[Mlir-commits] [mlir] 246e8c3 - [mlir][linalg] Add back split reduction tests dropped by previous commit

Thomas Raoux llvmlistbot at llvm.org
Wed Oct 19 13:43:37 PDT 2022


Author: Thomas Raoux
Date: 2022-10-19T20:42:55Z
New Revision: 246e8c35028a91f8581842d6487d9c718b5d0b41

URL: https://github.com/llvm/llvm-project/commit/246e8c35028a91f8581842d6487d9c718b5d0b41
DIFF: https://github.com/llvm/llvm-project/commit/246e8c35028a91f8581842d6487d9c718b5d0b41.diff

LOG: [mlir][linalg] Add back split reduction tests dropped by previous commit

The transition to transform dialect based tests dropped several cases of
the split reduction testing. Adding them back.

Differential Revision: https://reviews.llvm.org/D136287

Added: 
    

Modified: 
    mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
    mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index 1030f0a9c00a3..331735d1d5e5e 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -1050,7 +1050,7 @@ transform::SplitReductionOp::applyToOne(linalg::LinalgOp target,
   ControlSplitReductionFn splitFn = [&](LinalgOp) {
     return linalg::SplitReductionOptions{int64_t(getSplitFactor()),
                                          unsigned(getInsertSplitDimension()),
-                                         /*innerParallel=*/false};
+                                         bool(getInnerParallel())};
   };
   SimpleRewriter rewriter(getContext());
   rewriter.setInsertionPoint(target);

diff  --git a/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir b/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
index 459468a6c59f3..ee5f98bc2ce01 100644
--- a/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
+++ b/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
@@ -1,24 +1,275 @@
-// RUN: mlir-opt --test-transform-dialect-interpreter %s | FileCheck %s
+// RUN: mlir-opt --split-input-file --test-transform-dialect-interpreter %s | FileCheck %s
 
-// CHECK-LABEL: func.func @matmul_split
 func.func @matmul_split(%A : tensor<16x256xf32>, %B: tensor<256x32xf32>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
+  %0 = linalg.matmul ins(%A, %B: tensor<16x256xf32>, tensor<256x32xf32>)
+                    outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
+  return %0: tensor<16x32xf32>
+}
+
+//  CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>
+//  CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3, d1)>
+//  CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
+//  CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+//  CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+//  CHECK-LABEL: @matmul_split
+//  CHECK-DAG: %[[ID:.*]] = arith.constant 0.000000e+00 : f32
+//  CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<16x256xf32> into tensor<16x4x64xf32>
+//  CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<256x32xf32> into tensor<4x64x32xf32>
+//  CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<16x32x4xf32>
+//      CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<16x32x4xf32>) -> tensor<16x32x4xf32>
+//      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]]
+// CHECK-SAME:   , iterator_types = ["parallel", "parallel", "parallel", "reduction"]}
+// CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<16x4x64xf32>, tensor<4x64x32xf32>) outs(%[[F]] : tensor<16x32x4xf32>) {
+//      CHECK:   arith.mulf
+//      CHECK:   arith.addf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<16x32x4xf32>
+//      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]],
+// CHECK-SAME:   iterator_types = ["parallel", "parallel", "reduction"]} ins(%[[G]] : tensor<16x32x4xf32>) outs(%{{.*}} : tensor<16x32xf32>) {
+//      CHECK:   arith.addf
+//      CHECK:   linalg.yield %{{.*}} : f32
+//      CHECK: } -> tensor<16x32xf32>
+//      CHECK: return %[[R]] : tensor<16x32xf32>
+
+transform.sequence failures(propagate) {
+^bb1(%arg1: !pdl.operation):
+  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
+  %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2}
+}
+
+// -----
 
