[Mlir-commits] [mlir] a6fa12a - Revert "[mlir] Add a generic data-flow analysis framework"

Frederik Gossen llvmlistbot at llvm.org
Tue Jun 14 14:14:40 PDT 2022


Author: Frederik Gossen
Date: 2022-06-14T17:14:27-04:00
New Revision: a6fa12ab3b47e20ce1e8698a58073ad68ed293d1

URL: https://github.com/llvm/llvm-project/commit/a6fa12ab3b47e20ce1e8698a58073ad68ed293d1
DIFF: https://github.com/llvm/llvm-project/commit/a6fa12ab3b47e20ce1e8698a58073ad68ed293d1.diff

LOG: Revert "[mlir] Add a generic data-flow analysis framework"

This reverts commit 9dea11728340e54e1fde76320b61a559148c8a3e.
The PointerUnion assumes 3 available bits, which is not the case on 32-bit
machines.

Added: 
    

Modified: 
    mlir/lib/Analysis/CMakeLists.txt
    mlir/test/lib/Analysis/CMakeLists.txt
    mlir/tools/mlir-opt/mlir-opt.cpp
    utils/bazel/llvm-project-overlay/mlir/BUILD.bazel
    utils/bazel/llvm-project-overlay/mlir/test/BUILD.bazel

Removed: 
    mlir/include/mlir/Analysis/DataFlowFramework.h
    mlir/lib/Analysis/DataFlowFramework.cpp
    mlir/test/Analysis/test-foo-analysis.mlir
    mlir/test/lib/Analysis/TestDataFlowFramework.cpp


