{"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
- "()[a] -> (2, a floordiv 3)"},
+ {{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3)
});
expectSymbolicIntegerLexMin(
@@ -1346,9 +1335,12 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
// What's the lexmin solution using exactly g true vars?
"g - x - y - z - w == 0)",
{
- {"()[g] : (g - 1 == 0)", "()[g] -> (0, 1, 0, 0)"},
- {"()[g] : (g - 2 == 0)", "()[g] -> (0, 0, 1, 1)"},
- {"()[g] : (g - 3 == 0)", "()[g] -> (0, 1, 1, 1)"},
+ {"()[g] : (g - 1 == 0)",
+ {{0, 0}, {0, 1}, {0, 0}, {0, 0}}}, // (0, 1, 0, 0)
+ {"()[g] : (g - 2 == 0)",
+ {{0, 0}, {0, 0}, {0, 1}, {0, 1}}}, // (0, 0, 1, 1)
+ {"()[g] : (g - 3 == 0)",
+ {{0, 0}, {0, 1}, {0, 1}, {0, 1}}}, // (0, 1, 1, 1)
});
// Bezout's lemma: if a, b are constants,
@@ -1373,7 +1365,7 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
"(b, c)[a] : (a - 4*b + 2*c == 0, c - b >= 0)",
{
{"()[a] : (a - 2*(a floordiv 2) == 0)",
- "()[a] -> (a floordiv 2, a floordiv 2)"},
+ {{0, 1, 0}, {0, 1, 0}}}, // (a floordiv 2, a floordiv 2)
});
expectSymbolicIntegerLexMin(
@@ -1385,7 +1377,7 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
{"()[a] : (255 - (a floordiv 512) >= 0, a >= 0, a - 512*(a floordiv "
"512) - 1 >= 0, 512*(a floordiv 512) - a + 509 >= 0, (a floordiv "
"512) + 7 - 16*((8 + (a floordiv 512)) floordiv 16) >= 0)",
- "()[a] -> (a floordiv 512)"},
+ {{0, 1, 0, 0}}}, // (a floordiv 2, a floordiv 2)
});
expectSymbolicIntegerLexMin(
@@ -1394,11 +1386,12 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
"N >= 0, 2*N - 4 - a >= 0,"
"2*N - 3*K + a - b >= 0, 4*N - K + 1 - 3*b >= 0, b - N >= 0, a - x - 1 "
">= 0)",
- {
- {"()[K, N, x, y] : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + "
- "N >= 0, N + K - 2 - x >= 0, x - 4 >= 0)",
- "()[K, N, x, y] -> (1 + x, N)"},
- });
+ {{
+ "()[K, N, x, y] : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + "
+ "N "
+ ">= 0, N + K - 2 - x >= 0, x - 4 >= 0)",
+ {{0, 0, 1, 0, 1}, {0, 1, 0, 0, 0}} // (1 + x, N)
+ }});
}
static void
@@ -1414,32 +1407,29 @@ TEST(IntegerPolyhedronTest, computeVolume) {
// i.e. 0 <= x <= 3, -5 <= y <= 2, 3 <= z <= 3 + 1/4.
// So volume is 4 * 8 * 1 = 32.
expectComputedVolumeIsValidOverapprox(
- parseIntegerPolyhedron(
- "(x, y, z) : (x >= 0, -3*x + 10 >= 0, 2*y + 11 >= 0,"
- "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
+ parsePoly("(x, y, z) : (x >= 0, -3*x + 10 >= 0, 2*y + 11 >= 0,"
+ "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
/*trueVolume=*/32ull, /*resultBound=*/32ull);
// Same as above but y has bounds 2 + 1/5 <= y <= 2 + 3/5. So the volume is
// zero.
expectComputedVolumeIsValidOverapprox(
- parseIntegerPolyhedron(
- "(x, y, z) : (x >= 0, -3*x + 10 >= 0, 5*y - 11 >= 0,"
- "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
+ parsePoly("(x, y, z) : (x >= 0, -3*x + 10 >= 0, 5*y - 11 >= 0,"
+ "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
/*trueVolume=*/0ull, /*resultBound=*/0ull);
// Now x is unbounded below but y still has no integer values.
expectComputedVolumeIsValidOverapprox(
- parseIntegerPolyhedron("(x, y, z) : (-3*x + 10 >= 0, 5*y - 11 >= 0,"
- "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
+ parsePoly("(x, y, z) : (-3*x + 10 >= 0, 5*y - 11 >= 0,"
+ "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
/*trueVolume=*/0ull, /*resultBound=*/0ull);
// A diamond shape, 0 <= x + y <= 10, 0 <= x - y <= 10,
// with vertices at (0, 0), (5, 5), (5, 5), (10, 0).
// x and y can take 11 possible values so result computed is 11*11 = 121.
expectComputedVolumeIsValidOverapprox(
- parseIntegerPolyhedron(
- "(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0,"
- "-x + y + 10 >= 0)"),
+ parsePoly("(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0,"
+ "-x + y + 10 >= 0)"),
/*trueVolume=*/61ull, /*resultBound=*/121ull);
// Effectively the same diamond as above; constrain the variables to be even
@@ -1448,15 +1438,14 @@ TEST(IntegerPolyhedronTest, computeVolume) {
// computing that x and y can take 21 possible values so result is 21*21 =
// 441.
expectComputedVolumeIsValidOverapprox(
- parseIntegerPolyhedron(
- "(x, y) : (x + y >= 0, -x - y + 20 >= 0, x - y >= 0,"
- " -x + y + 20 >= 0, x - 2*(x floordiv 2) == 0,"
- "y - 2*(y floordiv 2) == 0)"),
+ parsePoly("(x, y) : (x + y >= 0, -x - y + 20 >= 0, x - y >= 0,"
+ " -x + y + 20 >= 0, x - 2*(x floordiv 2) == 0,"
+ "y - 2*(y floordiv 2) == 0)"),
/*trueVolume=*/61ull, /*resultBound=*/441ull);
// Unbounded polytope.
expectComputedVolumeIsValidOverapprox(
- parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"),
+ parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"),
/*trueVolume=*/{}, /*resultBound=*/{});
}
@@ -1466,18 +1455,16 @@ bool containsPointNoLocal(const IntegerPolyhedron &poly,
}
TEST(IntegerPolyhedronTest, containsPointNoLocal) {
- IntegerPolyhedron poly1 =
- parseIntegerPolyhedron("(x) : ((x floordiv 2) - x == 0)");
- EXPECT_TRUE(poly1.containsPointNoLocal({0}));
- EXPECT_FALSE(poly1.containsPointNoLocal({1}));
+ IntegerPolyhedron poly1 = parsePoly("(x) : ((x floordiv 2) - x == 0)");
+ EXPECT_TRUE(containsPointNoLocal(poly1, {0}));
+ EXPECT_FALSE(containsPointNoLocal(poly1, {1}));
- IntegerPolyhedron poly2 = parseIntegerPolyhedron(
+ IntegerPolyhedron poly2 = parsePoly(
"(x) : (x - 2*(x floordiv 2) == 0, x - 4*(x floordiv 4) - 2 == 0)");
EXPECT_TRUE(containsPointNoLocal(poly2, {6}));
EXPECT_FALSE(containsPointNoLocal(poly2, {4}));
- IntegerPolyhedron poly3 =
- parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)");
+ IntegerPolyhedron poly3 = parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)");
// -0 instead of 0 to prevent unwanted conversion to pointer types,
// which would lead to ambiguity in overload resolution.
diff --git a/mlir/unittests/Analysis/Presburger/IntegerRelationTest.cpp b/mlir/unittests/Analysis/Presburger/IntegerRelationTest.cpp
index 1a9241bfe3ffc..18efe55c2479a 100644
--- a/mlir/unittests/Analysis/Presburger/IntegerRelationTest.cpp
+++ b/mlir/unittests/Analysis/Presburger/IntegerRelationTest.cpp
@@ -7,7 +7,7 @@
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/IntegerRelation.h"
-#include "Parser.h"
+#include "./Utils.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include <gmock/gmock.h>
@@ -17,7 +17,7 @@ using namespace mlir;
using namespace presburger;
static IntegerRelation parseRelationFromSet(StringRef set, unsigned numDomain) {
- IntegerRelation rel = parseIntegerPolyhedron(set);
+ IntegerRelation rel = parsePoly(set);
rel.convertVarKind(VarKind::SetDim, 0, numDomain, VarKind::Domain);
@@ -31,14 +31,14 @@ TEST(IntegerRelationTest, getDomainAndRangeSet) {
IntegerPolyhedron domainSet = rel.getDomainSet();
IntegerPolyhedron expectedDomainSet =
- parseIntegerPolyhedron("(x)[N] : (x + 10 >= 0, N - x - 10 >= 0)");
+ parsePoly("(x)[N] : (x + 10 >= 0, N - x - 10 >= 0)");
EXPECT_TRUE(domainSet.isEqual(expectedDomainSet));
IntegerPolyhedron rangeSet = rel.getRangeSet();
IntegerPolyhedron expectedRangeSet =
- parseIntegerPolyhedron("(x)[N] : (x >= 0, N - x >= 0)");
+ parsePoly("(x)[N] : (x >= 0, N - x >= 0)");
EXPECT_TRUE(rangeSet.isEqual(expectedRangeSet));
}
@@ -66,8 +66,7 @@ TEST(IntegerRelationTest, intersectDomainAndRange) {
1);
{
- IntegerPolyhedron poly =
- parseIntegerPolyhedron("(x)[N, M] : (x >= 0, M - x - 1 >= 0)");
+ IntegerPolyhedron poly = parsePoly("(x)[N, M] : (x >= 0, M - x - 1 >= 0)");
IntegerRelation expectedRel = parseRelationFromSet(
"(x, y, z)[N, M]: (y floordiv 2 - N >= 0, z floordiv 5 - M"
@@ -80,8 +79,8 @@ TEST(IntegerRelationTest, intersectDomainAndRange) {
}
{
- IntegerPolyhedron poly = parseIntegerPolyhedron(
- "(y, z)[N, M] : (y >= 0, M - y - 1 >= 0, y + z == 0)");
+ IntegerPolyhedron poly =
+ parsePoly("(y, z)[N, M] : (y >= 0, M - y - 1 >= 0, y + z == 0)");
IntegerRelation expectedRel = parseRelationFromSet(
"(x, y, z)[N, M]: (y floordiv 2 - N >= 0, z floordiv 5 - M"
@@ -130,10 +129,14 @@ TEST(IntegerRelationTest, symbolicLexmin) {
parseRelationFromSet("(a, x)[b] : (x - a >= 0, x - b >= 0)", 1)
.findSymbolicIntegerLexMin();
- PWMAFunction expectedLexmin = parsePWMAF({
- {"(a)[b] : (a - b >= 0)", "(a)[b] -> (a)"}, // a
- {"(a)[b] : (b - a - 1 >= 0)", "(a)[b] -> (b)"}, // b
- });
+ PWMAFunction expectedLexmin =
+ parsePWMAF(/*numInputs=*/1,
+ /*numOutputs=*/1,
+ {
+ {"(a)[b] : (a - b >= 0)", {{1, 0, 0}}}, // a
+ {"(a)[b] : (b - a - 1 >= 0)", {{0, 1, 0}}}, // b
+ },
+ /*numSymbols=*/1);
EXPECT_TRUE(lexmin.unboundedDomain.isIntegerEmpty());
EXPECT_TRUE(lexmin.lexmin.isEqual(expectedLexmin));
}
diff --git a/mlir/unittests/Analysis/Presburger/PWMAFunctionTest.cpp b/mlir/unittests/Analysis/Presburger/PWMAFunctionTest.cpp
index cebc7fa2ec6e6..1aff2fe80a69a 100644
--- a/mlir/unittests/Analysis/Presburger/PWMAFunctionTest.cpp
+++ b/mlir/unittests/Analysis/Presburger/PWMAFunctionTest.cpp
@@ -10,7 +10,7 @@
//
//===----------------------------------------------------------------------===//
-#include "Parser.h"
+#include "./Utils.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
@@ -27,50 +27,69 @@ using testing::ElementsAre;
TEST(PWAFunctionTest, isEqual) {
// The output expressions are
diff erent but it doesn't matter because they are
// equal in this domain.