-  //      CHECK: linalg.generic
-  // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction"]
-  // CHECK-SAME: ins(%{{[a-zA-Z0-9_]*}}, %{{[a-zA-Z0-9_]*}} : tensor<16x4x64xf32>, tensor<4x64x32xf32>)
-  // CHECK-SAME: outs(%{{[a-zA-Z0-9_]*}} : tensor<16x32x4xf32>) {
+func.func @generic_split_1d(%arg0: tensor<32xf32>, %arg1: tensor<f32>, %out: tensor<f32>) -> tensor<f32> {
+  %red = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>,
+                                          affine_map<(d0) -> ()>,
+                                          affine_map<(d0) -> ()>],
+   iterator_types = ["reduction"]}
+   ins(%arg0, %arg1 : tensor<32xf32>, tensor<f32>)
+   outs(%out : tensor<f32>) {
+    ^bb0(%arg7: f32, %arg8: f32, %arg9: f32):
+      %40 = arith.subf %arg7, %arg8 : f32
+      %41 = math.exp %40 : f32
+      %42 = arith.mulf %41, %arg9 : f32
+      linalg.yield %42 : f32
+    } -> tensor<f32>
+  return %red : tensor<f32>
+}
+
+//  CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+//  CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> ()>
+//  CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0)>
+//  CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0) -> (d0)>
+//  CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0) -> ()>
+//CHECK-LABEL: @generic_split_1d
+//  CHECK-DAG: %[[ID:.*]] = arith.constant 1.000000e+00 : f32
+//  CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1]] : tensor<32xf32> into tensor<4x8xf32>
+//  CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<4xf32>
+//      CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<4xf32>) -> tensor<4xf32>
+//      CHECK: %[[G:.*]] = linalg.generic
+//      CHECK:   {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]],
+//      CHECK:   iterator_types = ["parallel", "reduction"]} ins(%[[I1]], %{{.*}} : tensor<4x8xf32>, tensor<f32>) outs(%[[F]] : tensor<4xf32>) {
+//      CHECK:   arith.subf
+//      CHECK:   math.exp
+//      CHECK:   arith.mulf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<4xf32>
+//      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["reduction"]} ins(%[[G]] : tensor<4xf32>) outs(%{{.*}} : tensor<f32>) {
+//      CHECK:   arith.mulf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<f32>
+//      CHECK: return %[[R]] : tensor<f32>
+
+transform.sequence failures(propagate) {
+^bb1(%arg1: !pdl.operation):
+  %0 = transform.structured.match ops{["linalg.generic"]} in %arg1
+  %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 0}
+}
 
-  //      CHECK: linalg.generic
-  // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
-  // CHECK-SAME: ins(%{{[a-zA-Z0-9_]*}} : tensor<16x32x4xf32>)
-  // CHECK-SAME: outs(%{{[a-zA-Z0-9_]*}} : tensor<16x32xf32>) {
+// -----
+
+func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>, %output: tensor<5x2xf32>)
+  -> tensor<5x2xf32>
+{
+  %0 = linalg.generic {
+      indexing_maps = [
+        affine_map<(d0, d1, d2) -> (d1, d0)>,
+        affine_map<(d0, d1, d2) -> (d2, d1)>,
+        affine_map<(d0, d1, d2) -> (d2, d0)>
+      ],
+      iterator_types = ["parallel", "reduction", "parallel"]
+    } ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
+    ^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
+      %3 = arith.addf %arg0, %arg1 : f32
+      %4 = arith.maxf %3, %arg2 : f32
+      linalg.yield %4 : f32
+    } -> tensor<5x2xf32>
+  return %0 : tensor<5x2xf32>
+}
+
+//  CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d1, d0)>
+//  CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d2, d1)>
+//  CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d2)>
+//  CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+//  CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+// CHECK-LABEL:  func @generic_split_3d
+//  CHECK-DAG: %[[ID:.*]] = arith.constant -3.40282347E+38 : f32
+//  CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<32x2xf32> into tensor<4x8x2xf32>
+//  CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<5x32xf32> into tensor<5x4x8xf32>
+//  CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<5x2x4xf32>
+//      CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<5x2x4xf32>) -> tensor<5x2x4xf32>
+//      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}
+// CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<4x8x2xf32>, tensor<5x4x8xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {
+//      CHECK:   arith.addf
+//      CHECK:   arith.maxf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<5x2x4xf32>
+//      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}
+// CHECK-SAME:   ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {
+//      CHECK:   arith.maxf
+//      CHECK:   linalg.yield
+//      CHECK:  } -> tensor<5x2xf32>
+//      CHECK: return %[[R]] : tensor<5x2xf32>
+
+transform.sequence failures(propagate) {
+^bb1(%arg1: !pdl.operation):
+  %0 = transform.structured.match ops{["linalg.generic"]} in %arg1
+  %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2}
+}
+
+// -----
+
+func.func @matmul_split(%A : tensor<16x256xf32>, %B: tensor<256x32xf32>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
   %0 = linalg.matmul ins(%A, %B: tensor<16x256xf32>, tensor<256x32xf32>)
                     outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
   return %0: tensor<16x32xf32>
 }
 