################################################################################
diff  --git a/mlir/include/mlir/Analysis/DataFlowFramework.h b/mlir/include/mlir/Analysis/DataFlowFramework.h
deleted file mode 100644
index bb7042eea3c5d..0000000000000
--- a/mlir/include/mlir/Analysis/DataFlowFramework.h
+++ /dev/null
@@ -1,454 +0,0 @@
-//===- DataFlowFramework.h - A generic framework for data-flow analysis ---===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a generic framework for writing data-flow analysis in MLIR.
-// The framework consists of a solver, which runs the fixed-point iteration and
-// manages analysis dependencies, and a data-flow analysis class used to
-// implement specific analyses.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_ANALYSIS_DATAFLOWFRAMEWORK_H
-#define MLIR_ANALYSIS_DATAFLOWFRAMEWORK_H
-
-#include "mlir/Analysis/DataFlowAnalysis.h"
-#include "mlir/IR/Operation.h"
-#include "mlir/Support/StorageUniquer.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/Support/TypeName.h"
-#include <queue>
-
-namespace mlir {
-
-/// Forward declare the analysis state class.
-class AnalysisState;
-
-//===----------------------------------------------------------------------===//
-// GenericProgramPoint
-//===----------------------------------------------------------------------===//
-
-/// Abstract class for generic program points. In classical data-flow analysis,
-/// programs points represent positions in a program to which lattice elements
-/// are attached. In sparse data-flow analysis, these can be SSA values, and in
-/// dense data-flow analysis, these are the program points before and after
-/// every operation.
-///
-/// In the general MLIR data-flow analysis framework, program points are an
-/// extensible concept. Program points are uniquely identifiable objects to
-/// which analysis states can be attached. The semantics of program points are
-/// defined by the analyses that specify their transfer functions.
-///
-/// Program points are implemented using MLIR's storage uniquer framework and
-/// type ID system to provide RTTI.
-class GenericProgramPoint : public StorageUniquer::BaseStorage {
-public:
-  virtual ~GenericProgramPoint();
-
-  /// Get the abstract program point's type identifier.
-  TypeID getTypeID() const { return typeID; }
-
-  /// Get a derived source location for the program point.
-  virtual Location getLoc() const = 0;
-
-  /// Print the program point.
-  virtual void print(raw_ostream &os) const = 0;
-
-protected:
-  /// Create an abstract program point with type identifier.
-  explicit GenericProgramPoint(TypeID typeID) : typeID(typeID) {}
-
-private:
-  /// The type identifier of the program point.
-  TypeID typeID;
-};
-
-//===----------------------------------------------------------------------===//
-// GenericProgramPointBase
-//===----------------------------------------------------------------------===//
-
-/// Base class for generic program points based on a concrete program point
-/// type and a content key. This class defines the common methods required for
-/// operability with the storage uniquer framework.
-///
-/// The provided key type uniquely identifies the concrete program point
-/// instance and are the data members of the class.
-template <typename ConcreteT, typename Value>
-class GenericProgramPointBase : public GenericProgramPoint {
-public:
-  /// The concrete key type used by the storage uniquer. This class is uniqued
-  /// by its contents.
-  using KeyTy = Value;
-  /// Alias for the base class.
-  using Base = GenericProgramPointBase<ConcreteT, Value>;
-
-  /// Construct an instance of the program point using the provided value and
-  /// the type ID of the concrete type.
-  template <typename ValueT>
-  explicit GenericProgramPointBase(ValueT &&value)
-      : GenericProgramPoint(TypeID::get<ConcreteT>()),
-        value(std::forward<ValueT>(value)) {}
-
-  /// Get a uniqued instance of this program point class with the given
-  /// arguments.
-  template <typename... Args>
-  static ConcreteT *get(StorageUniquer &uniquer, Args &&...args) {
-    return uniquer.get<ConcreteT>(/*initFn=*/{}, std::forward<Args>(args)...);
-  }
-
-  /// Allocate space for a program point and construct it in-place.
-  template <typename ValueT>
-  static ConcreteT *construct(StorageUniquer::StorageAllocator &alloc,
-                              ValueT &&value) {
-    return new (alloc.allocate<ConcreteT>())
-        ConcreteT(std::forward<ValueT>(value));
-  }
-
-  /// Two program points are equal if their values are equal.
-  bool operator==(const Value &value) const { return this->value == value; }
-
-  /// Provide LLVM-style RTTI using type IDs.
-  static bool classof(const GenericProgramPoint *point) {