- PWMAFunction idAtZeros =
- parsePWMAF({{"(x, y) : (y == 0)", "(x, y) -> (x, y)"},
- {"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (x, y)"},
- {"(x, y) : (-y - 1 >= 0, x == 0)", "(x, y) -> (x, y)"}});
- PWMAFunction idAtZeros2 =
- parsePWMAF({{"(x, y) : (y == 0)", "(x, y) -> (x, 20*y)"},
- {"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (30*x, y)"},
- {"(x, y) : (-y - 1 > =0, x == 0)", "(x, y) -> (30*x, y)"}});
+ PWMAFunction idAtZeros = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (y == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
+ {"(x, y) : (y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
+ {"(x, y) : (-y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 1, 0}}} // (x, y).
+ });
+ PWMAFunction idAtZeros2 = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (y == 0)", {{1, 0, 0}, {0, 20, 0}}}, // (x, 20y).
+ {"(x, y) : (y - 1 >= 0, x == 0)", {{30, 0, 0}, {0, 1, 0}}}, //(30x, y)
+ {"(x, y) : (-y - 1 > =0, x == 0)", {{30, 0, 0}, {0, 1, 0}}} //(30x, y)
+ });
EXPECT_TRUE(idAtZeros.isEqual(idAtZeros2));
- PWMAFunction notIdAtZeros = parsePWMAF({
- {"(x, y) : (y == 0)", "(x, y) -> (x, y)"},
- {"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (x, 2*y)"},
- {"(x, y) : (-y - 1 >= 0, x == 0)", "(x, y) -> (x, 2*y)"},
- });
+ PWMAFunction notIdAtZeros = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (y == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
+ {"(x, y) : (y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 2, 0}}}, // (x, 2y)
+ {"(x, y) : (-y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 2, 0}}}, // (x, 2y)
+ });
EXPECT_FALSE(idAtZeros.isEqual(notIdAtZeros));
// These match at their intersection but one has a bigger domain.
- PWMAFunction idNoNegNegQuadrant =
- parsePWMAF({{"(x, y) : (x >= 0)", "(x, y) -> (x, y)"},
- {"(x, y) : (-x - 1 >= 0, y >= 0)", "(x, y) -> (x, y)"}});
- PWMAFunction idOnlyPosX = parsePWMAF({
- {"(x, y) : (x >= 0)", "(x, y) -> (x, y)"},
- });
+ PWMAFunction idNoNegNegQuadrant = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
+ {"(x, y) : (-x - 1 >= 0, y >= 0)", {{1, 0, 0}, {0, 1, 0}}} // (x, y).
+ });
+ PWMAFunction idOnlyPosX =
+ parsePWMAF(/*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
+ });
EXPECT_FALSE(idNoNegNegQuadrant.isEqual(idOnlyPosX));
// Different representations of the same domain.
- PWMAFunction sumPlusOne = parsePWMAF({
- {"(x, y) : (x >= 0)", "(x, y) -> (x + y + 1)"},
- {"(x, y) : (-x - 1 >= 0, -y - 1 >= 0)", "(x, y) -> (x + y + 1)"},
- {"(x, y) : (-x - 1 >= 0, y >= 0)", "(x, y) -> (x + y + 1)"},
- });
- PWMAFunction sumPlusOne2 = parsePWMAF({
- {"(x, y) : ()", "(x, y) -> (x + y + 1)"},
- });
+ PWMAFunction sumPlusOne = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : (x >= 0)", {{1, 1, 1}}}, // x + y + 1.
+ {"(x, y) : (-x - 1 >= 0, -y - 1 >= 0)", {{1, 1, 1}}}, // x + y + 1.
+ {"(x, y) : (-x - 1 >= 0, y >= 0)", {{1, 1, 1}}} // x + y + 1.
+ });
+ PWMAFunction sumPlusOne2 =
+ parsePWMAF(/*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : ()", {{1, 1, 1}}}, // x + y + 1.
+ });
EXPECT_TRUE(sumPlusOne.isEqual(sumPlusOne2));
// Functions with zero input dimensions.
- PWMAFunction noInputs1 = parsePWMAF({
- {"() : ()", "() -> (1)"},
- });
- PWMAFunction noInputs2 = parsePWMAF({
- {"() : ()", "() -> (2)"},
- });
+ PWMAFunction noInputs1 = parsePWMAF(/*numInputs=*/0, /*numOutputs=*/1,
+ {
+ {"() : ()", {{1}}}, // 1.
+ });
+ PWMAFunction noInputs2 = parsePWMAF(/*numInputs=*/0, /*numOutputs=*/1,
+ {
+ {"() : ()", {{2}}}, // 1.
+ });
EXPECT_TRUE(noInputs1.isEqual(noInputs1));
EXPECT_FALSE(noInputs1.isEqual(noInputs2));
@@ -81,41 +100,53 @@ TEST(PWAFunctionTest, isEqual) {
// Divisions.
// Domain is only multiples of 6; x = 6k for some k.
// x + 4(x/2) + 4(x/3) == 26k.
- PWMAFunction mul2AndMul3 = parsePWMAF({
- {"(x) : (x - 2*(x floordiv 2) == 0, x - 3*(x floordiv 3) == 0)",
- "(x) -> (x + 4 * (x floordiv 2) + 4 * (x floordiv 3))"},
- });
- PWMAFunction mul6 = parsePWMAF({
- {"(x) : (x - 6*(x floordiv 6) == 0)", "(x) -> (26 * (x floordiv 6))"},
- });
+ PWMAFunction mul2AndMul3 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x - 2*(x floordiv 2) == 0, x - 3*(x floordiv 3) == 0)",
+ {{1, 4, 4, 0}}}, // x + 4(x/2) + 4(x/3).
+ });
+ PWMAFunction mul6 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x - 6*(x floordiv 6) == 0)", {{0, 26, 0}}}, // 26(x/6).
+ });
EXPECT_TRUE(mul2AndMul3.isEqual(mul6));
- PWMAFunction mul6
diff = parsePWMAF({
- {"(x) : (x - 5*(x floordiv 5) == 0)", "(x) -> (52 * (x floordiv 6))"},
- });
+ PWMAFunction mul6
diff = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x - 5*(x floordiv 5) == 0)", {{0, 52, 0}}}, // 52(x/6).
+ });
EXPECT_FALSE(mul2AndMul3.isEqual(mul6
diff ));
- PWMAFunction mul5 = parsePWMAF({
- {"(x) : (x - 5*(x floordiv 5) == 0)", "(x) -> (26 * (x floordiv 5))"},
- });
+ PWMAFunction mul5 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x - 5*(x floordiv 5) == 0)", {{0, 26, 0}}}, // 26(x/5).
+ });
EXPECT_FALSE(mul2AndMul3.isEqual(mul5));
}
TEST(PWMAFunction, valueAt) {
PWMAFunction nonNegPWMAF = parsePWMAF(
- {{"(x, y) : (x >= 0)", "(x, y) -> (x + 2*y + 3, 3*x + 4*y + 5)"},
- {"(x, y) : (y >= 0, -x - 1 >= 0)",
- "(x, y) -> (-x + 2*y + 3, -3*x + 4*y + 5)"}});
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0)", {{1, 2, 3}, {3, 4, 5}}}, // (x, y).
+ {"(x, y) : (y >= 0, -x - 1 >= 0)", {{-1, 2, 3}, {-3, 4, 5}}} // (x, y)
+ });
EXPECT_THAT(*nonNegPWMAF.valueAt({2, 3}), ElementsAre(11, 23));
EXPECT_THAT(*nonNegPWMAF.valueAt({-2, 3}), ElementsAre(11, 23));
EXPECT_THAT(*nonNegPWMAF.valueAt({2, -3}), ElementsAre(-1, -1));
EXPECT_FALSE(nonNegPWMAF.valueAt({-2, -3}).has_value());
PWMAFunction divPWMAF = parsePWMAF(
- {{"(x, y) : (x >= 0, x - 2*(x floordiv 2) == 0)",
- "(x, y) -> (2*y + (x floordiv 2) + 3, 4*y + 3*(x floordiv 2) + 5)"},
- {"(x, y) : (y >= 0, -x - 1 >= 0)",
- "(x, y) -> (-x + 2*y + 3, -3*x + 4*y + 5)"}});
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0, x - 2*(x floordiv 2) == 0)",
+ {{0, 2, 1, 3}, {0, 4, 3, 5}}}, // (x, y).
