[Mlir-commits] [mlir] bc07634 - Adding a named op for grouped convolutions
Mahesh Ravishankar
llvmlistbot at llvm.org
Thu Jun 23 09:32:36 PDT 2022
Author: gpetters94
Date: 2022-06-23T16:32:22Z
New Revision: bc07634b5a762686b818932eb350b4fc84217e67
URL: https://github.com/llvm/llvm-project/commit/bc07634b5a762686b818932eb350b4fc84217e67
DIFF: https://github.com/llvm/llvm-project/commit/bc07634b5a762686b818932eb350b4fc84217e67.diff
LOG: Adding a named op for grouped convolutions
Added:
Modified:
mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 54a9d0539c975..49ac6e19fab54 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1644,6 +1644,105 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: K
--- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+ name: conv_2d_ngchw_fgchw
+ cpp_class_name: Conv2DNgchwFgchwOp
+ doc: |-
+ Performs 2-D convolution.
+
+ Layout:
+ * Input: NGCHW.
+ * Kernel: FGCHW.
+
+ Numeric casting is performed on the operands to the inner multiply, promoting
+ them to the same data type as the accumulator/output.
+ implements:
+ - LinalgConvolutionOpInterface
+structured_op: !LinalgStructuredOpConfig
+ args:
+ - !LinalgOperandDefConfig
+ name: I
+ kind: input_tensor
+ type_var: T1
+ shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] -> (s0,
+ s1, s2 * s3 + s4 * s5, s6 * s7 + s8 * s9)>
+ - !LinalgOperandDefConfig
+ name: K
+ kind: input_tensor
+ type_var: T2
+ shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] -> (s10,
+ s1, s11, s4, s8)>
+ - !LinalgOperandDefConfig
+ name: O
+ kind: output_tensor
+ type_var: U
+ shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] -> (s0,
+ s1, s10, s2, s6)>
+ - !LinalgOperandDefConfig
+ name: strides
+ kind: index_attr
+ index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
+ (s3, s7)>
+ default_indices:
+ - 1
+ - 1
+ - !LinalgOperandDefConfig
+ name: dilations
+ kind: index_attr
+ index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
+ (s5, s9)>
+ default_indices:
+ - 1
+ - 1
+ indexing_maps: !LinalgIndexingMapsConfig
+ static_indexing_maps:
+ - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+ s9, s10, s11] -> (d0, d1, d5, d3 * s3 + d6 * s5, d4 * s7 + d7 * s9)>
+ - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+ s9, s10, s11] -> (d2, d1, d5, d6, d7)>
+ - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+ s9, s10, s11] -> (d0, d1, d2, d3, d4)>
+ iterator_types:
+ - parallel
+ - parallel
+ - parallel
+ - parallel
+ - parallel
+ - reduction
+ - reduction
+ - reduction
+ assignments:
+ - !ScalarAssign
+ arg: O
+ value: !ScalarExpression
+ scalar_fn:
+ kind: binary
+ fn_name: add
+ operands:
+ - !ScalarExpression
+ scalar_arg: O
+ - !ScalarExpression
+ scalar_fn:
+ kind: binary
+ fn_name: mul
+ operands:
+ - !ScalarExpression
+ scalar_fn:
+ kind: type
+ fn_name: cast_signed
+ type_var: U
+ operands:
+ - !ScalarExpression
+ scalar_arg: I
+ - !ScalarExpression
+ scalar_fn:
+ kind: type
+ fn_name: cast_signed
+ type_var: U
+ operands:
+ - !ScalarExpression
+ scalar_arg: K
+--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_3d_ndhwc_dhwcf
cpp_class_name: Conv3DNdhwcDhwcfOp
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index f553c38809a96..7ffe13c7543b4 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -366,6 +366,27 @@ def conv_2d_nchw_fchw(I=TensorDef(T1, S.N, S.C, S.OH * S.SH + S.KH * S.DH,
U, I[D.n, D.c, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW +
D.kw * S.DW]) * TypeFn.cast_signed(U, K[D.f, D.c, D.kh, D.kw])
+ at linalg_structured_op
+def conv_2d_ngchw_fgchw(I=TensorDef(T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH,
+ S.OW * S.SW + S.KW * S.DW),
+ K=TensorDef(T2, S.FG, S.G, S.C, S.KH, S.KW),
+ O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True),
+ strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]),
+ dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1])):
+ """Performs 2-D grouped convolution.
+
+ Layout:
+ * Input: NGCHW.
+ * Kernel: FGCHW.
+
+ Numeric casting is performed on the operands to the inner multiply, promoting
+ them to the same data type as the accumulator/output.
+ """
+ implements(ConvolutionOpInterface)
+ domain(D.n, D.g, D.fg, D.oh, D.ow, D.c, D.kh, D.kw)
+ O[D.n, D.g, D.fg, D.oh, D.ow] += TypeFn.cast_signed(
+ U, I[D.n, D.g, D.c, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW +
+ D.kw * S.DW]) * TypeFn.cast_signed(U, K[D.fg, D.g, D.c, D.kh, D.kw])
@linalg_structured_op
def conv_3d_ndhwc_dhwcf(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD,
More information about the Mlir-commits
mailing list