[Mlir-commits] [mlir] 399638f - Merge kDynamicSize and kDynamicSentinel into one constant.

Aliia Khasanova llvmlistbot at llvm.org
Mon Nov 21 05:02:11 PST 2022


Author: Aliia Khasanova
Date: 2022-11-21T13:01:26Z
New Revision: 399638f98cdc2405c6a2e85f3cbba175fabaf858

URL: https://github.com/llvm/llvm-project/commit/399638f98cdc2405c6a2e85f3cbba175fabaf858
DIFF: https://github.com/llvm/llvm-project/commit/399638f98cdc2405c6a2e85f3cbba175fabaf858.diff

LOG: Merge kDynamicSize and kDynamicSentinel into one constant.

resolve conflicts

Differential Revision: https://reviews.llvm.org/D138282

Added: 
    

Modified: 
    flang/include/flang/Optimizer/Dialect/FIRTypes.td
    flang/lib/Optimizer/Transforms/AffinePromotion.cpp
    mlir/include/mlir/Dialect/Arith/Utils/Utils.h
    mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
    mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
    mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td
    mlir/include/mlir/Dialect/Shape/IR/Shape.h
    mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
    mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
    mlir/include/mlir/Dialect/Tosa/Utils/ShapeUtils.h
    mlir/include/mlir/IR/BuiltinAttributes.h
    mlir/include/mlir/IR/BuiltinAttributes.td
    mlir/include/mlir/IR/BuiltinTypeInterfaces.td
    mlir/include/mlir/IR/BuiltinTypes.h
    mlir/include/mlir/IR/BuiltinTypes.td
    mlir/include/mlir/Interfaces/InferTypeOpInterface.h
    mlir/include/mlir/Interfaces/ViewLikeInterface.td
    mlir/lib/AsmParser/AttributeParser.cpp
    mlir/lib/AsmParser/TypeParser.cpp
    mlir/lib/CAPI/IR/BuiltinTypes.cpp
    mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
    mlir/lib/Conversion/LLVMCommon/MemRefBuilder.cpp
    mlir/lib/Conversion/LLVMCommon/Pattern.cpp
    mlir/lib/Conversion/LLVMCommon/TypeConverter.cpp
    mlir/lib/Conversion/LinalgToStandard/LinalgToStandard.cpp
    mlir/lib/Conversion/MemRefToLLVM/MemRefToLLVM.cpp
    mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
    mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
    mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
    mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
    mlir/lib/Dialect/Affine/Analysis/Utils.cpp
    mlir/lib/Dialect/Affine/Transforms/PipelineDataTransfer.cpp
    mlir/lib/Dialect/Affine/Utils/Utils.cpp
    mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp
    mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp
    mlir/lib/Dialect/Bufferization/Transforms/BufferResultsToOutParams.cpp
    mlir/lib/Dialect/LLVMIR/IR/LLVMTypeSyntax.cpp
    mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
    mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
    mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
    mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
    mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
    mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp
    mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
    mlir/lib/Dialect/Linalg/Utils/Utils.cpp
    mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
    mlir/lib/Dialect/MemRef/Transforms/SimplifyExtractStridedMetadata.cpp
    mlir/lib/Dialect/SPIRV/Transforms/SPIRVConversion.cpp
    mlir/lib/Dialect/Shape/IR/Shape.cpp
    mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
    mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
    mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp
    mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
    mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
    mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
    mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
    mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
    mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
    mlir/lib/Dialect/Tensor/Utils/Utils.cpp
    mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
    mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
    mlir/lib/Dialect/Traits.cpp
    mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
    mlir/lib/Dialect/Vector/Transforms/VectorTransferSplitRewritePatterns.cpp
    mlir/lib/IR/BuiltinAttributes.cpp
    mlir/lib/IR/BuiltinTypeInterfaces.cpp
    mlir/lib/IR/BuiltinTypes.cpp
    mlir/lib/Interfaces/ViewLikeInterface.cpp
    mlir/test/lib/Analysis/TestMemRefStrideCalculation.cpp
    mlir/test/lib/Dialect/Test/TestDialect.cpp
    mlir/unittests/Dialect/BroadcastShapeTest.cpp

Removed: 
    


################################################################################
diff  --git a/flang/include/flang/Optimizer/Dialect/FIRTypes.td b/flang/include/flang/Optimizer/Dialect/FIRTypes.td
index eaf43a6e908aa..df3512915a278 100644
--- a/flang/include/flang/Optimizer/Dialect/FIRTypes.td
+++ b/flang/include/flang/Optimizer/Dialect/FIRTypes.td
@@ -128,7 +128,7 @@ def fir_CharacterType : FIR_Type<"Character", "char"> {
     static constexpr LenType singleton() { return 1; }
 
     /// Character has a LEN value which is not a compile-time known constant.
-    static constexpr LenType unknownLen() { return mlir::ShapedType::kDynamicSize; }
+    static constexpr LenType unknownLen() { return mlir::ShapedType::kDynamic; }
 
     /// Character LEN is a runtime value.
     bool hasDynamicLen() { return getLen() == unknownLen(); }
@@ -482,9 +482,9 @@ def fir_SequenceType : FIR_Type<"Sequence", "array"> {
     // Does the sequence have unknown shape? (`array<* x T>`)
     bool hasUnknownShape() const { return getShape().empty(); }
 
-    // The value `kDynamicSize` represents an unknown extent for a dimension
+    // The value `kDynamic` represents an unknown extent for a dimension
     static constexpr Extent getUnknownExtent() {
-      return mlir::ShapedType::kDynamicSize;
+      return mlir::ShapedType::kDynamic;
     }
   }];
 }

diff  --git a/flang/lib/Optimizer/Transforms/AffinePromotion.cpp b/flang/lib/Optimizer/Transforms/AffinePromotion.cpp
index eaf0cd1db93a2..558ba864c7e17 100644
--- a/flang/lib/Optimizer/Transforms/AffinePromotion.cpp
+++ b/flang/lib/Optimizer/Transforms/AffinePromotion.cpp
@@ -411,7 +411,7 @@ createAffineOps(mlir::Value arrayRef, mlir::PatternRewriter &rewriter) {
                                                           affineMap, indexArgs);
   auto arrayElementType = coordinateArrayElement(acoOp);
   auto newType =
-      mlir::MemRefType::get({mlir::ShapedType::kDynamicSize}, arrayElementType);
+      mlir::MemRefType::get({mlir::ShapedType::kDynamic}, arrayElementType);
   auto arrayConvert = rewriter.create<fir::ConvertOp>(acoOp.getLoc(), newType,
                                                       acoOp.getMemref());
   return std::make_pair(affineApply, arrayConvert);

diff  --git a/mlir/include/mlir/Dialect/Arith/Utils/Utils.h b/mlir/include/mlir/Dialect/Arith/Utils/Utils.h
index d7aa7dbb67bef..8b8c000b7ae2e 100644
--- a/mlir/include/mlir/Dialect/Arith/Utils/Utils.h
+++ b/mlir/include/mlir/Dialect/Arith/Utils/Utils.h
@@ -54,9 +54,9 @@ class OpWithOffsetSizesAndStridesConstantArgumentFolder final
     SmallVector<OpFoldResult> mixedOffsets(op.getMixedOffsets());
     SmallVector<OpFoldResult> mixedSizes(op.getMixedSizes());
     SmallVector<OpFoldResult> mixedStrides(op.getMixedStrides());
-    canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
+    canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamic);
     canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
-    canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
+    canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamic);
 
     // Create the new op in canonical form.
     ResultTypeFunc resultTypeFunc;

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
index 17f6bf4786860..c091767b1467d 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
@@ -658,7 +658,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       /*desc=*/[{
         Like `getShape`, but only returns statically-known information, without
         generating any new IR. For each shape dimension, returns >=0 if that
-        dimension is statically known, or ShapeType::kDynamicSize otherwise.
+        dimension is statically known, or ShapeType::kDynamic otherwise.
       }],
       /*retTy=*/"SmallVector<int64_t>",
       /*methodName=*/"getStaticShape",
@@ -675,7 +675,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       /*desc=*/[{
         Returns the statically-known loop ranges. Composes
         `getShapesToLoopsMap()` with the result of `getStaticShape`.
-        Returns ShapeType::kDynamicSize for non-statically-known loop ranges.
+        Returns ShapeType::kDynamic for non-statically-known loop ranges.
         This is expected to be called by a valid Linalg op
       }],
       /*retTy=*/"SmallVector<int64_t, 4>",

diff  --git a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
index d6fae79ecc9b0..9ee5d3d48a740 100644
--- a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
@@ -438,7 +438,7 @@ def SplitOp : Op<Transform_Dialect, "structured.split",
     static split point attribute when it is known at transform IR construction
     time or as the handle to an operation producing a single index-typed value
     when it is computed by payload IR. In the latter case, the static split
-    point must be set to `ShapedType::kDynamicSize` and the dynamic size handle
+    point must be set to `ShapedType::kDynamic` and the dynamic size handle
     must point to as many value-producing operations as there are structured
     operations pointed to by the target handle.
 
@@ -809,9 +809,9 @@ def TileOp : Op<Transform_Dialect, "structured.tile",
     case the tile value must be computed by the payload IR and the handle to the
     operation computing it must be provided through `dynamic_sizes`. When the
     sizes are not known statically, the corresponding entry in the
-    `static_sizes` attribute must be set to `ShapedType::kDynamicSize`. Only
+    `static_sizes` attribute must be set to `ShapedType::kDynamic`. Only
     the dynamic sizes must be provided in `dynamic_sizes`, i.e., there should
-    be as many handles as `ShapedType::kDynamicSize` values in the
+    be as many handles as `ShapedType::kDynamic` values in the
     `static_sizes` attribute. A static size of `0` indicates that the dimension
     should not be tiled. No loop will be generated for such dimensions. If all
     tile sizes are `0`, this transform is effectively a no-op.
@@ -950,10 +950,10 @@ def TileToForeachThreadOp :
     $target oilist(
         `num_threads` custom<DynamicIndexList>($num_threads,
                                                $static_num_threads,
-                                               "ShapedType::kDynamicSize") |
+                                               "ShapedType::kDynamic") |
          `tile_sizes` custom<DynamicIndexList>($tile_sizes,
                                                $static_tile_sizes,
-                                               "ShapedType::kDynamicSize"))
+                                               "ShapedType::kDynamic"))
     (`(` `mapping` `=` $mapping^ `)`)? attr-dict
   }];
   let hasVerifier = 1;
@@ -981,9 +981,9 @@ def TileToScfForOp : Op<Transform_Dialect, "structured.tile_to_scf_for",
     case the tile value must be computed by the payload IR and the handle to the
     operation computing it must be provided through `dynamic_sizes`. When the
     sizes are not known statically, the corresponding entry in the
-    `static_sizes` attribute must be set to `ShapedType::kDynamicSize`. Only
+    `static_sizes` attribute must be set to `ShapedType::kDynamic`. Only
     the dynamic sizes must be provided in `dynamic_sizes`, i.e., there should
-    be as many handles as `ShapedType::kDynamicSize` values in the
+    be as many handles as `ShapedType::kDynamic` values in the
     `static_sizes` attribute. A static size of `0` indicates that the dimension
     should not be tiled. No loop will be generated for such dimensions. If all
     tile sizes are `0`, this transform is effectively a no-op.

diff  --git a/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td b/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td
index b364f68ca2541..319c089bda48e 100644
--- a/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td
+++ b/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td
@@ -1268,13 +1268,13 @@ def MemRef_ReinterpretCastOp
   let assemblyFormat = [{
     $source `to` `offset` `` `:`
     custom<DynamicIndexList>($offsets, $static_offsets,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     `` `,` `sizes` `` `:`
     custom<DynamicIndexList>($sizes, $static_sizes,
-                               "ShapedType::kDynamicSize")
+                               "ShapedType::kDynamic")
     `` `,` `strides` `` `:`
     custom<DynamicIndexList>($strides, $static_strides,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     attr-dict `:` type($source) `to` type($result)
   }];
 
@@ -1739,8 +1739,8 @@ def SubViewOp : MemRef_OpWithOffsetSizesAndStrides<"subview", [
     The representation based on offsets, sizes and strides support a
     partially-static specification via attributes specified through the
     `static_offsets`, `static_sizes` and `static_strides` arguments. A special
-    sentinel value ShapedType::kDynamicSize and
-    ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
+    sentinel value ShapedType::kDynamic and
+    ShapedType::kDynamic encodes that the corresponding entry has
     a dynamic value.
 
     A subview operation may additionally reduce the rank of the resulting view
@@ -1866,11 +1866,11 @@ def SubViewOp : MemRef_OpWithOffsetSizesAndStrides<"subview", [
   let assemblyFormat = [{
     $source ``
     custom<DynamicIndexList>($offsets, $static_offsets,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($sizes, $static_sizes,
-                               "ShapedType::kDynamicSize")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($strides, $static_strides,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     attr-dict `:` type($source) `to` type($result)
   }];
 

diff  --git a/mlir/include/mlir/Dialect/Shape/IR/Shape.h b/mlir/include/mlir/Dialect/Shape/IR/Shape.h
index c0598d39e6976..8d2e3100a488f 100644
--- a/mlir/include/mlir/Dialect/Shape/IR/Shape.h
+++ b/mlir/include/mlir/Dialect/Shape/IR/Shape.h
@@ -35,7 +35,7 @@ namespace shape {
 
 /// Alias type for extent tensors.
 RankedTensorType getExtentTensorType(MLIRContext *ctx,
-                                     int64_t rank = ShapedType::kDynamicSize);
+                                     int64_t rank = ShapedType::kDynamic);
 
 // Check if a type is an extent tensor, e.g., tensor<?xindex>.
 bool isExtentTensorType(Type);

diff  --git a/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td b/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
index 993092d1ab073..9c0257954d3e8 100644
--- a/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
+++ b/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
@@ -91,7 +91,7 @@ def Shape_ValueShapeType : Shape_Type<"ValueShape", "value_shape"> {
 
 def Shape_ExtentTensorType :
     1DTensorOf<[Index]>,
-    BuildableType<"::mlir::RankedTensorType::get({ShapedType::kDynamicSize}, "
+    BuildableType<"::mlir::RankedTensorType::get({ShapedType::kDynamic}, "
                   "$_builder.getType<::mlir::IndexType>())"> {
   let description = [{
     The extent tensor is a tensor of rank one with arbitrarily many index

diff  --git a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
index 552d2db97435c..352002b20a738 100644
--- a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
+++ b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
@@ -278,8 +278,8 @@ def Tensor_ExtractSliceOp : Tensor_OpWithOffsetSizesAndStrides<"extract_slice",
     The representation based on offsets, sizes and strides support a
     partially-static specification via attributes specified through the
     `static_offsets`, `static_sizes` and `static_strides` arguments. A special
-    sentinel value ShapedType::kDynamicSize and
-    ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
+    sentinel value ShapedType::kDynamic and
+    ShapedType::kDynamic encodes that the corresponding entry has
     a dynamic value.
 
     After buffer allocation, the "extract_slice" op is expected to lower into a
@@ -335,11 +335,11 @@ def Tensor_ExtractSliceOp : Tensor_OpWithOffsetSizesAndStrides<"extract_slice",
   let assemblyFormat = [{
     $source ``
     custom<DynamicIndexList>($offsets, $static_offsets,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($sizes, $static_sizes,
-                               "ShapedType::kDynamicSize")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($strides, $static_strides,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     attr-dict `:` type($source) `to` type($result)
   }];
 
@@ -772,8 +772,8 @@ def Tensor_InsertSliceOp : Tensor_OpWithOffsetSizesAndStrides<"insert_slice", [
     The representation based on offsets, sizes and strides support a
     partially-static specification via attributes specified through the
     `static_offsets`, `static_sizes` and `static_strides` arguments. A special
-    sentinel value ShapedType::kDynamicSize and
-    ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
+    sentinel value ShapedType::kDynamic and
+    ShapedType::kDynamic encodes that the corresponding entry has
     a dynamic value.
 