+ {"(x, y) : (y >= 0, -x - 1 >= 0)", {{-1, 2, 3}, {-3, 4, 5}}} // (x, y)
+ });
EXPECT_THAT(*divPWMAF.valueAt({4, 3}), ElementsAre(11, 23));
EXPECT_THAT(*divPWMAF.valueAt({4, -3}), ElementsAre(-1, -1));
EXPECT_FALSE(divPWMAF.valueAt({3, 3}).has_value());
@@ -126,40 +157,53 @@ TEST(PWMAFunction, valueAt) {
}
TEST(PWMAFunction, removeIdRangeRegressionTest) {
- PWMAFunction pwmafA = parsePWMAF({
- {"(x, y) : (x == 0, y == 0, x - 2*(x floordiv 2) == 0, y - 2*(y floordiv "
- "2) == 0)",
- "(x, y) -> (0, 0)"},
- });
- PWMAFunction pwmafB = parsePWMAF({
- {"(x, y) : (x - 11*y == 0, 11*x - y == 0, x - 2*(x floordiv 2) == 0, "
- "y - 2*(y floordiv 2) == 0)",
- "(x, y) -> (0, 0)"},
- });
+ PWMAFunction pwmafA = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : (x == 0, y == 0, x - 2*(x floordiv 2) == 0, y - 2*(y "
+ "floordiv 2) == 0)",
+ {{0, 0, 0, 0, 0}}} // (0, 0)
+ });
+ PWMAFunction pwmafB = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : (x - 11*y == 0, 11*x - y == 0, x - 2*(x floordiv 2) == 0, "
+ "y - 2*(y floordiv 2) == 0)",
+ {{0, 0, 0, 0, 0}}} // (0, 0)
+ });
EXPECT_TRUE(pwmafA.isEqual(pwmafB));
}
TEST(PWMAFunction, eliminateRedundantLocalIdRegressionTest) {
- PWMAFunction pwmafA = parsePWMAF({
- {"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)", "(x, y) -> (y)"},
- });
- PWMAFunction pwmafB = parsePWMAF({
- {"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)",
- "(x, y) -> (x - y)"},
- });
+ PWMAFunction pwmafA = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)",
+ {{0, 1, 0, 0}}} // (0, 0)
+ });
+ PWMAFunction pwmafB = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)",
+ {{1, -1, 0, 0}}} // (0, 0)
+ });
EXPECT_TRUE(pwmafA.isEqual(pwmafB));
}
TEST(PWMAFunction, unionLexMaxSimple) {
// func2 is better than func1, but func2's domain is empty.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x) : ()", "(x) -> (1)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x) : (1 == 0)", "(x) -> (2)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{0, 1}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (1 == 0)", {{0, 2}}},
+ });
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(func1));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(func1));
@@ -167,19 +211,25 @@ TEST(PWMAFunction, unionLexMaxSimple) {
// func2 is better than func1 on a subset of func1.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x) : ()", "(x) -> (1)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (2)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x) : (-1 - x >= 0)", "(x) -> (1)"},
- {"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (2)"},
- {"(x) : (x - 11 >= 0)", "(x) -> (1)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{0, 1}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x >= 0, 10 - x >= 0)", {{0, 2}}},
+ });
+
+ PWMAFunction result = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (-1 - x >= 0)", {{0, 1}}},
+ {"(x) : (x >= 0, 10 - x >= 0)", {{0, 2}}},
+ {"(x) : (x - 11 >= 0)", {{0, 1}}},
+ });
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@@ -187,18 +237,24 @@ TEST(PWMAFunction, unionLexMaxSimple) {
// func1 and func2 are defined over the whole domain with
diff erent outputs.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x) : ()", "(x) -> (x)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x) : ()", "(x) -> (-x)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x) : (x >= 0)", "(x) -> (x)"},
- {"(x) : (-1 - x >= 0)", "(x) -> (-x)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{1, 0}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{-1, 0}}},
+ });
+
+ PWMAFunction result = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x >= 0)", {{1, 0}}},
+ {"(x) : (-1 - x >= 0)", {{-1, 0}}},
+ });
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@@ -206,22 +262,28 @@ TEST(PWMAFunction, unionLexMaxSimple) {
// func1 and func2 have disjoint domains.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (1)"},
- {"(x) : (x - 71 >= 0, 80 - x >= 0)", "(x) -> (1)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x) : (x - 20 >= 0, 41 - x >= 0)", "(x) -> (2)"},
- {"(x) : (x - 101 >= 0, 120 - x >= 0)", "(x) -> (2)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (1)"},
- {"(x) : (x - 71 >= 0, 80 - x >= 0)", "(x) -> (1)"},
- {"(x) : (x - 20 >= 0, 41 - x >= 0)", "(x) -> (2)"},
- {"(x) : (x - 101 >= 0, 120 - x >= 0)", "(x) -> (2)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x >= 0, 10 - x >= 0)", {{0, 1}}},
+ {"(x) : (x - 71 >= 0, 80 - x >= 0)", {{0, 1}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x - 20 >= 0, 41 - x >= 0)", {{0, 2}}},
+ {"(x) : (x - 101 >= 0, 120 - x >= 0)", {{0, 2}}},
+ });
+
+ PWMAFunction result = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x >= 0, 10 - x >= 0)", {{0, 1}}},
+ {"(x) : (x - 71 >= 0, 80 - x >= 0)", {{0, 1}}},
+ {"(x) : (x - 20 >= 0, 41 - x >= 0)", {{0, 2}}},
+ {"(x) : (x - 101 >= 0, 120 - x >= 0)", {{0, 2}}},
+ });
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
@@ -231,13 +293,17 @@ TEST(PWMAFunction, unionLexMaxSimple) {
TEST(PWMAFunction, unionLexMinSimple) {
// func2 is better than func1, but func2's domain is empty.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x) : ()", "(x) -> (-1)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x) : (1 == 0)", "(x) -> (-2)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{0, -1}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (1 == 0)", {{0, -2}}},
+ });
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(func1));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(func1));
@@ -245,19 +311,25 @@ TEST(PWMAFunction, unionLexMinSimple) {
// func2 is better than func1 on a subset of func1.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x) : ()", "(x) -> (-1)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (-2)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x) : (-1 - x >= 0)", "(x) -> (-1)"},
- {"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (-2)"},
- {"(x) : (x - 11 >= 0)", "(x) -> (-1)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{0, -1}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x >= 0, 10 - x >= 0)", {{0, -2}}},
+ });
+
+ PWMAFunction result = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (-1 - x >= 0)", {{0, -1}}},
+ {"(x) : (x >= 0, 10 - x >= 0)", {{0, -2}}},
+ {"(x) : (x - 11 >= 0)", {{0, -1}}},
+ });
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
@@ -265,18 +337,24 @@ TEST(PWMAFunction, unionLexMinSimple) {
// func1 and func2 are defined over the whole domain with
diff erent outputs.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x) : ()", "(x) -> (-x)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x) : ()", "(x) -> (x)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x) : (x >= 0)", "(x) -> (-x)"},
- {"(x) : (-1 - x >= 0)", "(x) -> (x)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{-1, 0}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : ()", {{1, 0}}},
+ });
+
+ PWMAFunction result = parsePWMAF(
+ /*numInputs=*/1, /*numOutputs=*/1,
+ {
+ {"(x) : (x >= 0)", {{-1, 0}}},
+ {"(x) : (-1 - x >= 0)", {{1, 0}}},
+ });
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
@@ -291,20 +369,35 @@ TEST(PWMAFunction, unionLexMaxComplex) {
// 10 <= x <= 20, y > 0 --> func1 (x + y > x - y for y > 0)
// 10 <= x <= 20, y <= 0 --> func2 (x + y <= x - y for y <= 0)
{
- PWMAFunction func1 = parsePWMAF({
- {"(x, y) : (x >= 10)", "(x, y) -> (x + y)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x, y) : (x <= 20)", "(x, y) -> (x - y)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x, y) : (x >= 10, x <= 20, y >= 1)", "(x, y) -> (x + y)"},
- {"(x, y) : (x >= 21)", "(x, y) -> (x + y)"},
- {"(x, y) : (x <= 9)", "(x, y) -> (x - y)"},
- {"(x, y) : (x >= 10, x <= 20, y <= 0)", "(x, y) -> (x - y)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : (x >= 10)", {{1, 1, 0}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/1,
+ {
+ {"(x, y) : (x <= 20)", {{1, -1, 0}}},
+ });
+
+ PWMAFunction result = parsePWMAF(/*numInputs=*/2, /*numOutputs=*/1,
+ {{"(x, y) : (x >= 10, x <= 20, y >= 1)",
+ {
+ {1, 1, 0},
+ }},
+ {"(x, y) : (x >= 21)",
+ {
+ {1, 1, 0},
+ }},
+ {"(x, y) : (x <= 9)",
+ {
+ {1, -1, 0},
+ }},
+ {"(x, y) : (x >= 10, x <= 20, y <= 0)",
+ {
+ {1, -1, 0},
+ }}});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
}
@@ -318,19 +411,34 @@ TEST(PWMAFunction, unionLexMaxComplex) {
// second output. -2x + 4 (func1) > 2x - 2 (func2) when 0 <= x <= 1, so we
// take func1 for this domain and func2 for the remaining.
{
- PWMAFunction func1 = parsePWMAF({
- {"(x, y) : (x >= 0, y >= 0)", "(x, y) -> (x + y, -2*x + 4)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x, y) : (x >= 0, y >= 0)", "(x, y) -> (x, 2*x - 2)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x, y) : (x >= 0, y >= 1)", "(x, y) -> (x + y, -2*x + 4)"},
- {"(x, y) : (x >= 0, x <= 1, y == 0)", "(x, y) -> (x + y, -2*x + 4)"},
- {"(x, y) : (x >= 2, y == 0)", "(x, y) -> (x, 2*x - 2)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0, y >= 0)", {{1, 1, 0}, {-2, 0, 4}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0, y >= 0)", {{1, 0, 0}, {2, 0, -2}}},
+ });
+
+ PWMAFunction result = parsePWMAF(/*numInputs=*/2, /*numOutputs=*/2,
+ {{"(x, y) : (x >= 0, y >= 1)",
+ {
+ {1, 1, 0},
+ {-2, 0, 4},
+ }},
+ {"(x, y) : (x >= 0, x <= 1, y == 0)",
+ {
+ {1, 1, 0},
+ {-2, 0, 4},
+ }},
+ {"(x, y) : (x >= 2, y == 0)",
+ {
+ {1, 0, 0},
+ {2, 0, -2},
+ }}});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@@ -343,26 +451,32 @@ TEST(PWMAFunction, unionLexMaxComplex) {
// a == 0, b == 1 --> Take func1
// a == 0, b == 0, c == 1 --> Take func2
{
- PWMAFunction func1 = parsePWMAF({
- {"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c "
- ">= 0, 1 - c >= 0)",
- "(a, b, c) -> (0, b, 0)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c >= 0, 1 - "
- "c >= 0)",
- "(a, b, c) -> (a, 0, c)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(a, b, c) : (a - 1 == 0, b >= 0, 1 - b >= 0, c >= 0, 1 - c >= 0)",
- "(a, b, c) -> (a, 0, c)"},
- {"(a, b, c) : (a == 0, b - 1 == 0, c >= 0, 1 - c >= 0)",
- "(a, b, c) -> (0, b, 0)"},
- {"(a, b, c) : (a == 0, b == 0, c >= 0, 1 - c >= 0)",
- "(a, b, c) -> (a, 0, c)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/3, /*numOutputs=*/3,
+ {
+ {"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c "
+ ">= 0, 1 - c >= 0)",
+ {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 0}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/3, /*numOutputs=*/3,
+ {
+ {"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c >= 0, 1 - "
+ "c >= 0)",
+ {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}},
+ });
+
+ PWMAFunction result = parsePWMAF(
+ /*numInputs=*/3, /*numOutputs=*/3,
+ {
+ {"(a, b, c) : (a - 1 == 0, b >= 0, 1 - b >= 0, c >= 0, 1 - c >= 0)",
+ {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}},
+ {"(a, b, c) : (a == 0, b - 1 == 0, c >= 0, 1 - c >= 0)",
+ {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 0}}},
+ {"(a, b, c) : (a == 0, b == 0, c >= 0, 1 - c >= 0)",
+ {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}},
+ });
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@@ -379,18 +493,26 @@ TEST(PWMAFunction, unionLexMinComplex) {
// If x == 0, func1 and func2 both have the same first output. So we take a
// look at the second output. func2 is better since in the second output,
// y - 1 (func2) is < y (func1).