+//  CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>
+//  CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3, d1)>
+//  CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>
+//  CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+//  CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+//  CHECK-LABEL: @matmul_split
+//  CHECK-DAG: %[[ID:.*]] = arith.constant 0.000000e+00 : f32
+//  CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<16x256xf32> into tensor<16x64x4xf32>
+//  CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<256x32xf32> into tensor<64x4x32xf32>
+//  CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<16x32x4xf32>
+//      CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<16x32x4xf32>) -> tensor<16x32x4xf32>
+//      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]]
+// CHECK-SAME:   , iterator_types = ["parallel", "parallel", "reduction", "parallel"]}
+// CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<16x64x4xf32>, tensor<64x4x32xf32>) outs(%[[F]] : tensor<16x32x4xf32>) {
+//      CHECK:   arith.mulf
+//      CHECK:   arith.addf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<16x32x4xf32>
+//      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]],
+// CHECK-SAME:   iterator_types = ["parallel", "parallel", "reduction"]} ins(%[[G]] : tensor<16x32x4xf32>) outs(%{{.*}} : tensor<16x32xf32>) {
+//      CHECK:   arith.addf
+//      CHECK:   linalg.yield %{{.*}} : f32
+//      CHECK: } -> tensor<16x32xf32>
+//      CHECK: return %[[R]] : tensor<16x32xf32>
+
 transform.sequence failures(propagate) {
 ^bb1(%arg1: !pdl.operation):
   %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
-  %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2}
+  %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2, inner_parallel}
+}
+
+// -----
+
+func.func @generic_split_1d(%arg0: tensor<32xf32>, %arg1: tensor<f32>, %out: tensor<f32>) -> tensor<f32> {
+  %red = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>,
+                                          affine_map<(d0) -> ()>,
+                                          affine_map<(d0) -> ()>],
+   iterator_types = ["reduction"]}
+   ins(%arg0, %arg1 : tensor<32xf32>, tensor<f32>)
+   outs(%out : tensor<f32>) {
+    ^bb0(%arg7: f32, %arg8: f32, %arg9: f32):
+      %40 = arith.subf %arg7, %arg8 : f32
+      %41 = math.exp %40 : f32
+      %42 = arith.mulf %41, %arg9 : f32
+      linalg.yield %42 : f32
+    } -> tensor<f32>
+  return %red : tensor<f32>
+}
+
+//  CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+//  CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> ()>
+//  CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d1)>
+//  CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0) -> (d0)>
+//  CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0) -> ()>
+//CHECK-LABEL: @generic_split_1d
+//  CHECK-DAG: %[[ID:.*]] = arith.constant 1.000000e+00 : f32
+//  CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1]] : tensor<32xf32> into tensor<8x4xf32>
+//  CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<4xf32>
+//      CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<4xf32>) -> tensor<4xf32>
+//      CHECK: %[[G:.*]] = linalg.generic
+//      CHECK:   {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]],
+//      CHECK:   iterator_types = ["reduction", "parallel"]} ins(%[[I1]], %{{.*}} : tensor<8x4xf32>, tensor<f32>) outs(%[[F]] : tensor<4xf32>) {
+//      CHECK:   arith.subf
+//      CHECK:   math.exp
+//      CHECK:   arith.mulf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<4xf32>
+//      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["reduction"]} ins(%[[G]] : tensor<4xf32>) outs(%{{.*}} : tensor<f32>) {
+//      CHECK:   arith.mulf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<f32>
+//      CHECK: return %[[R]] : tensor<f32>
+
+transform.sequence failures(propagate) {
+^bb1(%arg1: !pdl.operation):
+  %0 = transform.structured.match ops{["linalg.generic"]} in %arg1
+  %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 0, inner_parallel}
+}
+
+// -----
+
+func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>, %output: tensor<5x2xf32>)
+  -> tensor<5x2xf32>
+{
+  %0 = linalg.generic {
+      indexing_maps = [
+        affine_map<(d0, d1, d2) -> (d1, d0)>,
+        affine_map<(d0, d1, d2) -> (d2, d1)>,
+        affine_map<(d0, d1, d2) -> (d2, d0)>
+      ],
+      iterator_types = ["parallel", "reduction", "parallel"]
+    } ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
+    ^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
+      %3 = arith.addf %arg0, %arg1 : f32
+      %4 = arith.maxf %3, %arg2 : f32
+      linalg.yield %4 : f32
+    } -> tensor<5x2xf32>
+  return %0 : tensor<5x2xf32>
+}
+
+//  CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d0)>	
+//  CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d1, d2)>	
+//  CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d2)>	
+//  CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>	
+//  CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>	
+// CHECK-LABEL:  func @generic_split_3d	
+//  CHECK-DAG: %[[ID:.*]] = arith.constant -3.40282347E+38 : f32	
+//  CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<32x2xf32> into tensor<8x4x2xf32>	
+//  CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<5x32xf32> into tensor<5x8x4xf32>	
+//  CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<5x2x4xf32>	
+//      CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<5x2x4xf32>) -> tensor<5x2x4xf32>	
+//      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}	
+// CHECK-SAME:   ins(%[[I1]], %[[I2]] : tensor<8x4x2xf32>, tensor<5x8x4xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {	
+//      CHECK:   arith.addf	
+//      CHECK:   arith.maxf	
+//      CHECK:   linalg.yield	
+//      CHECK: } -> tensor<5x2x4xf32>	
+//      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}	
+// CHECK-SAME:   ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {	
+//      CHECK:   arith.maxf	
+//      CHECK:   linalg.yield	
+//      CHECK:  } -> tensor<5x2xf32>	
+//      CHECK: return %[[R]] : tensor<5x2xf32>	
+
+transform.sequence failures(propagate) {
+^bb1(%arg1: !pdl.operation):
+  %0 = transform.structured.match ops{["linalg.generic"]} in %arg1
+  %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2, inner_parallel}
 }


        


More information about the Mlir-commits mailing list