     After buffer allocation, the "insert_slice" op is expected to lower into a
@@ -819,11 +819,11 @@ def Tensor_InsertSliceOp : Tensor_OpWithOffsetSizesAndStrides<"insert_slice", [
   let assemblyFormat = [{
     $source `into` $dest ``
     custom<DynamicIndexList>($offsets, $static_offsets,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($sizes, $static_sizes,
-                               "ShapedType::kDynamicSize")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($strides, $static_strides,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     attr-dict `:` type($source) `into` type($dest)
   }];
 
@@ -1222,9 +1222,9 @@ def Tensor_PadOp : Tensor_Op<"pad", [
     $source
     (`nofold` $nofold^)?
     `low` `` custom<DynamicIndexList>($low, $static_low,
-                                        "ShapedType::kDynamicSize")
+                                        "ShapedType::kDynamic")
     `high` `` custom<DynamicIndexList>($high, $static_high,
-                                         "ShapedType::kDynamicSize")
+                                         "ShapedType::kDynamic")
     $region attr-dict `:` type($source) `to` type($result)
   }];
 
@@ -1377,8 +1377,8 @@ def Tensor_ParallelInsertSliceOp : Tensor_Op<"parallel_insert_slice", [
     The representation based on offsets, sizes and strides support a
     partially-static specification via attributes specified through the
     `static_offsets`, `static_sizes` and `static_strides` arguments. A special
-    sentinel value ShapedType::kDynamicSize and
-    ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
+    sentinel value ShapedType::kDynamic and
+    ShapedType::kDynamic encodes that the corresponding entry has
     a dynamic value.
 
     After buffer allocation, the "parallel_insert_slice" op is expected to lower
@@ -1412,11 +1412,11 @@ def Tensor_ParallelInsertSliceOp : Tensor_Op<"parallel_insert_slice", [
   let assemblyFormat = [{
     $source `into` $dest ``
     custom<DynamicIndexList>($offsets, $static_offsets,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($sizes, $static_sizes,
-                               "ShapedType::kDynamicSize")
+                               "ShapedType::kDynamic")
     custom<DynamicIndexList>($strides, $static_strides,
-                               "ShapedType::kDynamicStrideOrOffset")
+                               "ShapedType::kDynamic")
     attr-dict `:` type($source) `into` type($dest)
   }];
 

diff  --git a/mlir/include/mlir/Dialect/Tosa/Utils/ShapeUtils.h b/mlir/include/mlir/Dialect/Tosa/Utils/ShapeUtils.h
index 1bfacd09ed68c..413988d796f7a 100644
--- a/mlir/include/mlir/Dialect/Tosa/Utils/ShapeUtils.h
+++ b/mlir/include/mlir/Dialect/Tosa/Utils/ShapeUtils.h
@@ -111,14 +111,14 @@ struct ValueKnowledge {
       return result;
 
     result.hasRank = true;
-    result.sizes.resize(lhs.sizes.size(), ShapedType::kDynamicSize);
+    result.sizes.resize(lhs.sizes.size(), ShapedType::kDynamic);
     for (auto i : llvm::seq<unsigned>(0, result.sizes.size())) {
       int64_t lhsSize = lhs.sizes[i];
       int64_t rhsSize = rhs.sizes[i];
       int64_t &resultSize = result.sizes[i];
-      if (lhsSize == ShapedType::kDynamicSize) {
+      if (lhsSize == ShapedType::kDynamic) {
         resultSize = rhsSize;
-      } else if (rhsSize == ShapedType::kDynamicSize) {
+      } else if (rhsSize == ShapedType::kDynamic) {
         resultSize = lhsSize;
       } else if (lhsSize == rhsSize) {
         resultSize = lhsSize;
@@ -155,7 +155,7 @@ struct ValueKnowledge {
     }
 
     result.hasRank = true;
-    result.sizes.resize(lhs.sizes.size(), ShapedType::kDynamicSize);
+    result.sizes.resize(lhs.sizes.size(), ShapedType::kDynamic);
     for (int i = 0, e = lhs.sizes.size(); i < e; i++) {
       if (lhs.sizes[i] == rhs.sizes[i]) {
         result.sizes[i] = lhs.sizes[i];
@@ -170,7 +170,7 @@ struct ValueKnowledge {
   // Whether the value has known rank.
   bool hasRank;
   // If `hasRank`, the sizes along each rank. Unknown sizes are represented as
-  // `ShapedType::kDynamicSize`.
+  // `ShapedType::kDynamic`.
   llvm::SmallVector<int64_t> sizes;
   // The dtype of a tensor.
   // This is equal to nullptr if we don't know that it is a specific concrete

diff  --git a/mlir/include/mlir/IR/BuiltinAttributes.h b/mlir/include/mlir/IR/BuiltinAttributes.h
index 17687eda5e4b8..e6902fb750301 100644
--- a/mlir/include/mlir/IR/BuiltinAttributes.h
+++ b/mlir/include/mlir/IR/BuiltinAttributes.h
@@ -1034,7 +1034,7 @@ inline bool operator!=(StringRef lhs, StringAttr rhs) { return !(lhs == rhs); }
 
 namespace mlir {
 
-/// Given a list of strides (in which MemRefType::getDynamicStrideOrOffset()
+/// Given a list of strides (in which ShapedType::kDynamic
 /// represents a dynamic value), return the single result AffineMap which
 /// represents the linearized strided layout map. Dimensions correspond to the
 /// offset followed by the strides in order. Symbols are inserted for each

diff  --git a/mlir/include/mlir/IR/BuiltinAttributes.td b/mlir/include/mlir/IR/BuiltinAttributes.td
index 70f47323fc85f..70a535a922feb 100644
--- a/mlir/include/mlir/IR/BuiltinAttributes.td
+++ b/mlir/include/mlir/IR/BuiltinAttributes.td
@@ -1009,7 +1009,7 @@ def StridedLayoutAttr : Builtin_Attr<"StridedLayout",
     Strides must be positive and the offset must be non-negative. Both the
     strides and the offset may be _dynamic_, i.e. their value may not be known
     at compile time. This is expressed as a `?` in the assembly syntax and as
-    `ShapedType::kDynamicStrideOrOffset` in the code. Stride and offset values
+    `ShapedType::kDynamic` in the code. Stride and offset values
     must satisfy the constraints above at runtime, the behavior is undefined
     otherwise.
 

diff  --git a/mlir/include/mlir/IR/BuiltinTypeInterfaces.td b/mlir/include/mlir/IR/BuiltinTypeInterfaces.td
index 6ecc067cd3c69..08efe25809c84 100644
--- a/mlir/include/mlir/IR/BuiltinTypeInterfaces.td
+++ b/mlir/include/mlir/IR/BuiltinTypeInterfaces.td
@@ -54,7 +54,7 @@ def ShapedTypeInterface : TypeInterface<"ShapedType"> {
     A shape is a list of sizes corresponding to the dimensions of the container.
     If the number of dimensions in the shape is unknown, the shape is "unranked".
     If the number of dimensions is known, the shape "ranked". The sizes of the
-    dimensions of the shape must be positive, or kDynamicSize (in which case the
+    dimensions of the shape must be positive, or kDynamic (in which case the
     size of the dimension is dynamic, or not statically known).
   }];
   let methods = [
@@ -84,25 +84,18 @@ def ShapedTypeInterface : TypeInterface<"ShapedType"> {
   ];
 
   let extraClassDeclaration = [{
-    // TODO: merge these two special values in a single one used everywhere.
-    // Unfortunately, uses of `-1` have crept deep into the codebase now and are
-    // hard to track.
-    static constexpr int64_t kDynamicSize =
-        std::numeric_limits<int64_t>::min();
-    static constexpr int64_t kDynamicStrideOrOffset =
+    static constexpr int64_t kDynamic =
         std::numeric_limits<int64_t>::min();
 
     /// Whether the given dimension size indicates a dynamic dimension.
-    static constexpr bool isDynamic(int64_t dSize) {
-      return dSize == kDynamicSize;
+    static constexpr bool isDynamic(int64_t dValue) {
+	return dValue == kDynamic;
     }
+
     /// Whether the given shape has any size that indicates a dynamic dimension.
     static bool isDynamicShape(ArrayRef<int64_t> dSizes) {
       return any_of(dSizes, [](int64_t dSize) { return isDynamic(dSize); });
     }
-    static constexpr bool isDynamicStrideOrOffset(int64_t dStrideOrOffset) {
-      return dStrideOrOffset == kDynamicStrideOrOffset;
-    }
 
     /// Return the number of elements present in the given shape.
     static int64_t getNumElements(ArrayRef<int64_t> shape);

diff  --git a/mlir/include/mlir/IR/BuiltinTypes.h b/mlir/include/mlir/IR/BuiltinTypes.h
index ceba71d517589..03fc70937c2db 100644
--- a/mlir/include/mlir/IR/BuiltinTypes.h
+++ b/mlir/include/mlir/IR/BuiltinTypes.h
@@ -429,7 +429,7 @@ inline bool TensorType::classof(Type type) {
 ///      symbols.
 ///
 /// A stride specification is a list of integer values that are either static
-/// or dynamic (encoded with ShapedType::kDynamicStrideOrOffset). Strides encode
+/// or dynamic (encoded with ShapedType::kDynamic). Strides encode
 /// the distance in the number of elements between successive entries along a
 /// particular dimension.
 LogicalResult getStridesAndOffset(MemRefType t,

diff  --git a/mlir/include/mlir/IR/BuiltinTypes.td b/mlir/include/mlir/IR/BuiltinTypes.td
index fbd9c6350fcf2..c37463cb8bf8f 100644
--- a/mlir/include/mlir/IR/BuiltinTypes.td
+++ b/mlir/include/mlir/IR/BuiltinTypes.td
@@ -584,12 +584,6 @@ def Builtin_MemRef : Builtin_Type<"MemRef", [
     /// New `Attribute getMemorySpace()` method should be used instead.
     unsigned getMemorySpaceAsInt() const;
 
-    // TODO: merge these two special values in a single one used everywhere.
-    // Unfortunately, uses of `-1` have crept deep into the codebase now and are
-    // hard to track.
-    static int64_t getDynamicStrideOrOffset() {
-      return ShapedType::kDynamicStrideOrOffset;
-    }
   }];
   let skipDefaultBuilders = 1;
   let genVerifyDecl = 1;

diff  --git a/mlir/include/mlir/Interfaces/InferTypeOpInterface.h b/mlir/include/mlir/Interfaces/InferTypeOpInterface.h
index 89bc251fdf53a..c89c7280784ba 100644
--- a/mlir/include/mlir/Interfaces/InferTypeOpInterface.h
+++ b/mlir/include/mlir/Interfaces/InferTypeOpInterface.h
@@ -94,7 +94,7 @@ class ShapeAdaptor {
 /// The components consist of
 ///  - A ranked or unranked shape with the dimension specification match those
 ///    of ShapeType's getShape() (e.g., dynamic dimension represented using
-///    ShapedType::kDynamicSize)
+///    ShapedType::kDynamic)
 ///  - A element type, may be unset (nullptr)
 ///  - A attribute, may be unset (nullptr)
 /// Used by ShapedType type inferences.

diff  --git a/mlir/include/mlir/Interfaces/ViewLikeInterface.td b/mlir/include/mlir/Interfaces/ViewLikeInterface.td
index e3fac807a7ea9..ea94f658936a6 100644
--- a/mlir/include/mlir/Interfaces/ViewLikeInterface.td
+++ b/mlir/include/mlir/Interfaces/ViewLikeInterface.td
@@ -50,8 +50,8 @@ def OffsetSizeAndStrideOpInterface : OpInterface<"OffsetSizeAndStrideOpInterface
          `getArrayAttrMaxRanks()`[0] (resp. [1], [2]).
       3. if an entry of `static_offsets` (resp. `static_sizes`,
          `static_strides`) is equal to a special sentinel value, namely
-         `ShapedType::kDynamicStrideOrOffset` (resp. `ShapedType::kDynamicSize`,
-         `ShapedType::kDynamicStrideOrOffset`), then the corresponding entry is
+         `ShapedType::kDynamic` (resp. `ShapedType::kDynamic`,
+         `ShapedType::kDynamic`), then the corresponding entry is
          a dynamic offset (resp. size, stride).
       4. a variadic `offset` (resp. `sizes`, `strides`) operand  must be present
          for each dynamic offset (resp. size, stride).
@@ -206,7 +206,7 @@ def OffsetSizeAndStrideOpInterface : OpInterface<"OffsetSizeAndStrideOpInterface
       /*defaultImplementation=*/[{
         ::llvm::APInt v = *(static_offsets()
           .template getAsValueRange<::mlir::IntegerAttr>().begin() + idx);
-        return ::mlir::ShapedType::isDynamicStrideOrOffset(v.getSExtValue());
+        return ::mlir::ShapedType::isDynamic(v.getSExtValue());
       }]
     >,
     InterfaceMethod<
@@ -234,7 +234,7 @@ def OffsetSizeAndStrideOpInterface : OpInterface<"OffsetSizeAndStrideOpInterface
       /*defaultImplementation=*/[{
         ::llvm::APInt v = *(static_strides()
           .template getAsValueRange<::mlir::IntegerAttr>().begin() + idx);
-        return ::mlir::ShapedType::isDynamicStrideOrOffset(v.getSExtValue());
+        return ::mlir::ShapedType::isDynamic(v.getSExtValue());
       }]
     >,
     InterfaceMethod<
@@ -296,7 +296,7 @@ def OffsetSizeAndStrideOpInterface : OpInterface<"OffsetSizeAndStrideOpInterface
         assert($_op.isDynamicOffset(idx) && "expected dynamic offset");
         auto numDynamic = getNumDynamicEntriesUpToIdx(
           static_offsets().template cast<::mlir::ArrayAttr>(),
-          ::mlir::ShapedType::isDynamicStrideOrOffset,
+          ::mlir::ShapedType::isDynamic,
           idx);
         return $_op.getOffsetSizeAndStrideStartOperandIndex() + numDynamic;
       }]
@@ -331,7 +331,7 @@ def OffsetSizeAndStrideOpInterface : OpInterface<"OffsetSizeAndStrideOpInterface
         assert($_op.isDynamicStride(idx) && "expected dynamic stride");
         auto numDynamic = getNumDynamicEntriesUpToIdx(
           static_strides().template cast<::mlir::ArrayAttr>(),
-          ::mlir::ShapedType::isDynamicStrideOrOffset,
+          ::mlir::ShapedType::isDynamic,
           idx);
         return $_op.getOffsetSizeAndStrideStartOperandIndex() +
           offsets().size() + sizes().size() + numDynamic;

diff  --git a/mlir/lib/AsmParser/AttributeParser.cpp b/mlir/lib/AsmParser/AttributeParser.cpp
index 1e79b44322616..418dc7b71781a 100644
--- a/mlir/lib/AsmParser/AttributeParser.cpp
+++ b/mlir/lib/AsmParser/AttributeParser.cpp
@@ -1170,7 +1170,7 @@ Attribute Parser::parseStridedLayoutAttr() {
   // fit into int64_t limits.
   auto parseStrideOrOffset = [&]() -> Optional<int64_t> {
     if (consumeIf(Token::question))
-      return ShapedType::kDynamicStrideOrOffset;
+      return ShapedType::kDynamic;
 
     SMLoc loc = getToken().getLoc();
     auto emitWrongTokenError = [&] {

diff  --git a/mlir/lib/AsmParser/TypeParser.cpp b/mlir/lib/AsmParser/TypeParser.cpp
index fc8c3fdbb58d7..8ab9ef5f59935 100644
--- a/mlir/lib/AsmParser/TypeParser.cpp
+++ b/mlir/lib/AsmParser/TypeParser.cpp
@@ -514,7 +514,7 @@ Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
     if (consumeIf(Token::question)) {
       if (!allowDynamic)
         return emitError(loc, "expected static shape");
-      dimensions.push_back(ShapedType::kDynamicSize);
+      dimensions.push_back(ShapedType::kDynamic);
     } else {
       int64_t value;
       if (failed(parseIntegerInDimensionList(value)))

diff  --git a/mlir/lib/CAPI/IR/BuiltinTypes.cpp b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
index 596a760b99e89..6b6ba6e95b720 100644
--- a/mlir/lib/CAPI/IR/BuiltinTypes.cpp
+++ b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
@@ -165,18 +165,18 @@ int64_t mlirShapedTypeGetDimSize(MlirType type, intptr_t dim) {
   return unwrap(type).cast<ShapedType>().getDimSize(static_cast<unsigned>(dim));
 }
 