- PWMAFunction func1 = parsePWMAF({
- {"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", "(x, y) -> (-x, y)"},
- });
-
- PWMAFunction func2 = parsePWMAF({
- {"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", "(x, y) -> (0, y - 1)"},
- });
-
- PWMAFunction result = parsePWMAF({
- {"(x, y) : (x == 1, y >= 0, y <= 1)", "(x, y) -> (-x, y)"},
- {"(x, y) : (x == 0, y >= 0, y <= 1)", "(x, y) -> (0, y - 1)"},
- });
+ PWMAFunction func1 = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)",
+ {{-1, 0, 0}, {0, 1, 0}}},
+ });
+
+ PWMAFunction func2 = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)",
+ {{0, 0, 0}, {0, 1, -1}}},
+ });
+
+ PWMAFunction result = parsePWMAF(
+ /*numInputs=*/2, /*numOutputs=*/2,
+ {
+ {"(x, y) : (x == 1, y >= 0, y <= 1)", {{-1, 0, 0}, {0, 1, 0}}},
+ {"(x, y) : (x == 0, y >= 0, y <= 1)", {{0, 0, 0}, {0, 1, -1}}},
+ });
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
diff --git a/mlir/unittests/Analysis/Presburger/Parser.h b/mlir/unittests/Analysis/Presburger/Parser.h
deleted file mode 100644
index 2e064e8abcb8e..0000000000000
--- a/mlir/unittests/Analysis/Presburger/Parser.h
+++ /dev/null
@@ -1,106 +0,0 @@
-//===- Parser.h - Parser for Presburger library -----------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines functions to parse strings into Presburger library
-// constructs.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_UNITTESTS_ANALYSIS_PRESBURGER_PARSER_H
-#define MLIR_UNITTESTS_ANALYSIS_PRESBURGER_PARSER_H
-
-#include "mlir/Analysis/Presburger/IntegerRelation.h"
-#include "mlir/Analysis/Presburger/PWMAFunction.h"
-#include "mlir/Analysis/Presburger/PresburgerRelation.h"
-#include "mlir/AsmParser/AsmParser.h"
-#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
-#include "mlir/IR/AffineExpr.h"
-#include "mlir/IR/AffineMap.h"
-#include "mlir/IR/IntegerSet.h"
-
-namespace mlir {
-namespace presburger {
-
-/// Parses an IntegerPolyhedron from a StringRef. It is expected that the string
-/// represents a valid IntegerSet.
-inline IntegerPolyhedron parseIntegerPolyhedron(StringRef str) {
- MLIRContext context(MLIRContext::Threading::DISABLED);
- return FlatAffineValueConstraints(parseIntegerSet(str, &context));
-}
-
-/// Parse a list of StringRefs to IntegerRelation and combine them into a
-/// PresburgerSet by using the union operation. It is expected that the strings
-/// are all valid IntegerSet representation and that all of them have compatible
-/// spaces.
-inline PresburgerSet parsePresburgerSet(ArrayRef<StringRef> strs) {
- assert(!strs.empty() && "strs should not be empty");
-
- IntegerPolyhedron initPoly = parseIntegerPolyhedron(strs[0]);
- PresburgerSet result(initPoly);
- for (unsigned i = 1, e = strs.size(); i < e; ++i)
- result.unionInPlace(parseIntegerPolyhedron(strs[i]));
- return result;
-}
-
-inline MultiAffineFunction parseMultiAffineFunction(StringRef str) {
- MLIRContext context(MLIRContext::Threading::DISABLED);
-
- // TODO: Add default constructor for MultiAffineFunction.
- MultiAffineFunction multiAff(PresburgerSpace::getRelationSpace(),
- Matrix(0, 1));
- if (getMultiAffineFunctionFromMap(parseAffineMap(str, &context), multiAff)
- .failed())
- llvm_unreachable(
- "Failed to parse MultiAffineFunction because of semi-affinity");
- return multiAff;
-}
-
-inline PWMAFunction
-parsePWMAF(ArrayRef<std::pair<ArrayRef<StringRef>, StringRef>> pieces) {
- assert(!pieces.empty() && "At least one piece should be present.");
-
- MLIRContext context(MLIRContext::Threading::DISABLED);
-
- PresburgerSet initDomain = parsePresburgerSet(pieces[0].first);
- MultiAffineFunction initMultiAff = parseMultiAffineFunction(pieces[0].second);
-
- PWMAFunction func(PresburgerSpace::getRelationSpace(
- initMultiAff.getNumDomainVars(), initMultiAff.getNumOutputs(),
- initMultiAff.getNumSymbolVars()));
-
- func.addPiece({initDomain, initMultiAff});
- for (unsigned i = 1, e = pieces.size(); i < e; ++i)
- func.addPiece({parsePresburgerSet(pieces[i].first),
- parseMultiAffineFunction(pieces[i].second)});
- return func;
-}
-
-inline PWMAFunction
-parsePWMAF(ArrayRef<std::pair<StringRef, StringRef>> pieces) {
- assert(!pieces.empty() && "At least one piece should be present.");
-
- MLIRContext context(MLIRContext::Threading::DISABLED);
-
- IntegerPolyhedron initDomain = parseIntegerPolyhedron(pieces[0].first);
- MultiAffineFunction initMultiAff = parseMultiAffineFunction(pieces[0].second);
-
- PWMAFunction func(PresburgerSpace::getRelationSpace(
- initMultiAff.getNumDomainVars(), initMultiAff.getNumOutputs(),
- initMultiAff.getNumSymbolVars()));
-
- func.addPiece({PresburgerSet(initDomain), initMultiAff});
- for (unsigned i = 1, e = pieces.size(); i < e; ++i)
- func.addPiece({PresburgerSet(parseIntegerPolyhedron(pieces[i].first)),
- parseMultiAffineFunction(pieces[i].second)});
- return func;
-}
-
-} // namespace presburger
-} // namespace mlir
-
-#endif // MLIR_UNITTESTS_ANALYSIS_PRESBURGER_PARSER_H
diff --git a/mlir/unittests/Analysis/Presburger/PresburgerSetTest.cpp b/mlir/unittests/Analysis/Presburger/PresburgerSetTest.cpp
index 3e4d272ca11f7..8e0f1c2217f28 100644
--- a/mlir/unittests/Analysis/Presburger/PresburgerSetTest.cpp
+++ b/mlir/unittests/Analysis/Presburger/PresburgerSetTest.cpp
@@ -14,8 +14,7 @@
//
//===----------------------------------------------------------------------===//
-#include "Parser.h"
-#include "Utils.h"
+#include "./Utils.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/IR/MLIRContext.h"
@@ -98,7 +97,8 @@ static PresburgerSet makeSetFromPoly(unsigned numDims,
}
TEST(SetTest, containsPoint) {
- PresburgerSet setA = parsePresburgerSet(
+ PresburgerSet setA = parsePresburgerSetFromPolyStrings(
+ 1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
for (unsigned x = 0; x <= 21; ++x) {
if ((2 <= x && x <= 8) || (10 <= x && x <= 20))
@@ -109,10 +109,10 @@ TEST(SetTest, containsPoint) {
// A parallelogram with vertices {(3, 1), (10, -6), (24, 8), (17, 15)} union
// a square with opposite corners (2, 2) and (10, 10).
- PresburgerSet setB = parsePresburgerSet(
- {"(x,y) : (x + y - 4 >= 0, -x - y + 32 >= 0, "
- "x - y - 2 >= 0, -x + y + 16 >= 0)",
- "(x,y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"});
+ PresburgerSet setB = parsePresburgerSetFromPolyStrings(
+ 2, {"(x,y) : (x + y - 4 >= 0, -x - y + 32 >= 0, "
+ "x - y - 2 >= 0, -x + y + 16 >= 0)",
+ "(x,y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"});
for (unsigned x = 1; x <= 25; ++x) {
for (unsigned y = -6; y <= 16; ++y) {
@@ -126,13 +126,13 @@ TEST(SetTest, containsPoint) {
}
// The PresburgerSet has only one id, x, so we supply one value.
- EXPECT_TRUE(
- PresburgerSet(parseIntegerPolyhedron("(x) : (x - 2*(x floordiv 2) == 0)"))
- .containsPoint({0}));
+ EXPECT_TRUE(PresburgerSet(parsePoly("(x) : (x - 2*(x floordiv 2) == 0)"))
+ .containsPoint({0}));
}
TEST(SetTest, Union) {
- PresburgerSet set = parsePresburgerSet(
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
// Universe union set.
@@ -160,7 +160,8 @@ TEST(SetTest, Union) {
}
TEST(SetTest, Intersect) {
- PresburgerSet set = parsePresburgerSet(
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
// Universe intersection set.
@@ -195,41 +196,48 @@ TEST(SetTest, Intersect) {
TEST(SetTest, Subtract) {
// The interval [2, 8] minus the interval [10, 20].
testSubtractAtPoints(
- parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 8 >= 0)"}),
- parsePresburgerSet({"(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(1, {"(x) : (x - 2 >= 0, -x + 8 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(1,
+ {"(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
{{1}, {2}, {8}, {9}, {10}, {20}, {21}});
// Universe minus [2, 8] U [10, 20]
- testSubtractAtPoints(
- parsePresburgerSet({"(x) : ()"}),
- parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 8 >= 0)",
- "(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
- {{1}, {2}, {8}, {9}, {10}, {20}, {21}});
+ testSubtractAtPoints(parsePresburgerSetFromPolyStrings(1, {"(x) : ()"}),
+ parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : (x - 2 >= 0, -x + 8 >= 0)",
+ "(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
+ {{1}, {2}, {8}, {9}, {10}, {20}, {21}});
// ((-infinity, 0] U [3, 4] U [6, 7]) - ([2, 3] U [5, 6])
testSubtractAtPoints(
- parsePresburgerSet({"(x) : (-x >= 0)", "(x) : (x - 3 >= 0, -x + 4 >= 0)",
- "(x) : (x - 6 >= 0, -x + 7 >= 0)"}),
- parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 3 >= 0)",
- "(x) : (x - 5 >= 0, -x + 6 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(1, {"(x) : (-x >= 0)",
+ "(x) : (x - 3 >= 0, -x + 4 >= 0)",
+ "(x) : (x - 6 >= 0, -x + 7 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(1, {"(x) : (x - 2 >= 0, -x + 3 >= 0)",
+ "(x) : (x - 5 >= 0, -x + 6 >= 0)"}),
{{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}});
// Expected result is {[x, y] : x > y}, i.e., {[x, y] : x >= y + 1}.
- testSubtractAtPoints(parsePresburgerSet({"(x, y) : (x - y >= 0)"}),
- parsePresburgerSet({"(x, y) : (x + y >= 0)"}),
- {{0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}});
+ testSubtractAtPoints(
+ parsePresburgerSetFromPolyStrings(2, {"(x, y) : (x - y >= 0)"}),
+ parsePresburgerSetFromPolyStrings(2, {"(x, y) : (x + y >= 0)"}),
+ {{0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}});
// A rectangle with corners at (2, 2) and (10, 10), minus
// a rectangle with corners at (5, -10) and (7, 100).