-    return point->getTypeID() == TypeID::get<ConcreteT>();
-  }
-
-  /// Get the contents of the program point.
-  const Value &getValue() const { return value; }
-
-private:
-  /// The program point value.
-  Value value;
-};
-
-//===----------------------------------------------------------------------===//
-// ProgramPoint
-//===----------------------------------------------------------------------===//
-
-/// Fundamental IR components are supported as first-class program points.
-struct ProgramPoint : public PointerUnion<GenericProgramPoint *, Operation *,
-                                          Value, Block *, Region *> {
-  using ParentTy = PointerUnion<GenericProgramPoint *, Operation *, Value,
-                                Block *, Region *>;
-  /// Inherit constructors.
-  using ParentTy::PointerUnion;
-  /// Allow implicit conversion from the parent type.
-  ProgramPoint(ParentTy point = nullptr) : ParentTy(point) {}
-
-  /// Print the program point.
-  void print(raw_ostream &os) const;
-
-  /// Get the source location of the program point.
-  Location getLoc() const;
-};
-
-/// Forward declaration of the data-flow analysis class.
-class DataFlowAnalysis;
-
-//===----------------------------------------------------------------------===//
-// DataFlowSolver
-//===----------------------------------------------------------------------===//
-
-/// The general data-flow analysis solver. This class is responsible for
-/// orchestrating child data-flow analyses, running the fixed-point iteration
-/// algorithm, managing analysis state and program point memory, and tracking
-/// dependencies beteen analyses, program points, and analysis states.
-///
-/// Steps to run a data-flow analysis:
-///
-/// 1. Load and initialize children analyses. Children analyses are instantiated
-///    in the solver and initialized, building their dependency relations.
-/// 2. Configure and run the analysis. The solver invokes the children analyses
-///    according to their dependency relations until a fixed point is reached.
-/// 3. Query analysis state results from the solver.
-///
-/// TODO: Optimize the internal implementation of the solver.
-class DataFlowSolver {
-public:
-  /// Load an analysis into the solver. Return the analysis instance.
-  template <typename AnalysisT, typename... Args>
-  AnalysisT *load(Args &&...args);
-
-  /// Initialize the children analyses starting from the provided top-level
-  /// operation and run the analysis until fixpoint.
-  LogicalResult initializeAndRun(Operation *top);
-
-  /// Lookup an analysis state for the given program point. Returns null if one
-  /// does not exist.
-  template <typename StateT, typename PointT>
-  const StateT *lookupState(PointT point) const {
-    auto it = analysisStates.find({point, TypeID::get<StateT>()});
-    if (it == analysisStates.end())
-      return nullptr;
-    return static_cast<const StateT *>(it->second.get());
-  }
-
-  /// Get a uniqued program point instance. If one is not present, it is
-  /// created with the provided arguments.
-  template <typename PointT, typename... Args>
-  PointT *getProgramPoint(Args &&...args) {
-    return PointT::get(uniquer, std::forward<Args>(args)...);
-  }
-
-  /// A work item on the solver queue is a program point, child analysis pair.
-  /// Each item is processed by invoking the child analysis at the program
-  /// point.
-  using WorkItem = std::pair<ProgramPoint, DataFlowAnalysis *>;
-  /// Push a work item onto the worklist.
-  void enqueue(WorkItem item) { worklist.push(std::move(item)); }
-
-protected:
-  /// Get the state associated with the given program point. If it does not
-  /// exist, create an uninitialized state.
-  template <typename StateT, typename PointT>
-  StateT *getOrCreateState(PointT point);
-
-  /// Propagate an update to an analysis state if it changed by pushing
-  /// dependent work items to the back of the queue.
-  void propagateIfChanged(AnalysisState *state, ChangeResult changed);
-
-  /// Add a dependency to an analysis state on a child analysis and program
-  /// point. If the state is updated, the child analysis must be invoked on the
-  /// given program point again.
-  void addDependency(AnalysisState *state, DataFlowAnalysis *analysis,
-                     ProgramPoint point);
-
-private:
-  /// The solver's work queue. Work items can be inserted to the front of the
-  /// queue to be processed greedily, speeding up computations that otherwise
-  /// quickly degenerate to quadratic due to propagation of state updates.
-  std::queue<WorkItem> worklist;
-
-  /// Type-erased instances of the children analyses.
-  SmallVector<std::unique_ptr<DataFlowAnalysis>> childAnalyses;
-
-  /// The storage uniquer instance that owns the memory of the allocated program
-  /// points.