-int64_t mlirShapedTypeGetDynamicSize() { return ShapedType::kDynamicSize; }
+int64_t mlirShapedTypeGetDynamicSize() { return ShapedType::kDynamic; }
 
 bool mlirShapedTypeIsDynamicSize(int64_t size) {
   return ShapedType::isDynamic(size);
 }
 
 bool mlirShapedTypeIsDynamicStrideOrOffset(int64_t val) {
-  return ShapedType::isDynamicStrideOrOffset(val);
+  return ShapedType::isDynamic(val);
 }
 
 int64_t mlirShapedTypeGetDynamicStrideOrOffset() {
-  return ShapedType::kDynamicStrideOrOffset;
+  return ShapedType::kDynamic;
 }
 
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
index b88dcb2c92bac..85064a4e94959 100644
--- a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
+++ b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
@@ -203,7 +203,7 @@ struct RawBufferOpLowering : public ConvertOpToLLVMPattern<GpuOp> {
       size_t i = pair.index();
       Value index = pair.value();
       Value strideOp;
-      if (ShapedType::isDynamicStrideOrOffset(strides[i])) {
+      if (ShapedType::isDynamic(strides[i])) {
         strideOp = rewriter.create<LLVM::MulOp>(
             loc, memrefDescriptor.stride(rewriter, loc, i), byteWidthConst);
       } else {
@@ -226,7 +226,7 @@ struct RawBufferOpLowering : public ConvertOpToLLVMPattern<GpuOp> {
     Value sgprOffset = adaptor.getSgprOffset();
     if (!sgprOffset)
       sgprOffset = createI32Constant(rewriter, loc, 0);
-    if (ShapedType::isDynamicStrideOrOffset(offset))
+    if (ShapedType::isDynamic(offset))
       sgprOffset = rewriter.create<LLVM::AddOp>(
           loc, memrefDescriptor.offset(rewriter, loc), sgprOffset);
     else if (offset > 0)

diff  --git a/mlir/lib/Conversion/LLVMCommon/MemRefBuilder.cpp b/mlir/lib/Conversion/LLVMCommon/MemRefBuilder.cpp
index 4f72cd1081f0e..9414b6fd3c413 100644
--- a/mlir/lib/Conversion/LLVMCommon/MemRefBuilder.cpp
+++ b/mlir/lib/Conversion/LLVMCommon/MemRefBuilder.cpp
@@ -57,9 +57,9 @@ MemRefDescriptor MemRefDescriptor::fromStaticShape(
   auto result = getStridesAndOffset(type, strides, offset);
   (void)result;
   assert(succeeded(result) && "unexpected failure in stride computation");
-  assert(!ShapedType::isDynamicStrideOrOffset(offset) &&
+  assert(!ShapedType::isDynamic(offset) &&
          "expected static offset");
-  assert(!llvm::any_of(strides, ShapedType::isDynamicStrideOrOffset) &&
+  assert(!llvm::any_of(strides, ShapedType::isDynamic) &&
          "expected static strides");
 
   auto convertedType = typeConverter.convertType(type);

diff  --git a/mlir/lib/Conversion/LLVMCommon/Pattern.cpp b/mlir/lib/Conversion/LLVMCommon/Pattern.cpp
index 8413dcfc83958..14799f865544f 100644
--- a/mlir/lib/Conversion/LLVMCommon/Pattern.cpp
+++ b/mlir/lib/Conversion/LLVMCommon/Pattern.cpp
@@ -80,14 +80,14 @@ Value ConvertToLLVMPattern::getStridedElementPtr(
 
   Value index;
   if (offset != 0) // Skip if offset is zero.
-    index = ShapedType::isDynamicStrideOrOffset(offset)
+    index = ShapedType::isDynamic(offset)
                 ? memRefDescriptor.offset(rewriter, loc)
                 : createIndexConstant(rewriter, loc, offset);
 
   for (int i = 0, e = indices.size(); i < e; ++i) {
     Value increment = indices[i];
     if (strides[i] != 1) { // Skip if stride is 1.
-      Value stride = ShapedType::isDynamicStrideOrOffset(strides[i])
+      Value stride = ShapedType::isDynamic(strides[i])
                          ? memRefDescriptor.stride(rewriter, loc, i)
                          : createIndexConstant(rewriter, loc, strides[i]);
       increment = rewriter.create<LLVM::MulOp>(loc, increment, stride);
@@ -123,14 +123,14 @@ void ConvertToLLVMPattern::getMemRefDescriptorSizes(
     SmallVectorImpl<Value> &strides, Value &sizeBytes) const {
   assert(isConvertibleAndHasIdentityMaps(memRefType) &&
          "layout maps must have been normalized away");
-  assert(count(memRefType.getShape(), ShapedType::kDynamicSize) ==
+  assert(count(memRefType.getShape(), ShapedType::kDynamic) ==
              static_cast<ssize_t>(dynamicSizes.size()) &&
          "dynamicSizes size doesn't match dynamic sizes count in memref shape");
 
   sizes.reserve(memRefType.getRank());
   unsigned dynamicIndex = 0;
   for (int64_t size : memRefType.getShape()) {
-    sizes.push_back(size == ShapedType::kDynamicSize
+    sizes.push_back(size == ShapedType::kDynamic
                         ? dynamicSizes[dynamicIndex++]
                         : createIndexConstant(rewriter, loc, size));
   }
@@ -146,14 +146,14 @@ void ConvertToLLVMPattern::getMemRefDescriptorSizes(
     if (size == 0)
       continue;
     bool useSizeAsStride = stride == 1;
-    if (size == ShapedType::kDynamicSize)
-      stride = ShapedType::kDynamicSize;
-    if (stride != ShapedType::kDynamicSize)
+    if (size == ShapedType::kDynamic)
+      stride = ShapedType::kDynamic;
+    if (stride != ShapedType::kDynamic)
       stride *= size;
 
     if (useSizeAsStride)
       runningStride = sizes[i];
-    else if (stride == ShapedType::kDynamicSize)
+    else if (stride == ShapedType::kDynamic)
       runningStride =
           rewriter.create<LLVM::MulOp>(loc, runningStride, sizes[i]);
     else

diff  --git a/mlir/lib/Conversion/LLVMCommon/TypeConverter.cpp b/mlir/lib/Conversion/LLVMCommon/TypeConverter.cpp
index aec2d3fd3cdde..ee939fa4ce36e 100644
--- a/mlir/lib/Conversion/LLVMCommon/TypeConverter.cpp
+++ b/mlir/lib/Conversion/LLVMCommon/TypeConverter.cpp
@@ -386,10 +386,10 @@ bool LLVMTypeConverter::canConvertToBarePtr(BaseMemRefType type) {
     return false;
 
   for (int64_t stride : strides)
-    if (ShapedType::isDynamicStrideOrOffset(stride))
+    if (ShapedType::isDynamic(stride))
       return false;
 
-  return !ShapedType::isDynamicStrideOrOffset(offset);
+  return !ShapedType::isDynamic(offset);
 }
 
 /// Convert a memref type to a bare pointer to the memref element type.

diff  --git a/mlir/lib/Conversion/LinalgToStandard/LinalgToStandard.cpp b/mlir/lib/Conversion/LinalgToStandard/LinalgToStandard.cpp
index ea586ff510dcb..600c38174d33c 100644
--- a/mlir/lib/Conversion/LinalgToStandard/LinalgToStandard.cpp
+++ b/mlir/lib/Conversion/LinalgToStandard/LinalgToStandard.cpp
@@ -27,9 +27,8 @@ using namespace mlir::linalg;
 
 static MemRefType makeStridedLayoutDynamic(MemRefType type) {
   return MemRefType::Builder(type).setLayout(StridedLayoutAttr::get(
-      type.getContext(), ShapedType::kDynamicStrideOrOffset,
-      SmallVector<int64_t>(type.getRank(),
-                           ShapedType::kDynamicStrideOrOffset)));
+      type.getContext(), ShapedType::kDynamic,
+      SmallVector<int64_t>(type.getRank(), ShapedType::kDynamic)));
 }
 
 /// Helper function to extract the operand types that are passed to the

diff  --git a/mlir/lib/Conversion/MemRefToLLVM/MemRefToLLVM.cpp b/mlir/lib/Conversion/MemRefToLLVM/MemRefToLLVM.cpp
index 4685590fa1d32..42d2d9a1b3097 100644
--- a/mlir/lib/Conversion/MemRefToLLVM/MemRefToLLVM.cpp
+++ b/mlir/lib/Conversion/MemRefToLLVM/MemRefToLLVM.cpp
@@ -33,7 +33,7 @@ using namespace mlir;
 namespace {
 
 bool isStaticStrideOrOffset(int64_t strideOrOffset) {
-  return !ShapedType::isDynamicStrideOrOffset(strideOrOffset);
+  return !ShapedType::isDynamic(strideOrOffset);
 }
 
 LLVM::LLVMFuncOp getFreeFn(LLVMTypeConverter *typeConverter, ModuleOp module) {
@@ -145,7 +145,7 @@ struct ReallocOpLoweringBase : public AllocationOpLLVMLowering {
         [&](MemRefType type, function_ref<Value()> getDynamicSize) -> Value {
       // Compute number of elements.
       int64_t size = type.getShape()[0];
-      Value numElements = ((size == ShapedType::kDynamicSize)
+      Value numElements = ((size == ShapedType::kDynamic)
                                ? getDynamicSize()
                                : createIndexConstant(rewriter, loc, size));
       Type indexType = getIndexType();
@@ -1219,7 +1219,7 @@ struct MemRefReshapeOpLowering
       Value stride = nullptr;
       int64_t targetRank = targetMemRefType.getRank();
       for (auto i : llvm::reverse(llvm::seq<int64_t>(0, targetRank))) {
-        if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
+        if (!ShapedType::isDynamic(strides[i])) {
           // If the stride for this dimension is dynamic, then use the product
           // of the sizes of the inner dimensions.
           stride = createIndexConstant(rewriter, loc, strides[i]);
@@ -1761,7 +1761,7 @@ struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
 
     // Offset.
     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
-    if (!ShapedType::isDynamicStrideOrOffset(offset)) {
+    if (!ShapedType::isDynamic(offset)) {
       targetMemRef.setConstantOffset(rewriter, loc, offset);
     } else {
       Value baseOffset = sourceMemRef.offset(rewriter, loc);
@@ -1806,7 +1806,7 @@ struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
         // constants.
         int64_t staticSize =
             subViewOp.getSource().getType().cast<MemRefType>().getShape()[i];
-        if (staticSize != ShapedType::kDynamicSize) {
+        if (staticSize != ShapedType::kDynamic) {
           size = rewriter.create<LLVM::ConstantOp>(
               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
         } else {
@@ -1828,7 +1828,7 @@ struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
                 : rewriter.create<LLVM::ConstantOp>(
                       loc, llvmIndexType,
                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
-        if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
+        if (!ShapedType::isDynamic(strides[i])) {
           stride = rewriter.create<LLVM::ConstantOp>(
               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
         } else {
@@ -1932,7 +1932,7 @@ struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
                   ArrayRef<int64_t> strides, Value nextSize,
                   Value runningStride, unsigned idx) const {
     assert(idx < strides.size());
-    if (!ShapedType::isDynamicStrideOrOffset(strides[idx]))
+    if (!ShapedType::isDynamic(strides[idx]))
       return createIndexConstant(rewriter, loc, strides[idx]);
     if (nextSize)
       return runningStride

diff  --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 7e4c38b449ef9..fc07216c894a0 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -844,7 +844,7 @@ static bool findIntermediateShape(ArrayRef<int64_t> lhsShape,
                                   bool isDynamic) {
   if (isDynamic) {
     // TODO (natashaknk): Make dynamic intermediate shape not always be rank-1
-    intermediateShape = {ShapedType::kDynamicSize};
+    intermediateShape = {ShapedType::kDynamic};
     return true;
   }
 
@@ -1886,7 +1886,7 @@ struct TileConverter : public OpConversionPattern<tosa::TileOp> {
     SmallVector<int64_t, 2> genericShape;
     for (int i = 0; i < rank; i++) {
       int64_t dim = multiples[i];
-      genericShape.push_back(dim == -1 ? ShapedType::kDynamicSize : dim);
+      genericShape.push_back(dim == -1 ? ShapedType::kDynamic : dim);
       genericShape.push_back(inputShape[i]);
     }
 

diff  --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index 41c192868e917..92bb30eefa5de 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -38,7 +38,7 @@ class SliceOpConverter : public OpRewritePattern<tosa::SliceOp> {
     for (const auto &i : llvm::enumerate(sliceOp.getSize())) {
       int64_t size = i.value().cast<IntegerAttr>().getInt();
       size_t index = i.index();
-      sizes.push_back(size == -1 ? ShapedType::kDynamicSize : size);
+      sizes.push_back(size == -1 ? ShapedType::kDynamic : size);
       if (!ShapedType::isDynamic(sizes.back()))
         continue;
 

diff  --git a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
index b64b0d88a3e37..b5105cab2854c 100644
--- a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
+++ b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
@@ -108,7 +108,7 @@ getMemrefConstantHorizontalStride(ShapedType type) {
       strides.back() != 1)
     return llvm::None;
   int64_t stride = strides[strides.size() - 2];
-  if (stride == ShapedType::kDynamicStrideOrOffset)
+  if (stride == ShapedType::kDynamic)
     return llvm::None;
   return stride;
 }

diff  --git a/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
index fd3cee552138b..ca5cdb7265fe0 100644
--- a/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
+++ b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
@@ -17,7 +17,6 @@
 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
 #include "mlir/IR/BuiltinTypes.h"
 #include "mlir/IR/TypeUtilities.h"
-#include "mlir/Support/MathExtras.h"
 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
 #include "mlir/Transforms/DialectConversion.h"
 
@@ -963,8 +962,8 @@ computeContiguousStrides(MemRefType memRefType) {
   auto sizes = memRefType.getShape();
   for (int index = 0, e = strides.size() - 1; index < e; ++index) {
     if (ShapedType::isDynamic(sizes[index + 1]) ||
-        ShapedType::isDynamicStrideOrOffset(strides[index]) ||
-        ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
+        ShapedType::isDynamic(strides[index]) ||
+        ShapedType::isDynamic(strides[index + 1]))
       return None;
     if (strides[index] != strides[index + 1] * sizes[index + 1])
       return None;
@@ -1009,7 +1008,7 @@ class VectorTypeCastOpConversion
     if (!targetStrides)
       return failure();
     // Only support static strides for now, regardless of contiguity.
-    if (llvm::any_of(*targetStrides, ShapedType::isDynamicStrideOrOffset))
+    if (llvm::any_of(*targetStrides, ShapedType::isDynamic))
       return failure();
 
     auto int64Ty = IntegerType::get(rewriter.getContext(), 64);

diff  --git a/mlir/lib/Dialect/Affine/Analysis/Utils.cpp b/mlir/lib/Dialect/Affine/Analysis/Utils.cpp
index 008b9c499191a..84b9f5f1f30db 100644
--- a/mlir/lib/Dialect/Affine/Analysis/Utils.cpp
+++ b/mlir/lib/Dialect/Affine/Analysis/Utils.cpp
@@ -380,7 +380,7 @@ Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
       // If no constant bound is found, then it can always be bound by the
       // memref's dim size if the latter has a constant size along this dim.
       auto dimSize = memRefType.getDimSize(d);
-      if (dimSize == ShapedType::kDynamicSize)
+      if (dimSize == ShapedType::kDynamic)
         return None;
       
diff Constant = dimSize;
       // Lower bound becomes 0.