// This splits the former rectangle into two halves, (2, 2) to (5, 10) and
// (7, 2) to (10, 10).
testSubtractAtPoints(
- parsePresburgerSet({
- "(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)",
- }),
- parsePresburgerSet({
- "(x, y) : (x - 5 >= 0, y + 10 >= 0, -x + 7 >= 0, -y + 100 >= 0)",
- }),
+ parsePresburgerSetFromPolyStrings(
+ 2,
+ {
+ "(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)",
+ }),
+ parsePresburgerSetFromPolyStrings(
+ 2,
+ {
+ "(x, y) : (x - 5 >= 0, y + 10 >= 0, -x + 7 >= 0, -y + 100 >= 0)",
+ }),
{{1, 2}, {2, 2}, {4, 2}, {5, 2}, {7, 2}, {8, 2}, {11, 2},
{1, 1}, {2, 1}, {4, 1}, {5, 1}, {7, 1}, {8, 1}, {11, 1},
{1, 10}, {2, 10}, {4, 10}, {5, 10}, {7, 10}, {8, 10}, {11, 10},
@@ -240,11 +248,13 @@ TEST(SetTest, Subtract) {
// This creates a hole in the middle of the former rectangle, and the
// resulting set can be represented as a union of four rectangles.
testSubtractAtPoints(
- parsePresburgerSet(
- {"(x, y) : (x - 2 >= 0, y -2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"}),
- parsePresburgerSet({
- "(x, y) : (x - 5 >= 0, y - 4 >= 0, -x + 7 >= 0, -y + 8 >= 0)",
- }),
+ parsePresburgerSetFromPolyStrings(
+ 2, {"(x, y) : (x - 2 >= 0, y -2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(
+ 2,
+ {
+ "(x, y) : (x - 5 >= 0, y - 4 >= 0, -x + 7 >= 0, -y + 8 >= 0)",
+ }),
{{1, 1},
{2, 2},
{10, 10},
@@ -261,8 +271,9 @@ TEST(SetTest, Subtract) {
// The second set is a superset of the first one, since on the line x + y = 0,
// y <= 1 is equivalent to x >= -1. So the result is empty.
testSubtractAtPoints(
- parsePresburgerSet({"(x, y) : (x >= 0, x + y == 0)"}),
- parsePresburgerSet({"(x, y) : (-y + 1 >= 0, x + y == 0)"}),
+ parsePresburgerSetFromPolyStrings(2, {"(x, y) : (x >= 0, x + y == 0)"}),
+ parsePresburgerSetFromPolyStrings(2,
+ {"(x, y) : (-y + 1 >= 0, x + y == 0)"}),
{{0, 0},
{1, -1},
{2, -2},
@@ -274,9 +285,10 @@ TEST(SetTest, Subtract) {
{1, -1}});
// The result should be {0} U {2}.
- testSubtractAtPoints(parsePresburgerSet({"(x) : (x >= 0, -x + 2 >= 0)"}),
- parsePresburgerSet({"(x) : (x - 1 == 0)"}),
- {{-1}, {0}, {1}, {2}, {3}});
+ testSubtractAtPoints(
+ parsePresburgerSetFromPolyStrings(1, {"(x) : (x >= 0, -x + 2 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(1, {"(x) : (x - 1 == 0)"}),
+ {{-1}, {0}, {1}, {2}, {3}});
// Sets with lots of redundant inequalities to test the redundancy heuristic.
// (the heuristic is for the subtrahend, the second set which is the one being
@@ -285,14 +297,16 @@ TEST(SetTest, Subtract) {
// A parallelogram with vertices {(3, 1), (10, -6), (24, 8), (17, 15)} minus
// a triangle with vertices {(2, 2), (10, 2), (10, 10)}.
testSubtractAtPoints(
- parsePresburgerSet({
- "(x, y) : (x + y - 4 >= 0, -x - y + 32 >= 0, x - y - 2 >= 0, "
- "-x + y + 16 >= 0)",
- }),
- parsePresburgerSet(
- {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, "
- "-y + 10 >= 0, x + y - 2 >= 0, -x - y + 30 >= 0, x - y >= 0, "
- "-x + y + 10 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(
+ 2,
+ {
+ "(x, y) : (x + y - 4 >= 0, -x - y + 32 >= 0, x - y - 2 >= 0, "
+ "-x + y + 16 >= 0)",
+ }),
+ parsePresburgerSetFromPolyStrings(
+ 2, {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, "
+ "-y + 10 >= 0, x + y - 2 >= 0, -x - y + 30 >= 0, x - y >= 0, "
+ "-x + y + 10 >= 0)"}),
{{1, 2}, {2, 2}, {3, 2}, {4, 2}, {1, 1}, {2, 1}, {3, 1},
{4, 1}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {10, 2}, {11, 2},
{10, 1}, {10, 10}, {10, 11}, {10, 9}, {11, 10}, {10, -6}, {11, -6},
@@ -301,15 +315,16 @@ TEST(SetTest, Subtract) {
// ((-infinity, -5] U [3, 3] U [4, 4] U [5, 5]) - ([-2, -10] U [3, 4] U [6,
// 7])
testSubtractAtPoints(
- parsePresburgerSet({"(x) : (-x - 5 >= 0)", "(x) : (x - 3 == 0)",
- "(x) : (x - 4 == 0)", "(x) : (x - 5 == 0)"}),
- parsePresburgerSet(
- {"(x) : (-x - 2 >= 0, x - 10 >= 0, -x >= 0, -x + 10 >= 0, "
- "x - 100 >= 0, x - 50 >= 0)",
- "(x) : (x - 3 >= 0, -x + 4 >= 0, x + 1 >= 0, "
- "x + 7 >= 0, -x + 10 >= 0)",
- "(x) : (x - 6 >= 0, -x + 7 >= 0, x + 1 >= 0, x - 3 >= 0, "
- "-x + 5 >= 0)"}),
+ parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : (-x - 5 >= 0)", "(x) : (x - 3 == 0)", "(x) : (x - 4 == 0)",
+ "(x) : (x - 5 == 0)"}),
+ parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : (-x - 2 >= 0, x - 10 >= 0, -x >= 0, -x + 10 >= 0, "
+ "x - 100 >= 0, x - 50 >= 0)",
+ "(x) : (x - 3 >= 0, -x + 4 >= 0, x + 1 >= 0, "
+ "x + 7 >= 0, -x + 10 >= 0)",
+ "(x) : (x - 6 >= 0, -x + 7 >= 0, x + 1 >= 0, x - 3 >= 0, "
+ "-x + 5 >= 0)"}),
{{-6},
{-5},
{-4},
@@ -338,20 +353,21 @@ TEST(SetTest, Complement) {
PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))),
{{-1}, {-2}, {-8}, {1}, {2}, {8}, {9}, {10}, {20}, {21}});
- testComplementAtPoints(parsePresburgerSet({"(x,y) : (x - 2 >= 0, y - 2 >= 0, "
- "-x + 10 >= 0, -y + 10 >= 0)"}),
- {{1, 1},
- {2, 1},
- {1, 2},
- {2, 2},
- {2, 3},
- {3, 2},
- {10, 10},
- {10, 11},
- {11, 10},
- {2, 10},
- {2, 11},
- {1, 10}});
+ testComplementAtPoints(
+ parsePresburgerSetFromPolyStrings(2, {"(x,y) : (x - 2 >= 0, y - 2 >= 0, "
+ "-x + 10 >= 0, -y + 10 >= 0)"}),
+ {{1, 1},
+ {2, 1},
+ {1, 2},
+ {2, 2},
+ {2, 3},
+ {3, 2},
+ {10, 10},
+ {10, 11},
+ {11, 10},
+ {2, 10},
+ {2, 11},
+ {1, 10}});
}
TEST(SetTest, isEqual) {
@@ -360,7 +376,8 @@ TEST(SetTest, isEqual) {
PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1)));
PresburgerSet emptySet =
PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1)));
- PresburgerSet set = parsePresburgerSet(
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
// universe != emptySet.
@@ -397,10 +414,10 @@ TEST(SetTest, isEqual) {
EXPECT_FALSE(set.isEqual(set.unionSet(set.complement())));
// square is one unit taller than rect.
- PresburgerSet square = parsePresburgerSet(
- {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 9 >= 0)"});
- PresburgerSet rect = parsePresburgerSet(
- {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 8 >= 0)"});
+ PresburgerSet square = parsePresburgerSetFromPolyStrings(
+ 2, {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 9 >= 0)"});
+ PresburgerSet rect = parsePresburgerSetFromPolyStrings(
+ 2, {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 8 >= 0)"});
EXPECT_FALSE(square.isEqual(rect));
PresburgerSet universeRect = square.unionSet(square.complement());
PresburgerSet universeSquare = rect.unionSet(rect.complement());
@@ -422,20 +439,16 @@ void expectEmpty(const PresburgerSet &s) { EXPECT_TRUE(s.isIntegerEmpty()); }
TEST(SetTest, divisions) {
// evens = {x : exists q, x = 2q}.
- PresburgerSet evens{
- parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) == 0)")};
+ PresburgerSet evens{parsePoly("(x) : (x - 2 * (x floordiv 2) == 0)")};
// odds = {x : exists q, x = 2q + 1}.
- PresburgerSet odds{
- parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) - 1 == 0)")};
+ PresburgerSet odds{parsePoly("(x) : (x - 2 * (x floordiv 2) - 1 == 0)")};
// multiples3 = {x : exists q, x = 3q}.
- PresburgerSet multiples3{
- parseIntegerPolyhedron("(x) : (x - 3 * (x floordiv 3) == 0)")};
+ PresburgerSet multiples3{parsePoly("(x) : (x - 3 * (x floordiv 3) == 0)")};
// multiples6 = {x : exists q, x = 6q}.
- PresburgerSet multiples6{
- parseIntegerPolyhedron("(x) : (x - 6 * (x floordiv 6) == 0)")};
+ PresburgerSet multiples6{parsePoly("(x) : (x - 6 * (x floordiv 6) == 0)")};
// evens /\ odds = empty.
expectEmpty(PresburgerSet(evens).intersect(PresburgerSet(odds)));
@@ -447,8 +460,8 @@ TEST(SetTest, divisions) {
// even multiples of 3 = multiples of 6.
expectEqual(multiples3.intersect(evens), multiples6);
- PresburgerSet setA{parseIntegerPolyhedron("(x) : (-x >= 0)")};
- PresburgerSet setB{parseIntegerPolyhedron("(x) : (x floordiv 2 - 4 >= 0)")};
+ PresburgerSet setA{parsePoly("(x) : (-x >= 0)")};
+ PresburgerSet setB{parsePoly("(x) : (x floordiv 2 - 4 >= 0)")};
EXPECT_TRUE(setA.subtract(setB).isEqual(setA));
}
@@ -457,29 +470,29 @@ void convertSuffixDimsToLocals(IntegerPolyhedron &poly, unsigned numLocals) {
poly.getNumDimVars(), VarKind::Local);
}
-inline IntegerPolyhedron
-parseIntegerPolyhedronAndMakeLocals(StringRef str, unsigned numLocals) {
- IntegerPolyhedron poly = parseIntegerPolyhedron(str);
+inline IntegerPolyhedron parsePolyAndMakeLocals(StringRef str,
+ unsigned numLocals) {
+ IntegerPolyhedron poly = parsePoly(str);
convertSuffixDimsToLocals(poly, numLocals);
return poly;
}
TEST(SetTest, divisionsDefByEq) {
// evens = {x : exists q, x = 2q}.