-  StorageUniquer uniquer;
-
-  /// A type-erased map of program points to associated analysis states for
-  /// first-class program points.
-  DenseMap<std::pair<ProgramPoint, TypeID>, std::unique_ptr<AnalysisState>>
-      analysisStates;
-
-  /// Allow the base child analysis class to access the internals of the solver.
-  friend class DataFlowAnalysis;
-};
-
-//===----------------------------------------------------------------------===//
-// AnalysisState
-//===----------------------------------------------------------------------===//
-
-/// Base class for generic analysis states. Analysis states contain data-flow
-/// information that are attached to program points and which evolve as the
-/// analysis iterates.
-///
-/// This class places no restrictions on the semantics of analysis states beyond
-/// these requirements.
-///
-/// 1. Querying the state of a program point prior to visiting that point
-///    results in uninitialized state. Analyses must be aware of unintialized
-///    states.
-/// 2. Analysis states can reach fixpoints, where subsequent updates will never
-///    trigger a change in the state.
-/// 3. Analysis states that are uninitialized can be forcefully initialized to a
-///    default value.
-class AnalysisState {
-public:
-  virtual ~AnalysisState();
-
-  /// Create the analysis state at the given program point.
-  AnalysisState(ProgramPoint point) : point(point) {}
-
-  /// Returns true if the analysis state is uninitialized.
-  virtual bool isUninitialized() const = 0;
-
-  /// Force an uninitialized analysis state to initialize itself with a default
-  /// value.
-  virtual ChangeResult defaultInitialize() = 0;
-
-  /// Print the contents of the analysis state.
-  virtual void print(raw_ostream &os) const = 0;
-
-protected:
-  /// This function is called by the solver when the analysis state is updated
-  /// to optionally enqueue more work items. For example, if a state tracks
-  /// dependents through the IR (e.g. use-def chains), this function can be
-  /// implemented to push those dependents on the worklist.
-  virtual void onUpdate(DataFlowSolver *solver) const {}
-
-  /// The dependency relations originating from this analysis state. An entry
-  /// `state -> (analysis, point)` is created when `analysis` queries `state`
-  /// when updating `point`.
-  ///
-  /// When this state is updated, all dependent child analysis invocations are
-  /// pushed to the back of the queue. Use a `SetVector` to keep the analysis
-  /// deterministic.
-  ///
-  /// Store the dependents on the analysis state for efficiency.
-  SetVector<DataFlowSolver::WorkItem> dependents;
-
-  /// The program point to which the state belongs.
-  ProgramPoint point;
-
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
-  /// When compiling with debugging, keep a name for the analysis state.
-  StringRef debugName;
-#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS
-
-  /// Allow the framework to access the dependents.
-  friend class DataFlowSolver;
-};
-
-//===----------------------------------------------------------------------===//
-// DataFlowAnalysis
-//===----------------------------------------------------------------------===//
-
-/// Base class for all data-flow analyses. A child analysis is expected to build
-/// an initial dependency graph (and optionally provide an initial state) when
-/// initialized and define transfer functions when visiting program points.
-///
-/// In classical data-flow analysis, the dependency graph is fixed and analyses
-/// define explicit transfer functions between input states and output states.
-/// In this framework, however, the dependency graph can change during the
-/// analysis, and transfer functions are opaque such that the solver doesn't
-/// know what states calling `visit` on an analysis will be updated. This allows
-/// multiple analyses to plug in and provide values for the same state.
-///
-/// Generally, when an analysis queries an uninitialized state, it is expected
-/// to "bail out", i.e., not provide any updates. When the value is initialized,
-/// the solver will re-invoke the analysis. If the solver exhausts its worklist,
-/// however, and there are still uninitialized states, the solver "nudges" the
-/// analyses by default-initializing those states.
-class DataFlowAnalysis {
-public:
-  virtual ~DataFlowAnalysis();
-
-  /// Create an analysis with a reference to the parent solver.
-  explicit DataFlowAnalysis(DataFlowSolver &solver);
-
-  /// Initialize the analysis from the provided top-level operation by building
-  /// an initial dependency graph between all program points of interest. This
-  /// can be implemented by calling `visit` on all program points of interest
-  /// below the top-level operation.
-  ///