diff  --git a/mlir/lib/Dialect/Affine/Transforms/PipelineDataTransfer.cpp b/mlir/lib/Dialect/Affine/Transforms/PipelineDataTransfer.cpp
index 1329d9d770d8f..cd07b27e236d7 100644
--- a/mlir/lib/Dialect/Affine/Transforms/PipelineDataTransfer.cpp
+++ b/mlir/lib/Dialect/Affine/Transforms/PipelineDataTransfer.cpp
@@ -92,7 +92,7 @@ static bool doubleBuffer(Value oldMemRef, AffineForOp forOp) {
   // Put together alloc operands for any dynamic dimensions of the memref.
   SmallVector<Value, 4> allocOperands;
   for (const auto &dim : llvm::enumerate(oldMemRefType.getShape())) {
-    if (dim.value() == ShapedType::kDynamicSize)
+    if (dim.value() == ShapedType::kDynamic)
       allocOperands.push_back(bOuter.createOrFold<memref::DimOp>(
           forOp.getLoc(), oldMemRef, dim.index()));
   }

diff  --git a/mlir/lib/Dialect/Affine/Utils/Utils.cpp b/mlir/lib/Dialect/Affine/Utils/Utils.cpp
index 2d4ecc85bef7d..0973e188b3dda 100644
--- a/mlir/lib/Dialect/Affine/Utils/Utils.cpp
+++ b/mlir/lib/Dialect/Affine/Utils/Utils.cpp
@@ -1794,7 +1794,7 @@ MemRefType mlir::normalizeMemRefType(MemRefType memrefType,
     bool isDynDim =
         isNormalizedMemRefDynamicDim(d, layoutMap, memrefTypeDynDims, context);
     if (isDynDim) {
-      newShape[d] = ShapedType::kDynamicSize;
+      newShape[d] = ShapedType::kDynamic;
     } else {
       // The lower bound for the shape is always zero.
       Optional<int64_t> ubConst =

diff  --git a/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp b/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp
index 3c135068af1a0..0c2e13e3c845b 100644
--- a/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp
+++ b/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp
@@ -767,9 +767,9 @@ bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType,
   auto memorySpaceAttr = IntegerAttr::get(
       IntegerType::get(tensorType.getContext(), 64), memorySpace);
   auto rankedTensorType = tensorType.cast<RankedTensorType>();
-  int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset;
+  int64_t dynamicOffset = ShapedType::kDynamic;
   SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(),
-                                      ShapedType::kDynamicStrideOrOffset);
+                                      ShapedType::kDynamic);
   auto stridedLayout = StridedLayoutAttr::get(tensorType.getContext(),
                                               dynamicOffset, dynamicStrides);
   return MemRefType::get(rankedTensorType.getShape(),

diff  --git a/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp b/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp
index a1aa8db0c0ded..e217d20ae470c 100644
--- a/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp
+++ b/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp
@@ -46,8 +46,7 @@ mlir::bufferization::castOrReallocMemRefValue(OpBuilder &b, Value value,
         failed(getStridesAndOffset(target, targetStrides, targetOffset)))
       return false;
     auto dynamicToStatic = [](int64_t a, int64_t b) {
-      return a == MemRefType::getDynamicStrideOrOffset() &&
-             b != MemRefType::getDynamicStrideOrOffset();
+      return ShapedType::isDynamic(a) && !ShapedType::isDynamic(b);
     };
     if (dynamicToStatic(sourceOffset, targetOffset))
       return false;
@@ -69,7 +68,7 @@ mlir::bufferization::castOrReallocMemRefValue(OpBuilder &b, Value value,
   auto loc = value.getLoc();
   SmallVector<Value, 4> dynamicOperands;
   for (int i = 0; i < destType.getRank(); ++i) {
-    if (destType.getShape()[i] != ShapedType::kDynamicSize)
+    if (destType.getShape()[i] != ShapedType::kDynamic)
       continue;
     auto index = b.createOrFold<arith::ConstantIndexOp>(loc, i);
     Value size = b.create<memref::DimOp>(loc, value, index);

diff  --git a/mlir/lib/Dialect/Bufferization/Transforms/BufferResultsToOutParams.cpp b/mlir/lib/Dialect/Bufferization/Transforms/BufferResultsToOutParams.cpp
index bff3b664ede55..f7430d2b99de4 100644
--- a/mlir/lib/Dialect/Bufferization/Transforms/BufferResultsToOutParams.cpp
+++ b/mlir/lib/Dialect/Bufferization/Transforms/BufferResultsToOutParams.cpp
@@ -28,9 +28,9 @@ static bool hasFullyDynamicLayoutMap(MemRefType type) {
   SmallVector<int64_t, 4> strides;
   if (failed(getStridesAndOffset(type, strides, offset)))
     return false;
-  if (!llvm::all_of(strides, ShapedType::isDynamicStrideOrOffset))
+  if (!llvm::all_of(strides, ShapedType::isDynamic))
     return false;
-  if (!ShapedType::isDynamicStrideOrOffset(offset))
+  if (!ShapedType::isDynamic(offset))
     return false;
   return true;
 }

diff  --git a/mlir/lib/Dialect/LLVMIR/IR/LLVMTypeSyntax.cpp b/mlir/lib/Dialect/LLVMIR/IR/LLVMTypeSyntax.cpp
index fefaf6e634b81..6054dc426c47b 100644
--- a/mlir/lib/Dialect/LLVMIR/IR/LLVMTypeSyntax.cpp
+++ b/mlir/lib/Dialect/LLVMIR/IR/LLVMTypeSyntax.cpp
@@ -147,7 +147,7 @@ static Type parseVectorType(AsmParser &parser) {
 
   // We parsed a generic dimension list, but vectors only support two forms:
   //  - single non-dynamic entry in the list (fixed vector);
-  //  - two elements, the first dynamic (indicated by ShapedType::kDynamicSize)
+  //  - two elements, the first dynamic (indicated by ShapedType::kDynamic)
   //  and the second
   //    non-dynamic (scalable vector).
   if (dims.empty() || dims.size() > 2 ||

diff  --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index 0854761fa9b47..26b63a9bb90cd 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -1046,7 +1046,7 @@ ParseResult SplitOp::parse(OpAsmParser &parser, OperationState &result) {
     }
 
     staticSplitPoint =
-        parser.getBuilder().getI64IntegerAttr(ShapedType::kDynamicSize);
+        parser.getBuilder().getI64IntegerAttr(ShapedType::kDynamic);
   }
 
   result.addAttribute(
@@ -1062,7 +1062,7 @@ ParseResult SplitOp::parse(OpAsmParser &parser, OperationState &result) {
 void SplitOp::print(OpAsmPrinter &printer) {
   printer << " " << getTarget() << " after ";
   int64_t staticSplitSize = static_cast<int64_t>(getStaticSplitPoint());
-  if (staticSplitSize != ShapedType::kDynamicSize)
+  if (staticSplitSize != ShapedType::kDynamic)
     printer << staticSplitSize;
   else
     printer << getDynamicSplitPoint();
@@ -1073,7 +1073,7 @@ void SplitOp::print(OpAsmPrinter &printer) {
 
 LogicalResult SplitOp::verify() {
   if ((static_cast<int64_t>(getStaticSplitPoint()) !=
-       ShapedType::kDynamicSize) ^
+       ShapedType::kDynamic) ^
       (getDynamicSplitPoint() == nullptr)) {
     return emitOpError() << "expects either a dynamic or a static split "
                             "point to be provided";
@@ -1304,7 +1304,7 @@ SmallVector<OpFoldResult> transform::TileOp::getMixedSizes() {
   unsigned dynamicPos = 0;
   Builder builder(getContext());
   for (int64_t size : tileSizes) {
-    if (size == ShapedType::kDynamicSize) {
+    if (size == ShapedType::kDynamic) {
       results.push_back(dynamic[dynamicPos++]);
     } else {
       results.push_back(builder.getIndexAttr(size));
@@ -1322,7 +1322,7 @@ ParseResult transform::TileOp::parse(OpAsmParser &parser,
   if (parser.parseOperand(target) ||
       parser.resolveOperand(target, pdlOperationType, result.operands) ||
       parseDynamicIndexList(parser, dynamicSizes, staticSizes,
-                            ShapedType::kDynamicSize) ||
+                            ShapedType::kDynamic) ||
       parser.resolveOperands(dynamicSizes, pdlOperationType, result.operands) ||
       parser.parseOptionalAttrDict(result.attributes))
     return ParseResult::failure();
@@ -1337,7 +1337,7 @@ ParseResult transform::TileOp::parse(OpAsmParser &parser,
 void TileOp::print(OpAsmPrinter &p) {
   p << ' ' << getTarget();
   printDynamicIndexList(p, getOperation(), getDynamicSizes(), getStaticSizes(),
-                        ShapedType::kDynamicSize);
+                        ShapedType::kDynamic);
   p.printOptionalAttrDict((*this)->getAttrs(), {getStaticSizesAttrName()});
 }
 
@@ -1375,7 +1375,7 @@ void transform::TileToForeachThreadOp::build(
   SmallVector<int64_t> staticTileSizes;
   SmallVector<Value> dynamicTileSizes;
   dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   // Call the default builder which sets up the proper operands segment sizes
   // attributes for multiple variadic operands. In the absence of this, horrible
   // bugs ensue.
@@ -1410,7 +1410,7 @@ void transform::TileToForeachThreadOp::build(
   SmallVector<int64_t> staticNumThreads;
   SmallVector<Value> dynamicNumThreads;
   dispatchIndexOpFoldResults(mixedNumThreads, dynamicNumThreads,
-                             staticNumThreads, ShapedType::kDynamicSize);
+                             staticNumThreads, ShapedType::kDynamic);
   // Call the default builder which sets up the proper operands segment sizes
   // attributes for multiple variadic operands. In the absence of this, horrible
   // bugs ensue.
@@ -1663,7 +1663,7 @@ SmallVector<OpFoldResult> transform::TileToScfForOp::getMixedSizes() {
   unsigned dynamicPos = 0;
   Builder builder(getContext());
   for (int64_t size : tileSizes) {
-    if (size == ShapedType::kDynamicSize) {
+    if (size == ShapedType::kDynamic) {
       results.push_back(dynamic[dynamicPos++]);
     } else {
       results.push_back(builder.getIndexAttr(size));
@@ -1681,7 +1681,7 @@ ParseResult transform::TileToScfForOp::parse(OpAsmParser &parser,
   if (parser.parseOperand(target) ||
       parser.resolveOperand(target, pdlOperationType, result.operands) ||
       parseDynamicIndexList(parser, dynamicSizes, staticSizes,
-                            ShapedType::kDynamicSize) ||
+                            ShapedType::kDynamic) ||
       parser.resolveOperands(dynamicSizes, pdlOperationType, result.operands) ||
       parser.parseOptionalAttrDict(result.attributes))
     return ParseResult::failure();
@@ -1696,7 +1696,7 @@ ParseResult transform::TileToScfForOp::parse(OpAsmParser &parser,
 void TileToScfForOp::print(OpAsmPrinter &p) {
   p << ' ' << getTarget();
   printDynamicIndexList(p, getOperation(), getDynamicSizes(), getStaticSizes(),
-                        ShapedType::kDynamicSize);
+                        ShapedType::kDynamic);
   p.printOptionalAttrDict((*this)->getAttrs(), {getStaticSizesAttrName()});
 }
 

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index b4867086dc74e..bdc7bac99897c 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -1706,7 +1706,7 @@ struct RemoveOutsDependency : public OpRewritePattern<GenericOp> {
         modifiedOutput = true;
         SmallVector<Value> dynamicDims;
         for (const auto &dim : llvm::enumerate(operandType.getShape())) {
-          if (dim.value() != ShapedType::kDynamicSize)
+          if (dim.value() != ShapedType::kDynamic)
             continue;
           dynamicDims.push_back(rewriter.createOrFold<tensor::DimOp>(
               loc, operandVal, dim.index()));

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
index 2d51b8d03d291..49bf3b3e9ea1e 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
@@ -156,10 +156,10 @@ static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
       continue;
     unsigned rank = tensorType.getRank();
     SmallVector<int64_t, 4> staticOffsetsVector(
-        rank, ShapedType::kDynamicStrideOrOffset);
-    SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
+        rank, ShapedType::kDynamic);
+    SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamic);
     SmallVector<int64_t, 4> staticStridesVector(
-        rank, ShapedType::kDynamicStrideOrOffset);
+        rank, ShapedType::kDynamic);
     resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
         tensorType, staticOffsetsVector, staticSizesVector,
         staticStridesVector));

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp b/mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
index baeb5c2952e6f..bff2d5406f5c2 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
@@ -425,7 +425,7 @@ FailureOr<Value> mlir::linalg::hoistPaddingOnTensors(
 
   // Create the packed tensor<?x?x..?xtransposedShape> into which we amortize
   // padding.
-  SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamicSize);
+  SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamic);
   // TODO: go grab dims when necessary, for now tensor::PadOp returns a static
   // tensor.
   llvm::append_range(packedShape, transposedTensorType->getShape());

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp b/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
index 1d966b31c574e..5b623a9413b85 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
@@ -65,7 +65,7 @@ static Value allocBuffer(ImplicitLocOpBuilder &b,
 
   // Fallback dynamic buffer.
   auto dynamicBufferType =
-      MemRefType::get(ShapedType::kDynamicSize, b.getIntegerType(8));
+      MemRefType::get(ShapedType::kDynamic, b.getIntegerType(8));
   Value mul = b.createOrFold<arith::MulIOp>(
       b.create<arith::ConstantIndexOp>(width), allocSize);
   if (options.useAlloca)
@@ -93,7 +93,7 @@ defaultAllocBufferCallBack(const LinalgPromotionOptions &options,
   Value buffer = allocBuffer(b, options, viewType.getElementType(), allocSize,
                              layout, alignment);
   SmallVector<int64_t, 4> dynSizes(boundingSubViewSize.size(),
-                                   ShapedType::kDynamicSize);
+                                   ShapedType::kDynamic);
   Value view = b.createOrFold<memref::ViewOp>(
       MemRefType::get(dynSizes, viewType.getElementType()), buffer, zero,
       boundingSubViewSize);
@@ -243,7 +243,7 @@ FailureOr<PromotionInfo> mlir::linalg::promoteSubviewAsNewBuffer(
     partialSizes.push_back(
         b.createOrFold<memref::DimOp>(loc, subView, resultDimIdx++));
   }
-  SmallVector<int64_t, 4> dynSizes(fullSizes.size(), ShapedType::kDynamicSize);
+  SmallVector<int64_t, 4> dynSizes(fullSizes.size(), ShapedType::kDynamic);
   // If a callback is not specified, then use the default implementation for
   // allocating the promoted buffer.
   Optional<Value> fullLocalView = allocationFn(b, subView, fullSizes, layout);

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp b/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp
index 26a49b91db1ed..efa6b1f91063e 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/SplitReduction.cpp
@@ -44,7 +44,7 @@ FailureOr<SplitReductionResult> mlir::linalg::splitReduction(
   unsigned reductionDim = dims[0];
   SmallVector<int64_t, 4> loopRanges = op.getStaticLoopRanges();
   int64_t reductionDimSize = loopRanges[reductionDim];
-  if (reductionDimSize == ShapedType::kDynamicSize ||
+  if (reductionDimSize == ShapedType::kDynamic ||
       reductionDimSize % ratio != 0)
     return b.notifyMatchFailure(
         op, "Reduction dimension not divisible by split ratio");
@@ -253,7 +253,7 @@ FailureOr<SplitReductionResult> mlir::linalg::splitReductionByScaling(
   unsigned reductionDimPos = dims[0];
   SmallVector<int64_t> loopRanges = op.getStaticLoopRanges();
   int64_t reductionDimSize = loopRanges[reductionDimPos];
-  if (reductionDimSize == ShapedType::kDynamicSize ||
+  if (reductionDimSize == ShapedType::kDynamic ||
       reductionDimSize % splitFactor != 0 ||
       insertSplitDimension >= loopRanges.size())
     return b.notifyMatchFailure(