- PresburgerSet evens{parseIntegerPolyhedronAndMakeLocals(
- "(x, y) : (x - 2 * y == 0)", /*numLocals=*/1)};
+ PresburgerSet evens{
+ parsePolyAndMakeLocals("(x, y) : (x - 2 * y == 0)", /*numLocals=*/1)};
// odds = {x : exists q, x = 2q + 1}.
- PresburgerSet odds{parseIntegerPolyhedronAndMakeLocals(
- "(x, y) : (x - 2 * y - 1 == 0)", /*numLocals=*/1)};
+ PresburgerSet odds{
+ parsePolyAndMakeLocals("(x, y) : (x - 2 * y - 1 == 0)", /*numLocals=*/1)};
// multiples3 = {x : exists q, x = 3q}.
- PresburgerSet multiples3{parseIntegerPolyhedronAndMakeLocals(
- "(x, y) : (x - 3 * y == 0)", /*numLocals=*/1)};
+ PresburgerSet multiples3{
+ parsePolyAndMakeLocals("(x, y) : (x - 3 * y == 0)", /*numLocals=*/1)};
// multiples6 = {x : exists q, x = 6q}.
- PresburgerSet multiples6{parseIntegerPolyhedronAndMakeLocals(
- "(x, y) : (x - 6 * y == 0)", /*numLocals=*/1)};
+ PresburgerSet multiples6{
+ parsePolyAndMakeLocals("(x, y) : (x - 6 * y == 0)", /*numLocals=*/1)};
// evens /\ odds = empty.
expectEmpty(PresburgerSet(evens).intersect(PresburgerSet(odds)));
@@ -492,7 +505,7 @@ TEST(SetTest, divisionsDefByEq) {
expectEqual(multiples3.intersect(evens), multiples6);
PresburgerSet evensDefByIneq{
- parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) == 0)")};
+ parsePoly("(x) : (x - 2 * (x floordiv 2) == 0)")};
expectEqual(evens, PresburgerSet(evensDefByIneq));
}
@@ -502,39 +515,36 @@ TEST(SetTest, divisionNonDivLocals) {
//
// The only integer point in this is at (1000, 1000, 1000).
// We project this to the xy plane.
- IntegerPolyhedron tetrahedron = parseIntegerPolyhedronAndMakeLocals(
- "(x, y, z) : (y >= 0, z - y >= 0, 3000*x - 2998*y "
- "- 1000 - z >= 0, -1500*x + 1499*y + 1000 >= 0)",
- /*numLocals=*/1);
+ IntegerPolyhedron tetrahedron =
+ parsePolyAndMakeLocals("(x, y, z) : (y >= 0, z - y >= 0, 3000*x - 2998*y "
+ "- 1000 - z >= 0, -1500*x + 1499*y + 1000 >= 0)",
+ /*numLocals=*/1);
// This is a triangle with vertices at (1/3, 0), (2/3, 0) and (1000, 1000).
// The only integer point in this is at (1000, 1000).
//
// It also happens to be the projection of the above onto the xy plane.
- IntegerPolyhedron triangle =
- parseIntegerPolyhedron("(x,y) : (y >= 0, 3000 * x - 2999 * y - 1000 >= "
- "0, -3000 * x + 2998 * y + 2000 >= 0)");
-
+ IntegerPolyhedron triangle = parsePoly("(x,y) : (y >= 0, "
+ "3000 * x - 2999 * y - 1000 >= 0, "
+ "-3000 * x + 2998 * y + 2000 >= 0)");
EXPECT_TRUE(triangle.containsPoint({1000, 1000}));
EXPECT_FALSE(triangle.containsPoint({1001, 1001}));
expectEqual(triangle, tetrahedron);
convertSuffixDimsToLocals(triangle, 1);
- IntegerPolyhedron line = parseIntegerPolyhedron("(x) : (x - 1000 == 0)");
+ IntegerPolyhedron line = parsePoly("(x) : (x - 1000 == 0)");
expectEqual(line, triangle);
// Triangle with vertices (0, 0), (5, 0), (15, 5).
// Projected on x, it becomes [0, 13] U {15} as it becomes too narrow towards
// the apex and so does not have have any integer point at x = 14.
// At x = 15, the apex is an integer point.
- PresburgerSet triangle2{
- parseIntegerPolyhedronAndMakeLocals("(x,y) : (y >= 0, "
- "x - 3*y >= 0, "
- "2*y - x + 5 >= 0)",
- /*numLocals=*/1)};
- PresburgerSet zeroToThirteen{
- parseIntegerPolyhedron("(x) : (13 - x >= 0, x >= 0)")};
- PresburgerSet fifteen{parseIntegerPolyhedron("(x) : (x - 15 == 0)")};
+ PresburgerSet triangle2{parsePolyAndMakeLocals("(x,y) : (y >= 0, "
+ "x - 3*y >= 0, "
+ "2*y - x + 5 >= 0)",
+ /*numLocals=*/1)};
+ PresburgerSet zeroToThirteen{parsePoly("(x) : (13 - x >= 0, x >= 0)")};
+ PresburgerSet fifteen{parsePoly("(x) : (x - 15 == 0)")};
expectEqual(triangle2.subtract(zeroToThirteen), fifteen);
}
@@ -562,193 +572,209 @@ TEST(SetTest, coalesceNoPoly) {
}
TEST(SetTest, coalesceContainedOneDim) {
- PresburgerSet set = parsePresburgerSet(
- {"(x) : (x >= 0, -x + 4 >= 0)", "(x) : (x - 1 >= 0, -x + 2 >= 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : (x >= 0, -x + 4 >= 0)", "(x) : (x - 1 >= 0, -x + 2 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceFirstEmpty) {
- PresburgerSet set = parsePresburgerSet(
- {"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ( x - 1 >= 0, -x + 2 >= 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ( x - 1 >= 0, -x + 2 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSecondEmpty) {
- PresburgerSet set = parsePresburgerSet(
- {"(x) : (x - 1 >= 0, -x + 2 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : (x - 1 >= 0, -x + 2 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceBothEmpty) {
- PresburgerSet set = parsePresburgerSet(
- {"(x) : (x - 3 >= 0, -x - 1 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : (x - 3 >= 0, -x - 1 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
expectCoalesce(0, set);
}
TEST(SetTest, coalesceFirstUniv) {
- PresburgerSet set =
- parsePresburgerSet({"(x) : ()", "(x) : ( x >= 0, -x + 1 >= 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : ()", "(x) : ( x >= 0, -x + 1 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSecondUniv) {
- PresburgerSet set =
- parsePresburgerSet({"(x) : ( x >= 0, -x + 1 >= 0)", "(x) : ()"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : ( x >= 0, -x + 1 >= 0)", "(x) : ()"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceBothUniv) {
- PresburgerSet set = parsePresburgerSet({"(x) : ()", "(x) : ()"});
+ PresburgerSet set =
+ parsePresburgerSetFromPolyStrings(1, {"(x) : ()", "(x) : ()"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceFirstUnivSecondEmpty) {
- PresburgerSet set =
- parsePresburgerSet({"(x) : ()", "(x) : ( x >= 0, -x - 1 >= 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : ()", "(x) : ( x >= 0, -x - 1 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceFirstEmptySecondUniv) {
- PresburgerSet set =
- parsePresburgerSet({"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ()"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ()"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceCutOneDim) {
- PresburgerSet set = parsePresburgerSet({
- "(x) : ( x >= 0, -x + 3 >= 0)",
- "(x) : ( x - 2 >= 0, -x + 4 >= 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {
+ "(x) : ( x >= 0, -x + 3 >= 0)",
+ "(x) : ( x - 2 >= 0, -x + 4 >= 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSeparateOneDim) {
- PresburgerSet set = parsePresburgerSet(
- {"(x) : ( x >= 0, -x + 2 >= 0)", "(x) : ( x - 3 >= 0, -x + 4 >= 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : ( x >= 0, -x + 2 >= 0)", "(x) : ( x - 3 >= 0, -x + 4 >= 0)"});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceAdjEq) {
- PresburgerSet set =
- parsePresburgerSet({"(x) : ( x == 0)", "(x) : ( x - 1 == 0)"});
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {"(x) : ( x == 0)", "(x) : ( x - 1 == 0)"});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceContainedTwoDim) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 3 >= 0)",
- "(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 3 >= 0)",
+ "(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceCutTwoDim) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 2 >= 0)",
- "(x,y) : (x >= 0, -x + 3 >= 0, y - 1 >= 0, -y + 3 >= 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 2 >= 0)",
+ "(x,y) : (x >= 0, -x + 3 >= 0, y - 1 >= 0, -y + 3 >= 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceEqStickingOut) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x >= 0, -x + 2 >= 0, y >= 0, -y + 2 >= 0)",
- "(x,y) : (y - 1 == 0, x >= 0, -x + 3 >= 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x >= 0, -x + 2 >= 0, y >= 0, -y + 2 >= 0)",
+ "(x,y) : (y - 1 == 0, x >= 0, -x + 3 >= 0)",
+ });
expectCoalesce(2, set);
}
TEST(SetTest, coalesceSeparateTwoDim) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 1 >= 0)",
- "(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 1 >= 0)",
+ "(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
+ });
expectCoalesce(2, set);
}
TEST(SetTest, coalesceContainedEq) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x >= 0, -x + 3 >= 0, x - y == 0)",
- "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x >= 0, -x + 3 >= 0, x - y == 0)",
+ "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceCuttingEq) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x + 1 >= 0, -x + 1 >= 0, x - y == 0)",
- "(x,y) : (x >= 0, -x + 2 >= 0, x - y == 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x + 1 >= 0, -x + 1 >= 0, x - y == 0)",
+ "(x,y) : (x >= 0, -x + 2 >= 0, x - y == 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSeparateEq) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x - 3 >= 0, -x + 4 >= 0, x - y == 0)",
- "(x,y) : (x >= 0, -x + 1 >= 0, x - y == 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x - 3 >= 0, -x + 4 >= 0, x - y == 0)",
+ "(x,y) : (x >= 0, -x + 1 >= 0, x - y == 0)",
+ });
expectCoalesce(2, set);
}
TEST(SetTest, coalesceContainedEqAsIneq) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x >= 0, -x + 3 >= 0, x - y >= 0, -x + y >= 0)",
- "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x >= 0, -x + 3 >= 0, x - y >= 0, -x + y >= 0)",
+ "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceContainedEqComplex) {
- PresburgerSet set = parsePresburgerSet({
- "(x,y) : (x - 2 == 0, x - y == 0)",
- "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 2, {
+ "(x,y) : (x - 2 == 0, x - y == 0)",
+ "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceThreeContained) {
- PresburgerSet set = parsePresburgerSet({
- "(x) : (x >= 0, -x + 1 >= 0)",
- "(x) : (x >= 0, -x + 2 >= 0)",
- "(x) : (x >= 0, -x + 3 >= 0)",
- });
+ PresburgerSet set =
+ parsePresburgerSetFromPolyStrings(1, {
+ "(x) : (x >= 0, -x + 1 >= 0)",
+ "(x) : (x >= 0, -x + 2 >= 0)",
+ "(x) : (x >= 0, -x + 3 >= 0)",
+ });
expectCoalesce(1, set);
}
TEST(SetTest, coalesceDoubleIncrement) {
- PresburgerSet set = parsePresburgerSet({
- "(x) : (x == 0)",
- "(x) : (x - 2 == 0)",
- "(x) : (x + 2 == 0)",
- "(x) : (x - 2 >= 0, -x + 3 >= 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {
+ "(x) : (x == 0)",
+ "(x) : (x - 2 == 0)",
+ "(x) : (x + 2 == 0)",
+ "(x) : (x - 2 >= 0, -x + 3 >= 0)",
+ });
expectCoalesce(3, set);
}
TEST(SetTest, coalesceLastCoalesced) {
- PresburgerSet set = parsePresburgerSet({
- "(x) : (x == 0)",
- "(x) : (x - 1 >= 0, -x + 3 >= 0)",
- "(x) : (x + 2 == 0)",
- "(x) : (x - 2 >= 0, -x + 4 >= 0)",
- });
+ PresburgerSet set = parsePresburgerSetFromPolyStrings(
+ 1, {
+ "(x) : (x == 0)",
+ "(x) : (x - 1 >= 0, -x + 3 >= 0)",
+ "(x) : (x + 2 == 0)",
+ "(x) : (x - 2 >= 0, -x + 4 >= 0)",
+ });
expectCoalesce(3, set);
}
TEST(SetTest, coalesceDiv) {
- PresburgerSet set = parsePresburgerSet({
- "(x) : (x floordiv 2 == 0)",
- "(x) : (x floordiv 2 - 1 == 0)",
- });
+ PresburgerSet set =
+ parsePresburgerSetFromPolyStrings(1, {
+ "(x) : (x floordiv 2 == 0)",
+ "(x) : (x floordiv 2 - 1 == 0)",
+ });
expectCoalesce(2, set);
}
TEST(SetTest, coalesceDivOtherContained) {
- PresburgerSet set = parsePresburgerSet({
- "(x) : (x floordiv 2 == 0)",
- "(x) : (x == 0)",
- "(x) : (x >= 0, -x + 1 >= 0)",
- });
+ PresburgerSet set =
+ parsePresburgerSetFromPolyStrings(1, {
+ "(x) : (x floordiv 2 == 0)",
+ "(x) : (x == 0)",
+ "(x) : (x >= 0, -x + 1 >= 0)",
+ });
expectCoalesce(2, set);
}
@@ -762,15 +788,15 @@ expectComputedVolumeIsValidOverapprox(const PresburgerSet &set,
TEST(SetTest, computeVolume) {
// Diamond with vertices at (0, 0), (5, 5), (5, 5), (10, 0).