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
index 02f4e9d02caa3..256ede93058ab 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
@@ -280,7 +280,7 @@ struct LinalgOpPartialReductionInterface
     for (int64_t idx : llvm::seq<int64_t>(0, oldShape.size() + 1)) {
       if (idx == insertSplitDimension) {
         dispatchIndexOpFoldResults(sizes[idx], dynamicDims, newOutputShape,
-                                   ShapedType::kDynamicStrideOrOffset);
+                                   ShapedType::kDynamic);
         continue;
       }
       int64_t oldIdx = idx < insertSplitDimension ? idx : idx - 1;

diff  --git a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
index fc343531da222..712d4c2de32f1 100644
--- a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
+++ b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
@@ -218,7 +218,7 @@ SmallVector<Value, 4> getDynOperands(Location loc, Value val, OpBuilder &b) {
   SmallVector<Value, 4> dynOperands;
   auto shapedType = val.getType().cast<ShapedType>();
   for (const auto &dim : llvm::enumerate(shapedType.getShape())) {
-    if (dim.value() == ShapedType::kDynamicSize)
+    if (dim.value() == ShapedType::kDynamic)
       dynOperands.push_back(createOrFoldDimOp(b, loc, val, dim.index()));
   }
   return dynOperands;

diff  --git a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
index 73c2b53fcfcbf..bf54d46065a73 100644
--- a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
+++ b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
@@ -31,22 +31,22 @@ namespace {
 namespace saturated_arith {
 struct Wrapper {
   static Wrapper stride(int64_t v) {
-    return (ShapedType::isDynamicStrideOrOffset(v)) ? Wrapper{true, 0}
+    return (ShapedType::isDynamic(v)) ? Wrapper{true, 0}
                                                     : Wrapper{false, v};
   }
   static Wrapper offset(int64_t v) {
-    return (ShapedType::isDynamicStrideOrOffset(v)) ? Wrapper{true, 0}
+    return (ShapedType::isDynamic(v)) ? Wrapper{true, 0}
                                                     : Wrapper{false, v};
   }
   static Wrapper size(int64_t v) {
     return (ShapedType::isDynamic(v)) ? Wrapper{true, 0} : Wrapper{false, v};
   }
   int64_t asOffset() {
-    return saturated ? ShapedType::kDynamicStrideOrOffset : v;
+    return saturated ? ShapedType::kDynamic : v;
   }
-  int64_t asSize() { return saturated ? ShapedType::kDynamicSize : v; }
+  int64_t asSize() { return saturated ? ShapedType::kDynamic : v; }
   int64_t asStride() {
-    return saturated ? ShapedType::kDynamicStrideOrOffset : v;
+    return saturated ? ShapedType::kDynamic : v;
   }
   bool operator==(Wrapper other) {
     return (saturated && other.saturated) ||
@@ -136,7 +136,7 @@ Type mlir::memref::getTensorTypeFromMemRefType(Type type) {
 /// - `memRefTy == memref<?x?xf32, strided<[?, 1], offset: ?>>`
 /// - `getAttributes == getConstantStrides` (i.e., a wrapper around
 /// `getStridesAndOffset`), and
-/// - `isDynamic == isDynamicStrideOrOffset`
+/// - `isDynamic == ShapedType::isDynamic`
 /// Will yield: `values == [2, 1]`
 static void constifyIndexValues(
     SmallVectorImpl<OpFoldResult> &values, MemRefType memRefTy,
@@ -296,7 +296,7 @@ struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> {
         newShapeConstants.push_back(constantIndexOp.value());
       } else {
         // Dynamic shape dimension not folded; copy dynamicSize from old memref.
-        newShapeConstants.push_back(ShapedType::kDynamicSize);
+        newShapeConstants.push_back(ShapedType::kDynamic);
         dynamicSizes.push_back(dynamicSize);
       }
       dynamicDimPos++;
@@ -705,16 +705,16 @@ bool CastOp::canFoldIntoConsumerOp(CastOp castOp) {
 
   // If cast is towards more static offset along any dimension, don't fold.
   if (sourceOffset != resultOffset)
-    if (ShapedType::isDynamicStrideOrOffset(sourceOffset) &&
-        !ShapedType::isDynamicStrideOrOffset(resultOffset))
+    if (ShapedType::isDynamic(sourceOffset) &&
+        !ShapedType::isDynamic(resultOffset))
       return false;
 
   // If cast is towards more static strides along any dimension, don't fold.
   for (auto it : llvm::zip(sourceStrides, resultStrides)) {
     auto ss = std::get<0>(it), st = std::get<1>(it);
     if (ss != st)
-      if (ShapedType::isDynamicStrideOrOffset(ss) &&
-          !ShapedType::isDynamicStrideOrOffset(st))
+      if (ShapedType::isDynamic(ss) &&
+          !ShapedType::isDynamic(st))
         return false;
   }
 
@@ -747,8 +747,8 @@ bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
       // same. They are also compatible if either one is dynamic (see
       // description of MemRefCastOp for details).
       auto checkCompatible = [](int64_t a, int64_t b) {
-        return (a == MemRefType::getDynamicStrideOrOffset() ||
-                b == MemRefType::getDynamicStrideOrOffset() || a == b);
+        return (ShapedType::isDynamic(a) ||
+                ShapedType::isDynamic(b) || a == b);
       };
       if (!checkCompatible(aOffset, bOffset))
         return false;
@@ -1445,7 +1445,7 @@ SmallVector<OpFoldResult>
 ExtractStridedMetadataOp::getConstifiedMixedStrides() {
   SmallVector<OpFoldResult> values = getAsOpFoldResult(getStrides());
   constifyIndexValues(values, getSource().getType(), getContext(),
-                      getConstantStrides, ShapedType::isDynamicStrideOrOffset);
+                      getConstantStrides, ShapedType::isDynamic);
   return values;
 }
 
@@ -1453,7 +1453,7 @@ OpFoldResult ExtractStridedMetadataOp::getConstifiedMixedOffset() {
   OpFoldResult offsetOfr = getAsOpFoldResult(getOffset());
   SmallVector<OpFoldResult> values(1, offsetOfr);
   constifyIndexValues(values, getSource().getType(), getContext(),
-                      getConstantOffset, ShapedType::isDynamicStrideOrOffset);
+                      getConstantOffset, ShapedType::isDynamic);
   return values[0];
 }
 
@@ -1772,11 +1772,11 @@ void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
@@ -1847,8 +1847,8 @@ LogicalResult ReinterpretCastOp::verify() {
 
   // Match offset in result memref type and in static_offsets attribute.
   int64_t expectedOffset = extractFromI64ArrayAttr(getStaticOffsets()).front();
-  if (!ShapedType::isDynamicStrideOrOffset(resultOffset) &&
-      !ShapedType::isDynamicStrideOrOffset(expectedOffset) &&
+  if (!ShapedType::isDynamic(resultOffset) &&
+      !ShapedType::isDynamic(expectedOffset) &&
       resultOffset != expectedOffset)
     return emitError("expected result type with offset = ")
            << resultOffset << " instead of " << expectedOffset;
@@ -1858,8 +1858,8 @@ LogicalResult ReinterpretCastOp::verify() {
            resultStrides, extractFromI64ArrayAttr(getStaticStrides())))) {
     int64_t resultStride = std::get<0>(en.value());
     int64_t expectedStride = std::get<1>(en.value());
-    if (!ShapedType::isDynamicStrideOrOffset(resultStride) &&
-        !ShapedType::isDynamicStrideOrOffset(expectedStride) &&
+    if (!ShapedType::isDynamic(resultStride) &&
+        !ShapedType::isDynamic(expectedStride) &&
         resultStride != expectedStride)
       return emitError("expected result type with stride = ")
              << expectedStride << " instead of " << resultStride
@@ -1909,7 +1909,7 @@ SmallVector<OpFoldResult> ReinterpretCastOp::getConstifiedMixedSizes() {
 SmallVector<OpFoldResult> ReinterpretCastOp::getConstifiedMixedStrides() {
   SmallVector<OpFoldResult> values = getMixedStrides();
   constifyIndexValues(values, getType(), getContext(), getConstantStrides,
-                      ShapedType::isDynamicStrideOrOffset);
+                      ShapedType::isDynamic);
   return values;
 }
 
@@ -1918,7 +1918,7 @@ OpFoldResult ReinterpretCastOp::getConstifiedMixedOffset() {
   assert(values.size() == 1 &&
          "reinterpret_cast must have one and only one offset");
   constifyIndexValues(values, getType(), getContext(), getConstantOffset,
-                      ShapedType::isDynamicStrideOrOffset);
+                      ShapedType::isDynamic);
   return values[0];
 }
 
@@ -2284,7 +2284,7 @@ computeCollapsedLayoutMap(MemRefType srcType,
       // the corresponding stride may have to be skipped. (See above comment.)
       // Therefore, the result stride cannot be statically determined and must
       // be dynamic.
-      resultStrides.push_back(ShapedType::kDynamicStrideOrOffset);
+      resultStrides.push_back(ShapedType::kDynamic);
     }
   }
 
@@ -2481,7 +2481,7 @@ LogicalResult ReshapeOp::verify() {
   if (resultMemRefType) {
     if (!resultMemRefType.getLayout().isIdentity())
       return emitOpError("result memref type should have identity affine map");
-    if (shapeSize == ShapedType::kDynamicSize)
+    if (shapeSize == ShapedType::kDynamic)
       return emitOpError("cannot use shape operand with dynamic length to "
                          "reshape to statically-ranked memref type");
     if (shapeSize != resultMemRefType.getRank())
@@ -2575,11 +2575,11 @@ Type SubViewOp::inferResultType(MemRefType sourceMemRefType,
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   return SubViewOp::inferResultType(sourceMemRefType, staticOffsets,
                                     staticSizes, staticStrides);
 }
@@ -2625,11 +2625,11 @@ Type SubViewOp::inferRankReducedResultType(ArrayRef<int64_t> resultShape,
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   return SubViewOp::inferRankReducedResultType(
       resultShape, sourceRankedTensorType, staticOffsets, staticSizes,
       staticStrides);
@@ -2646,11 +2646,11 @@ void SubViewOp::build(OpBuilder &b, OperationState &result,
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   auto sourceMemRefType = source.getType().cast<MemRefType>();
   // Structuring implementation this way avoids duplication between builders.
   if (!resultType) {

diff  --git a/mlir/lib/Dialect/MemRef/Transforms/SimplifyExtractStridedMetadata.cpp b/mlir/lib/Dialect/MemRef/Transforms/SimplifyExtractStridedMetadata.cpp
index bbf83575bd6c0..9d2713f0e8225 100644
--- a/mlir/lib/Dialect/MemRef/Transforms/SimplifyExtractStridedMetadata.cpp
+++ b/mlir/lib/Dialect/MemRef/Transforms/SimplifyExtractStridedMetadata.cpp
@@ -81,7 +81,7 @@ struct SubviewFolder : public OpRewritePattern<memref::SubViewOp> {
 
     detail::bindSymbolsList(rewriter.getContext(), symbols);
     AffineExpr expr = symbols.front();
-    values[0] = ShapedType::isDynamicStrideOrOffset(sourceOffset)
+    values[0] = ShapedType::isDynamic(sourceOffset)
                     ? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
                     : rewriter.getIndexAttr(sourceOffset);
     SmallVector<OpFoldResult> subOffsets = subview.getMixedOffsets();
@@ -91,7 +91,7 @@ struct SubviewFolder : public OpRewritePattern<memref::SubViewOp> {
     for (unsigned i = 0; i < sourceRank; ++i) {
       // Compute the stride.
       OpFoldResult origStride =
-          ShapedType::isDynamicStrideOrOffset(sourceStrides[i])
+          ShapedType::isDynamic(sourceStrides[i])
               ? origStrides[i]
               : OpFoldResult(rewriter.getIndexAttr(sourceStrides[i]));
       strides.push_back(makeComposedFoldedAffineApply(
@@ -273,7 +273,7 @@ SmallVector<OpFoldResult> getExpandedStrides(memref::ExpandShapeOp expandShape,
          "getStridesAndOffset must work on valid expand_shape");
 
   OpFoldResult origStride =
-      ShapedType::isDynamicStrideOrOffset(strides[groupId])
+      ShapedType::isDynamic(strides[groupId])
           ? origStrides[groupId]
           : builder.getIndexAttr(strides[groupId]);
 
@@ -425,7 +425,7 @@ getCollapsedStride(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
   int64_t innerMostDimForGroup = reassocGroup.back();
   int64_t innerMostStrideForGroup = strides[innerMostDimForGroup];
   collapsedStride.push_back(
-      ShapedType::isDynamicStrideOrOffset(innerMostStrideForGroup)
+      ShapedType::isDynamic(innerMostStrideForGroup)
           ? origStrides[innerMostDimForGroup]
           : builder.getIndexAttr(innerMostStrideForGroup));
 
@@ -483,7 +483,7 @@ struct ReshapeFolder : public OpRewritePattern<ReassociativeReshapeLikeOp> {
     unsigned reshapeRank = reshapeType.getRank();
 
     OpFoldResult offsetOfr =
-        ShapedType::isDynamicStrideOrOffset(offset)
+        ShapedType::isDynamic(offset)
             ? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
             : rewriter.getIndexAttr(offset);
 

diff  --git a/mlir/lib/Dialect/SPIRV/Transforms/SPIRVConversion.cpp b/mlir/lib/Dialect/SPIRV/Transforms/SPIRVConversion.cpp
index 286ff0b7eff2d..5d931ac5f3995 100644
--- a/mlir/lib/Dialect/SPIRV/Transforms/SPIRVConversion.cpp
+++ b/mlir/lib/Dialect/SPIRV/Transforms/SPIRVConversion.cpp
@@ -171,9 +171,9 @@ static Optional<int64_t> getTypeNumBytes(const SPIRVConversionOptions &options,
       return elementSize;
 
     auto dims = memRefType.getShape();
-    if (llvm::is_contained(dims, ShapedType::kDynamicSize) ||
-        offset == MemRefType::getDynamicStrideOrOffset() ||
-        llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()))
+    if (llvm::is_contained(dims, ShapedType::kDynamic) ||
+        ShapedType::isDynamic(offset) ||
+        llvm::is_contained(strides, ShapedType::kDynamic))
       return llvm::None;
 
     int64_t memrefSize = -1;
@@ -749,8 +749,8 @@ Value mlir::spirv::getVulkanElementPtr(SPIRVTypeConverter &typeConverter,
   int64_t offset;
   SmallVector<int64_t, 4> strides;
   if (failed(getStridesAndOffset(baseType, strides, offset)) ||
-      llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()) ||
-      offset == MemRefType::getDynamicStrideOrOffset()) {
+      llvm::is_contained(strides, ShapedType::kDynamic) ||
+      ShapedType::isDynamic(offset)) {
     return nullptr;
   }
 
@@ -780,8 +780,8 @@ Value mlir::spirv::getOpenCLElementPtr(SPIRVTypeConverter &typeConverter,
   int64_t offset;
   SmallVector<int64_t, 4> strides;
   if (failed(getStridesAndOffset(baseType, strides, offset)) ||
-      llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()) ||
-      offset == MemRefType::getDynamicStrideOrOffset()) {
+      llvm::is_contained(strides, ShapedType::kDynamic) ||
+      ShapedType::isDynamic(offset)) {
     return nullptr;
   }
 

diff  --git a/mlir/lib/Dialect/Shape/IR/Shape.cpp b/mlir/lib/Dialect/Shape/IR/Shape.cpp
index 0fd8d2de666d8..5c1a9fa85a1bb 100644
--- a/mlir/lib/Dialect/Shape/IR/Shape.cpp
+++ b/mlir/lib/Dialect/Shape/IR/Shape.cpp
@@ -1763,7 +1763,7 @@ LogicalResult mlir::shape::ShapeOfOp::inferReturnTypes(
   else {
     auto shapedTy = operands[0].getType().cast<ShapedType>();
     int64_t rank =
-        shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamicSize;
+        shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamic;
     Type indexTy = IndexType::get(context);
     Type extentTensorTy = RankedTensorType::get({rank}, indexTy);
     inferredReturnTypes.assign({extentTensorTy});