- PresburgerSet diamond(parseIntegerPolyhedron(
- "(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0, -x + y + "
- "10 >= 0)"));
+ PresburgerSet diamond(
+ parsePoly("(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0, -x + y + "
+ "10 >= 0)"));
expectComputedVolumeIsValidOverapprox(diamond,
/*trueVolume=*/61ull,
/*resultBound=*/121ull);
// Diamond with vertices at (-5, 0), (0, -5), (0, 5), (5, 0).
- PresburgerSet shiftedDiamond(parseIntegerPolyhedron(
+ PresburgerSet shiftedDiamond(parsePoly(
"(x, y) : (x + y + 5 >= 0, -x - y + 5 >= 0, x - y + 5 >= 0, -x + y + "
"5 >= 0)"));
expectComputedVolumeIsValidOverapprox(shiftedDiamond,
@@ -778,7 +804,7 @@ TEST(SetTest, computeVolume) {
/*resultBound=*/121ull);
// Diamond with vertices at (-5, 0), (5, -10), (5, 10), (15, 0).
- PresburgerSet biggerDiamond(parseIntegerPolyhedron(
+ PresburgerSet biggerDiamond(parsePoly(
"(x, y) : (x + y + 5 >= 0, -x - y + 15 >= 0, x - y + 5 >= 0, -x + y + "
"15 >= 0)"));
expectComputedVolumeIsValidOverapprox(biggerDiamond,
@@ -797,8 +823,7 @@ TEST(SetTest, computeVolume) {
/*resultBound=*/683ull);
// Unbounded polytope.
- PresburgerSet unbounded(
- parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"));
+ PresburgerSet unbounded(parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"));
expectComputedVolumeIsValidOverapprox(unbounded, /*trueVolume=*/{},
/*resultBound=*/{});
@@ -835,32 +860,35 @@ void testComputeRepr(IntegerPolyhedron poly, const PresburgerSet &expected,
}
TEST(SetTest, computeReprWithOnlyDivLocals) {
- testComputeReprAtPoints(parseIntegerPolyhedron("(x, y) : (x - 2*y == 0)"),
+ testComputeReprAtPoints(parsePoly("(x, y) : (x - 2*y == 0)"),
{{1, 0}, {2, 1}, {3, 0}, {4, 2}, {5, 3}},
/*numToProject=*/0);
- testComputeReprAtPoints(parseIntegerPolyhedron("(x, e) : (x - 2*e == 0)"),
+ testComputeReprAtPoints(parsePoly("(x, e) : (x - 2*e == 0)"),
{{1}, {2}, {3}, {4}, {5}}, /*numToProject=*/1);
// Tests to check that the space is preserved.
- testComputeReprAtPoints(parseIntegerPolyhedron("(x, y)[z, w] : ()"), {},
+ testComputeReprAtPoints(parsePoly("(x, y)[z, w] : ()"), {},
+ /*numToProject=*/1);
+ testComputeReprAtPoints(parsePoly("(x, y)[z, w] : (z - (w floordiv 2) == 0)"),
+ {},
/*numToProject=*/1);
- testComputeReprAtPoints(
- parseIntegerPolyhedron("(x, y)[z, w] : (z - (w floordiv 2) == 0)"), {},
- /*numToProject=*/1);
// Bezout's lemma: if a, b are constants,
// the set of values that ax + by can take is all multiples of gcd(a, b).
- testComputeRepr(parseIntegerPolyhedron("(x, e, f) : (x - 15*e - 21*f == 0)"),
- PresburgerSet(parseIntegerPolyhedron(
- {"(x) : (x - 3*(x floordiv 3) == 0)"})),
- /*numToProject=*/2);
+ testComputeRepr(
+ parsePoly("(x, e, f) : (x - 15*e - 21*f == 0)"),
+ PresburgerSet(parsePoly({"(x) : (x - 3*(x floordiv 3) == 0)"})),
+ /*numToProject=*/2);
}
TEST(SetTest, subtractOutputSizeRegression) {
- PresburgerSet set1 = parsePresburgerSet({"(i) : (i >= 0, 10 - i >= 0)"});
- PresburgerSet set2 = parsePresburgerSet({"(i) : (i - 5 >= 0)"});
+ PresburgerSet set1 =
+ parsePresburgerSetFromPolyStrings(1, {"(i) : (i >= 0, 10 - i >= 0)"});
+ PresburgerSet set2 =
+ parsePresburgerSetFromPolyStrings(1, {"(i) : (i - 5 >= 0)"});
- PresburgerSet set3 = parsePresburgerSet({"(i) : (i >= 0, 4 - i >= 0)"});
+ PresburgerSet set3 =
+ parsePresburgerSetFromPolyStrings(1, {"(i) : (i >= 0, 4 - i >= 0)"});
PresburgerSet result = set1.subtract(set2);
diff --git a/mlir/unittests/Analysis/Presburger/SimplexTest.cpp b/mlir/unittests/Analysis/Presburger/SimplexTest.cpp
index 8ff6d75b3499a..f1a41e0fd0fca 100644
--- a/mlir/unittests/Analysis/Presburger/SimplexTest.cpp
+++ b/mlir/unittests/Analysis/Presburger/SimplexTest.cpp
@@ -6,8 +6,7 @@
//
//===----------------------------------------------------------------------===//
-#include "Parser.h"
-#include "Utils.h"
+#include "./Utils.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/IR/MLIRContext.h"
@@ -528,12 +527,10 @@ TEST(SimplexTest, isRedundantEquality) {
}
TEST(SimplexTest, IsRationalSubsetOf) {
- IntegerPolyhedron univ = parseIntegerPolyhedron("(x) : ()");
- IntegerPolyhedron empty =
- parseIntegerPolyhedron("(x) : (x + 0 >= 0, -x - 1 >= 0)");
- IntegerPolyhedron s1 = parseIntegerPolyhedron("(x) : ( x >= 0, -x + 4 >= 0)");
- IntegerPolyhedron s2 =
- parseIntegerPolyhedron("(x) : (x - 1 >= 0, -x + 3 >= 0)");
+ IntegerPolyhedron univ = parsePoly("(x) : ()");
+ IntegerPolyhedron empty = parsePoly("(x) : (x + 0 >= 0, -x - 1 >= 0)");
+ IntegerPolyhedron s1 = parsePoly("(x) : ( x >= 0, -x + 4 >= 0)");
+ IntegerPolyhedron s2 = parsePoly("(x) : (x - 1 >= 0, -x + 3 >= 0)");
Simplex simUniv(univ);
Simplex simEmpty(empty);
diff --git a/mlir/unittests/Analysis/Presburger/Utils.h b/mlir/unittests/Analysis/Presburger/Utils.h
index b100771021814..b839b628173a8 100644
--- a/mlir/unittests/Analysis/Presburger/Utils.h
+++ b/mlir/unittests/Analysis/Presburger/Utils.h
@@ -13,6 +13,7 @@
#ifndef MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H
#define MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H
+#include "../../Dialect/Affine/Analysis/AffineStructuresParser.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
@@ -25,6 +26,30 @@
namespace mlir {
namespace presburger {
+/// Parses a IntegerPolyhedron from a StringRef. It is expected that the
+/// string represents a valid IntegerSet, otherwise it will violate a gtest
+/// assertion.
+inline IntegerPolyhedron parsePoly(StringRef str) {
+ MLIRContext context(MLIRContext::Threading::DISABLED);
+ FailureOr<IntegerPolyhedron> poly = parseIntegerSetToFAC(str, &context);
+ EXPECT_TRUE(succeeded(poly));
+ return *poly;
+}
+
+/// Parse a list of StringRefs to IntegerRelation and combine them into a
+/// PresburgerSet be using the union operation. It is expected that the strings
+/// are all valid IntegerSet representation and that all of them have the same
+/// number of dimensions as is specified by the numDims argument.
+inline PresburgerSet
+parsePresburgerSetFromPolyStrings(unsigned numDims, ArrayRef<StringRef> strs,
+ unsigned numSymbols = 0) {
+ PresburgerSet set = PresburgerSet::getEmpty(
+ PresburgerSpace::getSetSpace(numDims, numSymbols));
+ for (StringRef str : strs)
+ set.unionInPlace(parsePoly(str));
+ return set;
+}
+
inline Matrix makeMatrix(unsigned numRow, unsigned numColumns,
ArrayRef<SmallVector<int64_t, 8>> matrix) {
Matrix results(numRow, numColumns);
@@ -38,6 +63,34 @@ inline Matrix makeMatrix(unsigned numRow, unsigned numColumns,
return results;
}
+/// Construct a PWMAFunction given the dimensionalities and an array describing
+/// the list of pieces. Each piece is given by a string describing the domain
+/// and a 2D array that represents the output.