diff  --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index 36b45de2efeb3..7ee988bdcd16c 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -345,7 +345,7 @@ LogicalResult ConvertOp::verify() {
       // (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
       // matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
       for (unsigned d = 0, rank = tp1.getRank(); d < rank; d++)
-        if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamicSize)
+        if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
           return emitError("unexpected conversion mismatch in dimension ") << d;
       return success();
     }
@@ -499,7 +499,7 @@ LogicalResult ConcatenateOp::verify() {
   for (auto type : getInputs().getTypes()) {
     auto shape = type.cast<RankedTensorType>().getShape();
     for (auto dim : shape) {
-      if (dim == ShapedType::kDynamicSize)
+      if (ShapedType::isDynamic(dim))
         return emitError("Only statically-sized input tensors are supported.");
     }
   }
@@ -522,7 +522,7 @@ LogicalResult ConcatenateOp::verify() {
   for (unsigned i = 0; i < rank; i++) {
     auto dstDim = dstTp.getShape()[i];
     if (i == concatDim) {
-      if (dstDim != ShapedType::kDynamicSize) {
+      if (!ShapedType::isDynamic(dstDim)) {
         unsigned sumDim = 0;
         for (auto src : getInputs()) {
           // If we reach here, all inputs should have static shapes.
@@ -540,7 +540,7 @@ LogicalResult ConcatenateOp::verify() {
       int64_t prev = dstDim;
       for (auto src : getInputs()) {
         auto d = src.getType().cast<RankedTensorType>().getShape()[i];
-        if (prev != ShapedType::kDynamicSize && d != prev)
+        if (!ShapedType::isDynamic(prev) && d != prev)
           return emitError("All dimensions (expect for the concatenating one) "
                            "should be equal.");
         prev = d;
@@ -701,7 +701,7 @@ LogicalResult SortOp::verify() {
       int64_t dim = mtp.getShape()[0];
       // We can't check the size of dynamic dimension at compile-time, but all
       // xs and ys should have a dimension not less than n at runtime.
-      if (n && dim != ShapedType::kDynamicSize && dim < n.value())
+      if (n && !ShapedType::isDynamic(dim) && dim < n.value())
         return emitError(llvm::formatv("xs and ys need to have a dimension >= n"
                                        ": {0} < {1}",
                                        dim, n.value()));
@@ -744,7 +744,7 @@ LogicalResult SortCooOp::verify() {
   auto checkDim = [&](Value v, uint64_t min, const char *message) {
     MemRefType tp = v.getType().cast<MemRefType>();
     int64_t dim = tp.getShape()[0];
-    if (dim != ShapedType::kDynamicSize && dim < (int64_t)min) {
+    if (!ShapedType::isDynamic(dim) && dim < (int64_t)min) {
       emitError(llvm::formatv("{0} got {1} < {2}", message, dim, min));
     }
   };

diff  --git a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
index 531acc66c5b6d..4460c1840281b 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp
@@ -152,7 +152,7 @@ void SparseTensorLoopEmitter::initializeLoopEmit(
     auto rank = rtp.getRank();
     auto shape = rtp.getShape();
     auto enc = getSparseTensorEncoding(rtp);
-    auto dynShape = {ShapedType::kDynamicSize};
+    auto dynShape = {ShapedType::kDynamic};
     // Scan all dimensions of current tensor.
     for (int64_t d = 0; d < rank; d++) {
       // This should be called only once at beginning.
@@ -203,7 +203,7 @@ void SparseTensorLoopEmitter::initializeLoopEmit(
     } else {
       // Annotated sparse tensors.
       // We also need the value buffer for annotated all dense `sparse` tensor.
-      auto dynShape = {ShapedType::kDynamicSize};
+      auto dynShape = {ShapedType::kDynamic};
       auto sparseTp = MemRefType::get(dynShape, elementType);
       valBuffer[t] = builder.create<ToValuesOp>(loc, sparseTp, tensor);
     }
@@ -846,12 +846,12 @@ void mlir::sparse_tensor::genReshapeDstShape(
       // expanded from the i-th dimension in srcShape.
       // For example, if srcDim = 8, then the expanded shape could be <2x?x2>,
       // but not <2x?x?>.
-      if (staticDstShape[j] == ShapedType::kDynamicSize) {
+      if (staticDstShape[j] == ShapedType::kDynamic) {
         // The expanded dimension has dynamic size. We compute the dimension
         // by dividing srcDim by the product of the static dimensions.
         int64_t product = 1;
         for (unsigned k = start; k < start + map.size(); k++) {
-          if (staticDstShape[k] != ShapedType::kDynamicSize) {
+          if (staticDstShape[k] != ShapedType::kDynamic) {
             product *= staticDstShape[k];
           }
         }
@@ -959,7 +959,7 @@ Value mlir::sparse_tensor::genAlloca(OpBuilder &builder, Location loc,
 
 Value mlir::sparse_tensor::genAlloca(OpBuilder &builder, Location loc, Value sz,
                                      Type tp) {
-  auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
+  auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
   return builder.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
 }
 
@@ -976,7 +976,7 @@ Value mlir::sparse_tensor::allocDenseTensor(OpBuilder &builder, Location loc,
   auto memTp = MemRefType::get(shape, elemTp);
   SmallVector<Value> dynamicSizes;
   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
-    if (shape[i] == ShapedType::kDynamicSize)
+    if (shape[i] == ShapedType::kDynamic)
       dynamicSizes.push_back(sizes[i]);
   }
   Value mem = builder.create<memref::AllocOp>(loc, memTp, dynamicSizes);

diff  --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp
index b5e9826b703d2..0592009844c19 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp
@@ -722,7 +722,7 @@ LogicalResult matchAndRewriteSortOp(OpTy op, ValueRange xys, uint64_t nx,
     auto mtp = v.getType().cast<MemRefType>();
     if (!mtp.isDynamicDim(0)) {
       auto newMtp =
-          MemRefType::get({ShapedType::kDynamicSize}, mtp.getElementType());
+          MemRefType::get({ShapedType::kDynamic}, mtp.getElementType());
       v = rewriter.create<memref::CastOp>(loc, newMtp, v);
     }
     operands.push_back(v);
@@ -786,7 +786,7 @@ struct PushBackRewriter : OpRewritePattern<PushBackOp> {
 
       Value c2 = constantIndex(rewriter, loc, 2);
       auto bufferType =
-          MemRefType::get({ShapedType::kDynamicSize}, value.getType());
+          MemRefType::get({ShapedType::kDynamic}, value.getType());
       scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, bufferType, cond,
                                                   /*else=*/true);
       // True branch.

diff  --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
index 910b74414c0f1..775b20dab1751 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
@@ -237,16 +237,16 @@ convertSparseTensorType(Type type, SmallVectorImpl<Type> &fields) {
     // order. Clients of this type know what field is what from the sparse
     // tensor type.
     if (isCompressedDim(rType, r)) {
-      fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, ptrType));
-      fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
+      fields.push_back(MemRefType::get({ShapedType::kDynamic}, ptrType));
+      fields.push_back(MemRefType::get({ShapedType::kDynamic}, idxType));
     } else if (isSingletonDim(rType, r)) {
-      fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
+      fields.push_back(MemRefType::get({ShapedType::kDynamic}, idxType));
     } else {
       assert(isDenseDim(rType, r)); // no fields
     }
   }
   // The values array.
-  fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, eltType));
+  fields.push_back(MemRefType::get({ShapedType::kDynamic}, eltType));
   assert(fields.size() == lastField);
   return success();
 }
@@ -288,7 +288,7 @@ static void allocSchemeForRank(OpBuilder &builder, Location loc,
 /// Creates allocation operation.
 static Value createAllocation(OpBuilder &builder, Location loc, Type type,
                               Value sz, bool enableInit) {
-  auto memType = MemRefType::get({ShapedType::kDynamicSize}, type);
+  auto memType = MemRefType::get({ShapedType::kDynamic}, type);
   Value buffer = builder.create<memref::AllocOp>(loc, memType, sz);
   if (enableInit) {
     Value fillValue =
@@ -792,7 +792,7 @@ class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
     assert(sz); // This for sure is a sparse tensor
     // Generate a memref for `sz` elements of type `t`.
     auto genAlloc = [&](Type t) {
-      auto memTp = MemRefType::get({ShapedType::kDynamicSize}, t);
+      auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
       return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{*sz});
     };
     // Allocate temporary buffers for values/filled-switch and added.

diff  --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
index 8c8bf737352b1..7522e26b5853a 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
@@ -85,7 +85,7 @@ static Value sizeFromPtrAtDim(OpBuilder &builder, Location loc,
                               SparseTensorEncodingAttr &enc, ShapedType stp,
                               Value src, unsigned i) {
   auto shape = stp.getShape();
-  if (shape[i] == ShapedType::kDynamicSize)
+  if (shape[i] == ShapedType::kDynamic)
     return genLvlSizeCall(builder, loc, enc, src, i);
   return constantIndex(builder, loc, shape[i]);
 }
@@ -104,7 +104,7 @@ static void sizesFromType(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
                           Location loc, ShapedType stp) {
   auto shape = stp.getShape();
   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
-    uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
+    uint64_t s = shape[i] == ShapedType::kDynamic ? 0 : shape[i];
     sizes.push_back(constantIndex(builder, loc, s));
   }
 }
@@ -129,7 +129,7 @@ static void concatSizesFromInputs(OpBuilder &builder,
     sizesFromSrc(builder, sizes, loc, srcs[0]);
 
   // Sum up on the `dim` if the dimension is dynamic.
-  if (dstShape[dim] != ShapedType::kDynamicSize) {
+  if (dstShape[dim] != ShapedType::kDynamic) {
     // Faithfully take the static size.
     sizes[dim] = constantIndex(builder, loc, dstShape[dim]);
   } else {
@@ -151,7 +151,7 @@ static void concatSizesFromInputs(OpBuilder &builder,
 /// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
 /// this buffer must be explicitly deallocated by client.
 static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
-  auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
+  auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
   return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
 }
 
@@ -1037,7 +1037,7 @@ class SparseNumberOfEntriesConverter
     Location loc = op.getLoc();
     // Query values array size for the actually stored values size.
     Type eltType = op.getTensor().getType().cast<ShapedType>().getElementType();
-    auto resTp = MemRefType::get({ShapedType::kDynamicSize}, eltType);
+    auto resTp = MemRefType::get({ShapedType::kDynamic}, eltType);
     Value values = genValuesCall(rewriter, loc, resTp, adaptor.getOperands());
     rewriter.replaceOpWithNewOp<memref::DimOp>(op, values,
                                                constantIndex(rewriter, loc, 0));

diff  --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
index 7d7f8c266ddbd..1472b67668288 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
@@ -117,7 +117,7 @@ static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
                            Location loc, ShapedType stp, Value tensor) {
   for (const auto &d : enumerate(stp.getShape())) {
     Value dim;
-    if (d.value() == ShapedType::kDynamicSize)
+    if (d.value() == ShapedType::kDynamic)
       dim = builder.create<tensor::DimOp>(loc, tensor, d.index());
     else
       dim = constantIndex(builder, loc, d.value());
@@ -165,7 +165,7 @@ static void getDynamicSizes(RankedTensorType tp,
                             const SmallVectorImpl<Value> &sizes,
                             SmallVectorImpl<Value> &dynSizes) {
   for (const auto &d : enumerate(tp.getShape())) {
-    if (d.value() == ShapedType::kDynamicSize)
+    if (d.value() == ShapedType::kDynamic)
       dynSizes.push_back(sizes[d.index()]);
   }
 }
@@ -375,7 +375,7 @@ struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> {
       genReshapeDstShape(loc, rewriter, dstSizes, srcSizes, dstShape,
                          op.getReassociationIndices());
       for (auto &d : llvm::enumerate(dstShape)) {
-        if (d.value() == ShapedType::kDynamicSize)
+        if (d.value() == ShapedType::kDynamic)
           dstDynSizes.push_back(dstSizes[d.index()]);
       }
     }
@@ -465,7 +465,7 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
     if (!rtp.hasStaticShape()) {
       ArrayRef<int64_t> rShape = rtp.getShape();
       for (const auto &d : llvm::enumerate(rShape)) {
-        if (d.value() == ShapedType::kDynamicSize) {
+        if (d.value() == ShapedType::kDynamic) {
           Value v =
               createOrFoldDimOp(rewriter, loc, op.getOperand(0), d.index());
           rewriter.create<tensor::DimOp>(loc, op.getOperand(0), d.index());
@@ -705,7 +705,7 @@ struct ConvertRewriter : public OpRewritePattern<ConvertOp> {
     // Sort the COO tensor so that its elements are ordered via increasing
     // indices for the storage ordering of the dst tensor.
     SparseTensorEncodingAttr encSrc = getSparseTensorEncoding(srcTp);
-    auto dynShape = {ShapedType::kDynamicSize};
+    auto dynShape = {ShapedType::kDynamic};
     auto indTp =
         MemRefType::get(dynShape, getIndexOverheadType(rewriter, encSrc));
     uint64_t rank = dstTp.getRank();
@@ -888,7 +888,7 @@ struct NewRewriter : public OpRewritePattern<NewOp> {
           .getResult(0);
       ArrayRef<int64_t> dstShape = dstTp.getShape();
       for (auto &d : llvm::enumerate(dstShape)) {
-        if (d.value() == ShapedType::kDynamicSize) {
+        if (d.value() == ShapedType::kDynamic) {
           dynSizesArray.push_back(rewriter.create<memref::LoadOp>(
               loc, dimSizes, constantIndex(rewriter, loc, d.index())));
         }

diff  --git a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
index 31d4cc7eca880..801f33bf2ffc0 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
@@ -836,7 +836,7 @@ static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
   Value tensor = lhs->get();
   Location loc = op.getLoc();
   if (atStart) {
-    auto dynShape = {ShapedType::kDynamicSize};
+    auto dynShape = {ShapedType::kDynamic};
     Type etp = tensor.getType().cast<ShapedType>().getElementType();
     Type t1 = MemRefType::get(dynShape, etp);
     Type t2 = MemRefType::get(dynShape, builder.getI1Type());

diff  --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
index 31d892ffb6e41..019cffe34f900 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
@@ -518,7 +518,7 @@ void EmptyOp::build(OpBuilder &builder, OperationState &result,
   SmallVector<int64_t> staticShape;
   SmallVector<Value> dynamicSizes;
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticShape,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   build(builder, result, staticShape, elementType, dynamicSizes, encoding);
 }
 
@@ -1159,7 +1159,7 @@ struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
       }
       APInt index;
       if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
-        newShape.push_back(ShapedType::kDynamicSize);
+        newShape.push_back(ShapedType::kDynamic);
         newOperands.push_back(*operandsIt++);
         continue;
       }
@@ -1333,8 +1333,8 @@ computeTensorReshapeCollapsedType(RankedTensorType type,
     unsigned dim = m.getNumResults();
     auto band = shape.slice(currentDim, dim);
     int64_t size = 1;
-    if (llvm::is_contained(band, ShapedType::kDynamicSize))
-      size = ShapedType::kDynamicSize;
+    if (llvm::is_contained(band, ShapedType::kDynamic))
+      size = ShapedType::kDynamic;
     else
       for (unsigned d = 0; d < dim; ++d)
         size *= shape[currentDim + d];
@@ -1526,11 +1526,11 @@ RankedTensorType ExtractSliceOp::inferResultType(
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   return ExtractSliceOp::inferResultType(sourceShapedTensorType, staticOffsets,
                                          staticSizes, staticStrides);
 }
@@ -1574,11 +1574,11 @@ RankedTensorType ExtractSliceOp::inferCanonicalRankReducedResultType(
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   return ExtractSliceOp::inferCanonicalRankReducedResultType(
       desiredResultRank, sourceRankedTensorType, staticOffsets, staticSizes,
       staticStrides);
@@ -1595,11 +1595,11 @@ void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
   // Structuring implementation this way avoids duplication between builders.
   if (!resultType) {
@@ -1846,13 +1846,13 @@ class ConstantOpExtractSliceFolder final
 
     // Check if there are any dynamic parts, which are not supported.
     auto offsets = extractFromI64ArrayAttr(op.getStaticOffsets());
-    if (llvm::is_contained(offsets, ShapedType::kDynamicStrideOrOffset))
+    if (llvm::is_contained(offsets, ShapedType::kDynamic))
       return failure();
     auto sizes = extractFromI64ArrayAttr(op.getStaticSizes());
-    if (llvm::is_contained(sizes, ShapedType::kDynamicSize))
+    if (llvm::is_contained(sizes, ShapedType::kDynamic))
       return failure();
     auto strides = extractFromI64ArrayAttr(op.getStaticStrides());
-    if (llvm::is_contained(strides, ShapedType::kDynamicStrideOrOffset))
+    if (llvm::is_contained(strides, ShapedType::kDynamic))
       return failure();
 
     // Compute the stride for each dimension.
@@ -2014,11 +2014,11 @@ void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
@@ -2168,9 +2168,9 @@ class InsertSliceOpConstantArgumentFolder final
     SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
     SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
     SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
-    canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
+    canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamic);
     canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
-    canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
+    canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamic);
 