+inline PWMAFunction parsePWMAF(
+ unsigned numInputs, unsigned numOutputs,
+ ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
+ data,
+ unsigned numSymbols = 0) {
+ static MLIRContext context;
+
+ PWMAFunction result(
+ PresburgerSpace::getRelationSpace(numInputs, numOutputs, numSymbols));
+ for (const auto &pair : data) {
+ IntegerPolyhedron domain = parsePoly(pair.first);
+
+ PresburgerSpace funcSpace = result.getSpace();
+ funcSpace.insertVar(VarKind::Local, 0, domain.getNumLocalVars());
+
+ result.addPiece(
+ {PresburgerSet(domain),
+ MultiAffineFunction(
+ funcSpace,
+ makeMatrix(numOutputs, domain.getNumVars() + 1, pair.second),
+ domain.getLocalReprs())});
+ }
+ return result;
+}
+
/// lhs and rhs represent non-negative integers or positive infinity. The
/// infinity case corresponds to when the Optional is empty.
inline bool infinityOrUInt64LE(Optional<MPInt> lhs, Optional<MPInt> rhs) {
diff --git a/mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParser.h b/mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParser.h
new file mode 100644
index 0000000000000..773d2acaae4b8
--- /dev/null
+++ b/mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParser.h
@@ -0,0 +1,34 @@
+//===- AffineStructuresParser.h - Parser for AffineStructures ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines helper functions to parse AffineStructures from
+// StringRefs.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_UNITTEST_ANALYSIS_AFFINESTRUCTURESPARSER_H
+#define MLIR_UNITTEST_ANALYSIS_AFFINESTRUCTURESPARSER_H
+
+#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
+#include "mlir/Support/LogicalResult.h"
+
+namespace mlir {
+
+/// This parses a single IntegerSet to an MLIR context and transforms it to
+/// IntegerPolyhedron if it was valid. If not, a failure is returned. If the
+/// passed `str` has additional tokens that were not part of the IntegerSet, a
+/// failure is returned. Diagnostics are printed on failure if
+/// `printDiagnosticInfo` is true.
+
+FailureOr<presburger::IntegerPolyhedron>
+parseIntegerSetToFAC(llvm::StringRef, MLIRContext *context,
+ bool printDiagnosticInfo = true);
+
+} // namespace mlir
+
+#endif // MLIR_UNITTEST_ANALYSIS_AFFINESTRUCTURESPARSER_H
diff --git a/mlir/unittests/Analysis/Presburger/ParserTest.cpp b/mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParserTest.cpp
similarity index 56%
rename from mlir/unittests/Analysis/Presburger/ParserTest.cpp
rename to mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParserTest.cpp
index 4c9f54f97d246..0cc41a8b6afaf 100644
--- a/mlir/unittests/Analysis/Presburger/ParserTest.cpp
+++ b/mlir/unittests/Dialect/Affine/Analysis/AffineStructuresParserTest.cpp
@@ -1,4 +1,4 @@
-//===- PresbugerParserTest.cpp - Presburger parsing unit tests --*- C++ -*-===//
+//===- AffineStructuresParserTest.cpp - FAC parsing unit tests --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@@ -13,7 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#include "Parser.h"
+#include "./AffineStructuresParser.h"
+#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include <gtest/gtest.h>
@@ -37,53 +38,99 @@ static IntegerPolyhedron makeFACFromConstraints(
return fac;
}
+TEST(ParseFACTest, InvalidInputTest) {
+ MLIRContext context;
+ FailureOr<IntegerPolyhedron> fac;
+
+ fac = parseIntegerSetToFAC("(x)", &context, false);
+ EXPECT_TRUE(failed(fac))
+ << "should not accept strings with no constraint list";
+
+ fac = parseIntegerSetToFAC("(x)[] : ())", &context, false);
+ EXPECT_TRUE(failed(fac))
+ << "should not accept strings that contain remaining characters";
+
+ fac = parseIntegerSetToFAC("(x)[] : (x - >= 0)", &context, false);
+ EXPECT_TRUE(failed(fac))
+ << "should not accept strings that contain incomplete constraints";
+
+ fac = parseIntegerSetToFAC("(x)[] : (y == 0)", &context, false);
+ EXPECT_TRUE(failed(fac))
+ << "should not accept strings that contain unknown identifiers";
+
+ fac = parseIntegerSetToFAC("(x, x) : (2 * x >= 0)", &context, false);
+ EXPECT_TRUE(failed(fac))
+ << "should not accept strings that contain repeated identifier names";
+
+ fac = parseIntegerSetToFAC("(x)[x] : (2 * x >= 0)", &context, false);
+ EXPECT_TRUE(failed(fac))
+ << "should not accept strings that contain repeated identifier names";
+
+ fac = parseIntegerSetToFAC("(x) : (2 * x + 9223372036854775808 >= 0)",
+ &context, false);
+ EXPECT_TRUE(failed(fac)) << "should not accept strings with integer literals "
+ "that do not fit into int64_t";
+}
+
/// Parses and compares the `str` to the `ex`. The equality check is performed
/// by using PresburgerSet::isEqual
-static bool parseAndCompare(StringRef str, const IntegerPolyhedron &ex) {
- IntegerPolyhedron poly = parseIntegerPolyhedron(str);
- return PresburgerSet(poly).isEqual(PresburgerSet(ex));
+static bool parseAndCompare(StringRef str, const IntegerPolyhedron &ex,
+ MLIRContext *context) {
+ FailureOr<IntegerPolyhedron> fac = parseIntegerSetToFAC(str, context);
+
+ EXPECT_TRUE(succeeded(fac));
+
+ return PresburgerSet(*fac).isEqual(PresburgerSet(ex));
}
TEST(ParseFACTest, ParseAndCompareTest) {
+ MLIRContext context;
// simple ineq
- EXPECT_TRUE(parseAndCompare("(x)[] : (x >= 0)",
- makeFACFromConstraints(1, 0, {{1, 0}})));
+ EXPECT_TRUE(parseAndCompare(
+ "(x)[] : (x >= 0)", makeFACFromConstraints(1, 0, {{1, 0}}), &context));
// simple eq
EXPECT_TRUE(parseAndCompare("(x)[] : (x == 0)",
- makeFACFromConstraints(1, 0, {}, {{1, 0}})));
+ makeFACFromConstraints(1, 0, {}, {{1, 0}}),
+ &context));
// multiple constraints
EXPECT_TRUE(parseAndCompare("(x)[] : (7 * x >= 0, -7 * x + 5 >= 0)",
- makeFACFromConstraints(1, 0, {{7, 0}, {-7, 5}})));
+ makeFACFromConstraints(1, 0, {{7, 0}, {-7, 5}}),
+ &context));
// multiple dimensions
EXPECT_TRUE(parseAndCompare("(x,y,z)[] : (x + y - z >= 0)",
- makeFACFromConstraints(3, 0, {{1, 1, -1, 0}})));
+ makeFACFromConstraints(3, 0, {{1, 1, -1, 0}}),
+ &context));
// dimensions and symbols
- EXPECT_TRUE(
- parseAndCompare("(x,y,z)[a,b] : (x + y - z + 2 * a - 15 * b >= 0)",
- makeFACFromConstraints(3, 2, {{1, 1, -1, 2, -15, 0}})));
+ EXPECT_TRUE(parseAndCompare(
+ "(x,y,z)[a,b] : (x + y - z + 2 * a - 15 * b >= 0)",
+ makeFACFromConstraints(3, 2, {{1, 1, -1, 2, -15, 0}}), &context));
// only symbols
EXPECT_TRUE(parseAndCompare("()[a] : (2 * a - 4 == 0)",
- makeFACFromConstraints(0, 1, {}, {{2, -4}})));
+ makeFACFromConstraints(0, 1, {}, {{2, -4}}),
+ &context));
// simple floordiv
EXPECT_TRUE(parseAndCompare(
"(x, y) : (y - 3 * ((x + y - 13) floordiv 3) - 42 == 0)",
- makeFACFromConstraints(2, 0, {}, {{0, 1, -3, -42}}, {{{1, 1, -13}, 3}})));
+ makeFACFromConstraints(2, 0, {}, {{0, 1, -3, -42}}, {{{1, 1, -13}, 3}}),
+ &context));
// multiple floordiv
EXPECT_TRUE(parseAndCompare(
"(x, y) : (y - x floordiv 3 - y floordiv 2 == 0)",
makeFACFromConstraints(2, 0, {}, {{0, 1, -1, -1, 0}},
- {{{1, 0, 0}, 3}, {{0, 1, 0, 0}, 2}})));
+ {{{1, 0, 0}, 3}, {{0, 1, 0, 0}, 2}}),
+ &context));
// nested floordiv
EXPECT_TRUE(parseAndCompare(
"(x, y) : (y - (x + y floordiv 2) floordiv 3 == 0)",
makeFACFromConstraints(2, 0, {}, {{0, 1, 0, -1, 0}},
- {{{0, 1, 0}, 2}, {{1, 0, 1, 0}, 3}})));
+ {{{0, 1, 0}, 2}, {{1, 0, 1, 0}, 3}}),
+ &context));
}
diff --git a/mlir/unittests/Dialect/Affine/Analysis/CMakeLists.txt b/mlir/unittests/Dialect/Affine/Analysis/CMakeLists.txt
new file mode 100644
index 0000000000000..b5f81b4a50287
--- /dev/null
+++ b/mlir/unittests/Dialect/Affine/Analysis/CMakeLists.txt
@@ -0,0 +1,10 @@
+add_mlir_unittest(MLIRAffineAnalysisTests
+ AffineStructuresParser.cpp
+ AffineStructuresParserTest.cpp
+)
+
+target_link_libraries(MLIRAffineAnalysisTests
+ PRIVATE
+ MLIRAffineAnalysis
+ MLIRParser
+ )
diff --git a/mlir/unittests/Dialect/Affine/CMakeLists.txt b/mlir/unittests/Dialect/Affine/CMakeLists.txt
new file mode 100644
index 0000000000000..fc6ef10fab1f5
--- /dev/null
+++ b/mlir/unittests/Dialect/Affine/CMakeLists.txt
@@ -0,0 +1 @@
+add_subdirectory(Analysis)
diff --git a/mlir/unittests/Dialect/CMakeLists.txt b/mlir/unittests/Dialect/CMakeLists.txt
index 522aeca29146d..befbffcf07561 100644
--- a/mlir/unittests/Dialect/CMakeLists.txt
+++ b/mlir/unittests/Dialect/CMakeLists.txt
@@ -6,6 +6,7 @@ target_link_libraries(MLIRDialectTests
MLIRIR
MLIRDialect)
+add_subdirectory(Affine)
add_subdirectory(LLVMIR)
add_subdirectory(MemRef)
add_subdirectory(SparseTensor)
More information about the Mlir-commits
mailing list