     // Create the new op in canonical form.
     auto sourceType = ExtractSliceOp::inferCanonicalRankReducedResultType(
@@ -2430,14 +2430,14 @@ RankedTensorType PadOp::inferResultType(RankedTensorType sourceType,
   SmallVector<int64_t, 4> inferredShape;
   for (auto i : llvm::seq<unsigned>(0, rank)) {
     if (sourceType.isDynamicDim(i) ||
-        staticLow[i] == ShapedType::kDynamicSize ||
-        staticHigh[i] == ShapedType::kDynamicSize) {
-      inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize
+        staticLow[i] == ShapedType::kDynamic ||
+        staticHigh[i] == ShapedType::kDynamic) {
+      inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamic
                                                   : resultShape[i]);
     } else {
       int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
       assert((resultShape.empty() || size == resultShape[i] ||
-              resultShape[i] == ShapedType::kDynamicSize) &&
+              resultShape[i] == ShapedType::kDynamic) &&
              "mismatch between inferred shape and result shape");
       inferredShape.push_back(size);
     }
@@ -2462,7 +2462,7 @@ void PadOp::build(OpBuilder &b, OperationState &result, Value source,
                   ArrayRef<NamedAttribute> attrs) {
   auto sourceType = source.getType().cast<RankedTensorType>();
   unsigned rank = sourceType.getRank();
-  SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize);
+  SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamic);
   build(b, result, source, staticVector, staticVector, low, high, nofold,
         attrs);
 }
@@ -2479,9 +2479,9 @@ void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
   // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
   // value as well.
   dispatchIndexOpFoldResults(low, dynamicLow, staticLow,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   if (!resultType) {
     resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh);
   }
@@ -2830,11 +2830,11 @@ void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result,
   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
-                             ShapedType::kDynamicSize);
+                             ShapedType::kDynamic);
   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
-                             ShapedType::kDynamicStrideOrOffset);
+                             ShapedType::kDynamic);
   build(b, result, {}, source, dest, dynamicOffsets, dynamicSizes,
         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));

diff  --git a/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp b/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
index 443a06d8ee553..49d31d2f1e487 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
@@ -113,7 +113,7 @@ Operation *tensor::bubbleUpPadSlice(OpBuilder &b, tensor::PadOp padOp,
     if (auto constInt = getConstantIntValue(val)) {
       staticIndices.push_back(*constInt);
     } else {
-      staticIndices.push_back(ShapedType::kDynamicSize);
+      staticIndices.push_back(ShapedType::kDynamic);
       dynIndices.push_back(val);
     }
   };
@@ -216,7 +216,7 @@ Operation *tensor::bubbleUpPadSlice(OpBuilder &b, tensor::PadOp padOp,
   // The shape of the result can be obtained from the sizes passed in.
   SmallVector<Value> dynDims;
   SmallVector<int64_t> shape;
-  dispatchIndexOpFoldResults(sizes, dynDims, shape, ShapedType::kDynamicSize);
+  dispatchIndexOpFoldResults(sizes, dynDims, shape, ShapedType::kDynamic);
   RankedTensorType resultType =
       RankedTensorType::get(shape, padOp.getResultType().getElementType());
 

diff  --git a/mlir/lib/Dialect/Tensor/Utils/Utils.cpp b/mlir/lib/Dialect/Tensor/Utils/Utils.cpp
index 5f6d180a70999..67f1ce1d62747 100644
--- a/mlir/lib/Dialect/Tensor/Utils/Utils.cpp
+++ b/mlir/lib/Dialect/Tensor/Utils/Utils.cpp
@@ -44,7 +44,7 @@ SmallVector<Value> mlir::tensor::createDynamicDimValues(OpBuilder &b,
   auto tensorTy = rankedTensor.getType().cast<RankedTensorType>();
   SmallVector<Value> dynamicDims;
   for (const auto &en : llvm::enumerate(tensorTy.getShape())) {
-    if (en.value() == ShapedType::kDynamicSize)
+    if (en.value() == ShapedType::kDynamic)
       dynamicDims.push_back(
           b.create<tensor::DimOp>(loc, rankedTensor, en.index()));
   }

diff  --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index e33d2bc274c2e..d5ae1196cd1fe 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -413,13 +413,13 @@ LogicalResult tosa::ConcatOp::inferReturnTypeComponents(
 
     // Copy the Operand's rank.
     if (!hasRankedInput)
-      outputShape.resize(operandShape.getRank(), ShapedType::kDynamicSize);
+      outputShape.resize(operandShape.getRank(), ShapedType::kDynamic);
 
     // Copy shapes until the dim is non-dynamic.
     for (int i = 0, s = operandShape.getRank(); i < s; i++) {
       if (i == axis || operandShape.isDynamicDim(i))
         continue;
-      if (outputShape[i] == ShapedType::kDynamicSize)
+      if (outputShape[i] == ShapedType::kDynamic)
         outputShape[i] = operandShape.getDimSize(i);
       if (outputShape[i] != operandShape.getDimSize(i))
         return failure();
@@ -441,7 +441,7 @@ LogicalResult tosa::ConcatOp::inferReturnTypeComponents(
     // We need to know the length of the concatenation axis of all inputs to
     // determine the dimension size of the output shape.
     if (!operandShape.hasRank() || operandShape.isDynamicDim(axis)) {
-      concatDimSize = ShapedType::kDynamicSize;
+      concatDimSize = ShapedType::kDynamic;
       break;
     }
 
@@ -485,7 +485,7 @@ LogicalResult tosa::FullyConnectedOp::inferReturnTypeComponents(
 
   // All shapes are dynamic.
   SmallVector<int64_t> outShape;
-  outShape.resize(2, ShapedType::kDynamicSize);
+  outShape.resize(2, ShapedType::kDynamic);
 
   if (inputShape.hasRank()) {
     outShape[0] = inputShape.getDimSize(0);
@@ -496,7 +496,7 @@ LogicalResult tosa::FullyConnectedOp::inferReturnTypeComponents(
   }
 
   if (biasShape.hasRank()) {
-    outShape[1] = outShape[1] == ShapedType::kDynamicSize
+    outShape[1] = outShape[1] == ShapedType::kDynamic
                       ? biasShape.getDimSize(0)
                       : outShape[1];
   }
@@ -516,7 +516,7 @@ LogicalResult tosa::MatMulOp::inferReturnTypeComponents(
 
   // All shapes are dynamic.
   SmallVector<int64_t> outShape;
-  outShape.resize(3, ShapedType::kDynamicSize);
+  outShape.resize(3, ShapedType::kDynamic);
 
   if (lhsShape.hasRank()) {
     outShape[0] = lhsShape.getDimSize(0);
@@ -524,7 +524,7 @@ LogicalResult tosa::MatMulOp::inferReturnTypeComponents(
   }
 
   if (rhsShape.hasRank()) {
-    outShape[0] = outShape[0] == ShapedType::kDynamicSize
+    outShape[0] = outShape[0] == ShapedType::kDynamic
                       ? rhsShape.getDimSize(0)
                       : outShape[0];
     outShape[2] = rhsShape.getDimSize(2);
@@ -557,7 +557,7 @@ LogicalResult tosa::PadOp::inferReturnTypeComponents(
       return success();
     }
 
-    outputShape.resize(paddingShape.getDimSize(0), ShapedType::kDynamicSize);
+    outputShape.resize(paddingShape.getDimSize(0), ShapedType::kDynamic);
     inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
     return success();
   }
@@ -565,7 +565,7 @@ LogicalResult tosa::PadOp::inferReturnTypeComponents(
   DenseIntElementsAttr paddings;
   // If the paddings value is not a constant, all dimensions must be dynamic.
   if (!matchPattern(operands[1], m_Constant(&paddings))) {
-    outputShape.resize(inputShape.getRank(), ShapedType::kDynamicSize);
+    outputShape.resize(inputShape.getRank(), ShapedType::kDynamic);
     inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
     return success();
   }
@@ -578,7 +578,7 @@ LogicalResult tosa::PadOp::inferReturnTypeComponents(
   outputShape.reserve(inputShape.getRank());
   for (int i = 0, s = inputShape.getRank(); i < s; i++) {
     if (inputShape.isDynamicDim(i)) {
-      outputShape.push_back(ShapedType::kDynamicSize);
+      outputShape.push_back(ShapedType::kDynamic);
       continue;
     }
 
@@ -592,7 +592,7 @@ LogicalResult tosa::PadOp::inferReturnTypeComponents(
 
 static SmallVector<int64_t> convertToMlirShape(ArrayRef<int64_t> shape) {
   return to_vector(llvm::map_range(shape, [](int64_t dim) {
-    return dim == -1 ? ShapedType::kDynamicSize : dim;
+    return dim == -1 ? ShapedType::kDynamic : dim;
   }));
 }
 
@@ -637,7 +637,7 @@ LogicalResult tosa::TileOp::inferReturnTypeComponents(
   ShapeAdaptor inputShape = operands.getShape(0);
   SmallVector<int64_t> outputShape;
   if (!inputShape.hasRank()) {
-    outputShape.resize(multiples.size(), ShapedType::kDynamicSize);
+    outputShape.resize(multiples.size(), ShapedType::kDynamic);
     inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
     return success();
   }
@@ -653,7 +653,7 @@ LogicalResult tosa::TileOp::inferReturnTypeComponents(
   outputShape.reserve(multiples.size());
   for (int i = 0, s = inputShape.getRank(); i < s; i++) {
     int64_t dim = inputShape.getDimSize(i);
-    if (dim != ShapedType::kDynamicSize)
+    if (dim != ShapedType::kDynamic)
       dim *= multipleValues[i];
     outputShape.push_back(dim);
   }
@@ -662,7 +662,6 @@ LogicalResult tosa::TileOp::inferReturnTypeComponents(
   return success();
 }
 
-
 LogicalResult tosa::ReshapeOp::inferReturnTypeComponents(
     MLIRContext *context, ::llvm::Optional<Location> location,
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
@@ -728,7 +727,7 @@ LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
   // can determine the output rank.
   SmallVector<int64_t> outputShape;
   if (!inputShape.hasRank()) {
-    outputShape.resize(permsShape.getDimSize(0), ShapedType::kDynamicSize);
+    outputShape.resize(permsShape.getDimSize(0), ShapedType::kDynamic);
     inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
     return success();
   }
@@ -756,7 +755,7 @@ LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
     return success();
   }
 
-  outputShape.resize(inputShape.getRank(), ShapedType::kDynamicSize);
+  outputShape.resize(inputShape.getRank(), ShapedType::kDynamic);
   // If the permuations are a constant we can directly determine the output
   // shape.
   if (ShapeAdaptor permShape = operands.getValueAsShape(1)) {
@@ -775,7 +774,7 @@ LogicalResult tosa::GatherOp::inferReturnTypeComponents(
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
   llvm::SmallVector<int64_t> outputShape;
-  outputShape.resize(3, ShapedType::kDynamicSize);
+  outputShape.resize(3, ShapedType::kDynamic);
 
   ShapeAdaptor valuesShape = operands.getShape(0);
   if (valuesShape.hasRank()) {
@@ -785,9 +784,9 @@ LogicalResult tosa::GatherOp::inferReturnTypeComponents(
 
   ShapeAdaptor indicesShape = operands.getShape(1);
   if (indicesShape.hasRank()) {
-    if (outputShape[0] == ShapedType::kDynamicSize)
+    if (outputShape[0] == ShapedType::kDynamic)
       outputShape[0] = indicesShape.getDimSize(0);
-    if (outputShape[1] == ShapedType::kDynamicSize)
+    if (outputShape[1] == ShapedType::kDynamic)
       outputShape[1] = indicesShape.getDimSize(1);
   }
 
@@ -801,7 +800,7 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
   ResizeOpAdaptor adaptor(operands, attributes);
   llvm::SmallVector<int64_t, 4> outputShape;
-  outputShape.resize(4, ShapedType::kDynamicSize);
+  outputShape.resize(4, ShapedType::kDynamic);
 
   ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
   if (!inputShape.hasRank())
@@ -812,8 +811,8 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
   int64_t inputHeight = inputShape.getDimSize(1);
   int64_t inputWidth = inputShape.getDimSize(2);
 
-  if ((inputHeight == ShapedType::kDynamicSize) ||
-      (inputWidth == ShapedType::kDynamicSize))
+  if ((inputHeight == ShapedType::kDynamic) ||
+      (inputWidth == ShapedType::kDynamic))
     return failure();
 
   llvm::SmallVector<int64_t> scaleInt;
@@ -843,7 +842,7 @@ LogicalResult tosa::ScatterOp::inferReturnTypeComponents(
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
   llvm::SmallVector<int64_t> outputShape;
-  outputShape.resize(3, ShapedType::kDynamicSize);
+  outputShape.resize(3, ShapedType::kDynamic);
 
   ShapeAdaptor valuesInShape = operands.getShape(0);
   if (valuesInShape.hasRank()) {
@@ -854,15 +853,15 @@ LogicalResult tosa::ScatterOp::inferReturnTypeComponents(
 
   ShapeAdaptor indicesShape = operands.getShape(1);
   if (indicesShape.hasRank()) {
-    if (outputShape[0] == ShapedType::kDynamicSize)
+    if (outputShape[0] == ShapedType::kDynamic)
       outputShape[0] = indicesShape.getDimSize(0);
   }
 
   ShapeAdaptor inputShape = operands.getShape(2);
   if (inputShape.hasRank()) {
-    if (outputShape[0] == ShapedType::kDynamicSize)
+    if (outputShape[0] == ShapedType::kDynamic)
       outputShape[0] = inputShape.getDimSize(0);
-    if (outputShape[2] == ShapedType::kDynamicSize)
+    if (outputShape[2] == ShapedType::kDynamic)
       outputShape[2] = inputShape.getDimSize(2);
   }
 
@@ -970,7 +969,7 @@ static LogicalResult poolingInferReturnTypes(
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
   ShapeAdaptor inputShape = operands.getShape(0);
   llvm::SmallVector<int64_t> outputShape;
-  outputShape.resize(4, ShapedType::kDynamicSize);
+  outputShape.resize(4, ShapedType::kDynamic);
 
   // We only know the rank if the input type is unranked.
   if (!inputShape) {
@@ -1011,13 +1010,13 @@ LogicalResult Conv2DOp::inferReturnTypeComponents(
     MLIRContext *context, ::llvm::Optional<Location> location,
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
-  llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamicSize);
+  llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic);
   Conv2DOp::Adaptor adaptor(operands.getValues(), attributes);
 
-  int64_t inputWidth = ShapedType::kDynamicSize;
-  int64_t inputHeight = ShapedType::kDynamicSize;
-  int64_t weightWidth = ShapedType::kDynamicSize;
-  int64_t weightHeight = ShapedType::kDynamicSize;
+  int64_t inputWidth = ShapedType::kDynamic;
+  int64_t inputHeight = ShapedType::kDynamic;
+  int64_t weightWidth = ShapedType::kDynamic;
+  int64_t weightHeight = ShapedType::kDynamic;
 
   // Input shape describes input width/height and batch.
 
@@ -1078,16 +1077,16 @@ LogicalResult Conv3DOp::inferReturnTypeComponents(
     MLIRContext *context, ::llvm::Optional<Location> location,
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
-  llvm::SmallVector<int64_t> outputShape(5, ShapedType::kDynamicSize);
+  llvm::SmallVector<int64_t> outputShape(5, ShapedType::kDynamic);
   Conv3DOp::Adaptor adaptor(operands.getValues(), attributes);
 
-  int64_t inputWidth = ShapedType::kDynamicSize;
-  int64_t inputHeight = ShapedType::kDynamicSize;
-  int64_t inputDepth = ShapedType::kDynamicSize;
+  int64_t inputWidth = ShapedType::kDynamic;
+  int64_t inputHeight = ShapedType::kDynamic;
+  int64_t inputDepth = ShapedType::kDynamic;
 
-  int64_t weightWidth = ShapedType::kDynamicSize;
-  int64_t weightHeight = ShapedType::kDynamicSize;
-  int64_t weightDepth = ShapedType::kDynamicSize;
+  int64_t weightWidth = ShapedType::kDynamic;
+  int64_t weightHeight = ShapedType::kDynamic;
+  int64_t weightDepth = ShapedType::kDynamic;
 
   // Input shape describes input width/height and batch.
   ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
@@ -1169,16 +1168,16 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
     MLIRContext *context, ::llvm::Optional<Location> location,
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
-  llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamicSize);
+  llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic);
   DepthwiseConv2DOp::Adaptor adaptor(operands.getValues(), attributes);
 
-  int64_t inputWidth = ShapedType::kDynamicSize;
-  int64_t inputHeight = ShapedType::kDynamicSize;
-  int64_t inputChannels = ShapedType::kDynamicSize;
+  int64_t inputWidth = ShapedType::kDynamic;
+  int64_t inputHeight = ShapedType::kDynamic;
+  int64_t inputChannels = ShapedType::kDynamic;
 
-  int64_t weightWidth = ShapedType::kDynamicSize;
-  int64_t weightHeight = ShapedType::kDynamicSize;
-  int64_t depthChannels = ShapedType::kDynamicSize;
+  int64_t weightWidth = ShapedType::kDynamic;
+  int64_t weightHeight = ShapedType::kDynamic;
+  int64_t depthChannels = ShapedType::kDynamic;
 
   // Input shape describes input width/height and batch.
   ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
@@ -1254,10 +1253,10 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
   getI64Values(adaptor.getOutShape(), outputShape);
   outputShape = convertToMlirShape(outputShape);
 
-  int64_t inputWidth = ShapedType::kDynamicSize;
-  int64_t inputHeight = ShapedType::kDynamicSize;
-  int64_t weightWidth = ShapedType::kDynamicSize;
-  int64_t weightHeight = ShapedType::kDynamicSize;
+  int64_t inputWidth = ShapedType::kDynamic;
+  int64_t inputHeight = ShapedType::kDynamic;
+  int64_t weightWidth = ShapedType::kDynamic;
+  int64_t weightHeight = ShapedType::kDynamic;
 
   // Input shape describes input width/height and batch.
   ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());

diff  --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
index 65ac820056e22..d70562400ac7a 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
@@ -58,7 +58,7 @@ struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
 
     // Reshape input to [N,IH,IW,IC] -> [N * IH * IW, IC].
     ArrayRef<int64_t> inputShape = inputType.getShape();
-    int64_t combined = ShapedType::kDynamicSize;
+    int64_t combined = ShapedType::kDynamic;
     if (numDynamic == 0)
       combined = inputShape[0] * inputShape[1] * inputShape[2];
     llvm::SmallVector<int64_t, 2> revisedInputShape{combined, inputShape[3]};

diff  --git a/mlir/lib/Dialect/Traits.cpp b/mlir/lib/Dialect/Traits.cpp
index 1b3b373fef3fd..5c18fcff7c419 100644
--- a/mlir/lib/Dialect/Traits.cpp
+++ b/mlir/lib/Dialect/Traits.cpp
@@ -94,7 +94,7 @@ bool OpTrait::util::getBroadcastedShape(ArrayRef<int64_t> shape1,
       } else if (*i2 == 1) {
         *iR = *i1;
       } else {
-        *iR = ShapedType::kDynamicSize;
+        *iR = ShapedType::kDynamic;
       }
     } else {
       if (*i1 == *i2 || *i2 == 1) {

diff  --git a/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp b/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
index e31d069b99900..b65c027f5b640 100644
--- a/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
+++ b/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
@@ -46,7 +46,7 @@ mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
       break;
 
     int64_t currTargetShape = targetShape[targetDim];
-    while (sourceShape[sourceDim] != ShapedType::kDynamicSize &&
+    while (sourceShape[sourceDim] != ShapedType::kDynamic &&
            prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape &&
            sourceDim < sourceShape.size()) {
       prodOfCollapsedDims *= sourceShape[sourceDim];
@@ -56,15 +56,15 @@ mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
     // If the current expanded dimension is dynamic, then the collapsed
     // dimensions should also be dynamic and product of all previous unprocessed
     // dimensions of the expanded shape should be 1.
-    if (sourceShape[sourceDim] == ShapedType::kDynamicSize &&
-        (currTargetShape != ShapedType::kDynamicSize ||
+    if (sourceShape[sourceDim] == ShapedType::kDynamic &&
+        (currTargetShape != ShapedType::kDynamic ||
          prodOfCollapsedDims != 1))
       return llvm::None;
 
     // If the collapsed dim is dynamic, the current expanded dim should also
     // be dynamic.
-    if (currTargetShape == ShapedType::kDynamicSize &&
-        sourceShape[sourceDim] != ShapedType::kDynamicSize)
+    if (currTargetShape == ShapedType::kDynamic &&
+        sourceShape[sourceDim] != ShapedType::kDynamic)
       return llvm::None;
 
     // For static shapes, if the product of dimensions of the expanded shape
@@ -83,7 +83,7 @@ mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
   // Process any remaining entries in the source shape. They all need to be
   // 1 or dynamic.
   for (; sourceDim < sourceShape.size(); sourceDim++) {
-    if (sourceShape[sourceDim] != ShapedType::kDynamicSize &&
+    if (sourceShape[sourceDim] != ShapedType::kDynamic &&
         sourceShape[sourceDim] != 1)
       return llvm::None;
     // The map is empty when the target type is a scalar.

diff  --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransferSplitRewritePatterns.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransferSplitRewritePatterns.cpp
index 52f2b83c05d5b..323a173db1d2e 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransferSplitRewritePatterns.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransferSplitRewritePatterns.cpp
@@ -170,13 +170,13 @@ static MemRefType getCastCompatibleMemRefType(MemRefType aT, MemRefType bT) {
       resStrides(bT.getRank(), 0);
   for (int64_t idx = 0, e = aT.getRank(); idx < e; ++idx) {
     resShape[idx] =
-        (aShape[idx] == bShape[idx]) ? aShape[idx] : ShapedType::kDynamicSize;
+        (aShape[idx] == bShape[idx]) ? aShape[idx] : ShapedType::kDynamic;
     resStrides[idx] = (aStrides[idx] == bStrides[idx])
                           ? aStrides[idx]
-                          : ShapedType::kDynamicStrideOrOffset;
+                          : ShapedType::kDynamic;
   }
   resOffset =
-      (aOffset == bOffset) ? aOffset : ShapedType::kDynamicStrideOrOffset;
+      (aOffset == bOffset) ? aOffset : ShapedType::kDynamic;
   return MemRefType::get(
       resShape, aT.getElementType(),
       StridedLayoutAttr::get(aT.getContext(), resOffset, resStrides));

diff  --git a/mlir/lib/IR/BuiltinAttributes.cpp b/mlir/lib/IR/BuiltinAttributes.cpp
index 8a3c162f59423..a9671d627ac94 100644
--- a/mlir/lib/IR/BuiltinAttributes.cpp
+++ b/mlir/lib/IR/BuiltinAttributes.cpp
@@ -207,7 +207,7 @@ DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) {
 /// Prints a strided layout attribute.
 void StridedLayoutAttr::print(llvm::raw_ostream &os) const {
   auto printIntOrQuestion = [&](int64_t value) {
-    if (value == ShapedType::kDynamicStrideOrOffset)
+    if (ShapedType::isDynamic(value))
       os << "?";
     else
       os << value;
@@ -1770,7 +1770,7 @@ AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides,
 
   // AffineExpr for offset.
   // Static case.
-  if (offset != MemRefType::getDynamicStrideOrOffset()) {
+  if (!ShapedType::isDynamic(offset)) {
     auto cst = getAffineConstantExpr(offset, context);
     expr = cst;
   } else {
@@ -1787,7 +1787,7 @@ AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides,
     auto d = getAffineDimExpr(dim, context);
     AffineExpr mult;
     // Static case.
-    if (stride != MemRefType::getDynamicStrideOrOffset())
+    if (!ShapedType::isDynamic(stride))
       mult = getAffineConstantExpr(stride, context);
     else
       // Dynamic case, new symbol for each new stride.

diff  --git a/mlir/lib/IR/BuiltinTypeInterfaces.cpp b/mlir/lib/IR/BuiltinTypeInterfaces.cpp
index aaa2233c24394..bd7f617e801a6 100644
--- a/mlir/lib/IR/BuiltinTypeInterfaces.cpp
+++ b/mlir/lib/IR/BuiltinTypeInterfaces.cpp
@@ -23,8 +23,8 @@ using namespace mlir::detail;
 // ShapedType
 //===----------------------------------------------------------------------===//
 
-constexpr int64_t ShapedType::kDynamicSize;
-constexpr int64_t ShapedType::kDynamicStrideOrOffset;
+constexpr int64_t ShapedType::kDynamic;
+constexpr int64_t ShapedType::kDynamic;
 
 int64_t ShapedType::getNumElements(ArrayRef<int64_t> shape) {
   int64_t num = 1;

diff  --git a/mlir/lib/IR/BuiltinTypes.cpp b/mlir/lib/IR/BuiltinTypes.cpp
index f4d64c97836d1..85592dbae6d22 100644
--- a/mlir/lib/IR/BuiltinTypes.cpp
+++ b/mlir/lib/IR/BuiltinTypes.cpp
@@ -608,7 +608,7 @@ LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError,
   if (!BaseMemRefType::isValidElementType(elementType))
     return emitError() << "invalid memref element type";
 
-  // Negative sizes are not allowed except for `kDynamicSize`.
+  // Negative sizes are not allowed except for `kDynamic`.
   for (int64_t s : shape)
     if (s < 0 && !ShapedType::isDynamic(s))
       return emitError() << "invalid memref size";
@@ -705,7 +705,7 @@ static LogicalResult extractStrides(AffineExpr e,
 }
 
 /// A stride specification is a list of integer values that are either static
-/// or dynamic (encoded with ShapedType::kDynamicStrideOrOffset). Strides encode
+/// or dynamic (encoded with ShapedType::kDynamic). Strides encode
 /// the distance in the number of elements between successive entries along a
 /// particular dimension.
 ///
@@ -794,12 +794,12 @@ LogicalResult mlir::getStridesAndOffset(MemRefType t,
   if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>())
     offset = cst.getValue();
   else
-    offset = ShapedType::kDynamicStrideOrOffset;
+    offset = ShapedType::kDynamic;
   for (auto e : strideExprs) {
     if (auto c = e.dyn_cast<AffineConstantExpr>())
       strides.push_back(c.getValue());
     else
-      strides.push_back(ShapedType::kDynamicStrideOrOffset);
+      strides.push_back(ShapedType::kDynamic);
   }
   return success();
 }

diff  --git a/mlir/lib/Interfaces/ViewLikeInterface.cpp b/mlir/lib/Interfaces/ViewLikeInterface.cpp
index 89ebd81271721..f818df1e31595 100644
--- a/mlir/lib/Interfaces/ViewLikeInterface.cpp
+++ b/mlir/lib/Interfaces/ViewLikeInterface.cpp
@@ -55,17 +55,17 @@ mlir::detail::verifyOffsetSizeAndStrideOp(OffsetSizeAndStrideOpInterface op) {
            << op.getMixedSizes().size() << " vs " << op.getMixedStrides().size()
            << ") so the rank of the result type is well-formed.";
 
-  if (failed(verifyListOfOperandsOrIntegers(
-          op, "offset", maxRanks[0], op.static_offsets(), op.offsets(),
-          ShapedType::isDynamicStrideOrOffset)))
+  if (failed(verifyListOfOperandsOrIntegers(op, "offset", maxRanks[0],
+                                            op.static_offsets(), op.offsets(),
+                                            ShapedType::isDynamic)))
     return failure();
   if (failed(verifyListOfOperandsOrIntegers(op, "size", maxRanks[1],
                                             op.static_sizes(), op.sizes(),
                                             ShapedType::isDynamic)))
     return failure();
-  if (failed(verifyListOfOperandsOrIntegers(
-          op, "stride", maxRanks[2], op.static_strides(), op.strides(),
-          ShapedType::isDynamicStrideOrOffset)))
+  if (failed(verifyListOfOperandsOrIntegers(op, "stride", maxRanks[2],
+                                            op.static_strides(), op.strides(),
+                                            ShapedType::isDynamic)))
     return failure();
   return success();
 }
@@ -166,13 +166,12 @@ mlir::getMixedValues(ArrayAttr staticValues, ValueRange dynamicValues,
 SmallVector<OpFoldResult, 4>
 mlir::getMixedStridesOrOffsets(ArrayAttr staticValues,
                                ValueRange dynamicValues) {
-  return getMixedValues(staticValues, dynamicValues,
-                        ShapedType::kDynamicStrideOrOffset);
+  return getMixedValues(staticValues, dynamicValues, ShapedType::kDynamic);
 }
 
 SmallVector<OpFoldResult, 4> mlir::getMixedSizes(ArrayAttr staticValues,
                                                  ValueRange dynamicValues) {
-  return getMixedValues(staticValues, dynamicValues, ShapedType::kDynamicSize);
+  return getMixedValues(staticValues, dynamicValues, ShapedType::kDynamic);
 }
 
 std::pair<ArrayAttr, SmallVector<Value>>
@@ -194,12 +193,11 @@ mlir::decomposeMixedValues(Builder &b,
 
 std::pair<ArrayAttr, SmallVector<Value>> mlir::decomposeMixedStridesOrOffsets(
     OpBuilder &b, const SmallVectorImpl<OpFoldResult> &mixedValues) {
-  return decomposeMixedValues(b, mixedValues,
-                              ShapedType::kDynamicStrideOrOffset);
+  return decomposeMixedValues(b, mixedValues, ShapedType::kDynamic);
 }
 
 std::pair<ArrayAttr, SmallVector<Value>>
 mlir::decomposeMixedSizes(OpBuilder &b,
                           const SmallVectorImpl<OpFoldResult> &mixedValues) {
-  return decomposeMixedValues(b, mixedValues, ShapedType::kDynamicSize);
+  return decomposeMixedValues(b, mixedValues, ShapedType::kDynamic);
 }

diff  --git a/mlir/test/lib/Analysis/TestMemRefStrideCalculation.cpp b/mlir/test/lib/Analysis/TestMemRefStrideCalculation.cpp
index 30bf50c76a70f..c9e72f844a1fa 100644
--- a/mlir/test/lib/Analysis/TestMemRefStrideCalculation.cpp
+++ b/mlir/test/lib/Analysis/TestMemRefStrideCalculation.cpp
@@ -41,13 +41,13 @@ void TestMemRefStrideCalculation::runOnOperation() {
       return;
     }
     llvm::outs() << "MemRefType offset: ";
-    if (offset == MemRefType::getDynamicStrideOrOffset())
+    if (ShapedType::isDynamic(offset))
       llvm::outs() << "?";
     else
       llvm::outs() << offset;
     llvm::outs() << " strides: ";
     llvm::interleaveComma(strides, llvm::outs(), [&](int64_t v) {
-      if (v == MemRefType::getDynamicStrideOrOffset())
+      if (ShapedType::isDynamic(v))
         llvm::outs() << "?";
       else
         llvm::outs() << v;

diff  --git a/mlir/test/lib/Dialect/Test/TestDialect.cpp b/mlir/test/lib/Dialect/Test/TestDialect.cpp
index b560df92ba98a..93e4fbaac7795 100644
--- a/mlir/test/lib/Dialect/Test/TestDialect.cpp
+++ b/mlir/test/lib/Dialect/Test/TestDialect.cpp
@@ -1172,7 +1172,7 @@ LogicalResult OpWithShapedTypeInferTypeInterfaceOp::inferReturnTypeComponents(
     return emitOptionalError(location, "only shaped type operands allowed");
   }
   int64_t dim =
-      sval.hasRank() ? sval.getShape().front() : ShapedType::kDynamicSize;
+      sval.hasRank() ? sval.getShape().front() : ShapedType::kDynamic;
   auto type = IntegerType::get(context, 17);
   inferredReturnShapes.push_back(ShapedTypeComponents({dim}, type));
   return success();

diff  --git a/mlir/unittests/Dialect/BroadcastShapeTest.cpp b/mlir/unittests/Dialect/BroadcastShapeTest.cpp
index f1ab02d376c92..db8afe5bceeaf 100644
--- a/mlir/unittests/Dialect/BroadcastShapeTest.cpp
+++ b/mlir/unittests/Dialect/BroadcastShapeTest.cpp
@@ -47,7 +47,7 @@ TEST(BroadcastShapeTest, InterleavingOnes) {
 
 TEST(BroadcastShapeTest, InterleavingUnknowns) {
   SmallVector<int64_t, 4> result;
-  int64_t dyn = mlir::ShapedType::kDynamicSize;
+  int64_t dyn = mlir::ShapedType::kDynamic;
   ASSERT_TRUE(getBroadcastedShape({1, 2, dyn, dyn, dyn}, {dyn, dyn, dyn, 4, 1},
                                   result));
   EXPECT_THAT(result, ElementsAre(dyn, 2, dyn, 4, dyn));


        


More information about the Mlir-commits mailing list