-  /// An analysis can optionally provide initial values to certain analysis
-  /// states to influence the evolution of the analysis.
-  virtual LogicalResult initialize(Operation *top) = 0;
-
-  /// Visit the given program point. This function is invoked by the solver on
-  /// this analysis with a given program point when a dependent analysis state
-  /// is updated. The function is similar to a transfer function; it queries
-  /// certain analysis states and sets other states.
-  ///
-  /// The function is expected to create dependencies on queried states and
-  /// propagate updates on changed states. A dependency can be created by
-  /// calling `addDependency` between the input state and a program point,
-  /// indicating that, if the state is updated, the solver should invoke `solve`
-  /// on the program point. The dependent point does not have to be the same as
-  /// the provided point. An update to a state is propagated by calling
-  /// `propagateIfChange` on the state. If the state has changed, then all its
-  /// dependents are placed on the worklist.
-  ///
-  /// The dependency graph does not need to be static. Each invocation of
-  /// `visit` can add new dependencies, but these dependecies will not be
-  /// dynamically added to the worklist because the solver doesn't know what
-  /// will provide a value for then.
-  virtual LogicalResult visit(ProgramPoint point) = 0;
-
-protected:
-  /// Create a dependency between the given analysis state and program point
-  /// on this analysis.
-  void addDependency(AnalysisState *state, ProgramPoint point);
-
-  /// Propagate an update to a state if it changed.
-  void propagateIfChanged(AnalysisState *state, ChangeResult changed);
-
-  /// Register a custom program point class.
-  template <typename PointT>
-  void registerPointKind() {
-    solver.uniquer.registerParametricStorageType<PointT>();
-  }
-
-  /// Get or create a custom program point.
-  template <typename PointT, typename... Args>
-  PointT *getProgramPoint(Args &&...args) {
-    return solver.getProgramPoint<PointT>(std::forward<Args>(args)...);
-  }
-
-  /// Get the analysis state assiocated with the program point. The returned
-  /// state is expected to be "write-only", and any updates need to be
-  /// propagated by `propagateIfChanged`.
-  template <typename StateT, typename PointT>
-  StateT *getOrCreate(PointT point) {
-    return solver.getOrCreateState<StateT>(point);
-  }
-
-  /// Get a read-only analysis state for the given point and create a dependency
-  /// on `dependent`. If the return state is updated elsewhere, this analysis is
-  /// re-invoked on the dependent.
-  template <typename StateT, typename PointT>
-  const StateT *getOrCreateFor(ProgramPoint dependent, PointT point) {
-    StateT *state = getOrCreate<StateT>(point);
-    addDependency(state, dependent);
-    return state;
-  }
-
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
-  /// When compiling with debugging, keep a name for the analyis.
-  StringRef debugName;
-#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS
-
-private:
-  /// The parent data-flow solver.
-  DataFlowSolver &solver;
-
-  /// Allow the data-flow solver to access the internals of this class.
-  friend class DataFlowSolver;
-};
-
-template <typename AnalysisT, typename... Args>
-AnalysisT *DataFlowSolver::load(Args &&...args) {
-  childAnalyses.emplace_back(new AnalysisT(*this, std::forward<Args>(args)...));
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
-  childAnalyses.back().get()->debugName = llvm::getTypeName<AnalysisT>();
-#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS
-  return static_cast<AnalysisT *>(childAnalyses.back().get());
-}
-
-template <typename StateT, typename PointT>
-StateT *DataFlowSolver::getOrCreateState(PointT point) {
-  std::unique_ptr<AnalysisState> &state =
-      analysisStates[{ProgramPoint(point), TypeID::get<StateT>()}];
-  if (!state) {
-    state = std::unique_ptr<StateT>(new StateT(point));
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
-    state->debugName = llvm::getTypeName<StateT>();
-#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS
-  }
-  return static_cast<StateT *>(state.get());
-}
-
-inline raw_ostream &operator<<(raw_ostream &os, const AnalysisState &state) {
-  state.print(os);
-  return os;
-}
-
-inline raw_ostream &operator<<(raw_ostream &os, ProgramPoint point) {
-  point.print(os);
-  return os;
-}
-
-} // end namespace mlir
-
-namespace llvm {
-/// Allow hashing of program points.
-template <>
-struct DenseMapInfo<mlir::ProgramPoint>
-    : public DenseMapInfo<mlir::ProgramPoint::ParentTy> {};
-} // end namespace llvm
-
-#endif // MLIR_ANALYSIS_DATAFLOWFRAMEWORK_H

diff  --git a/mlir/lib/Analysis/CMakeLists.txt b/mlir/lib/Analysis/CMakeLists.txt
index fe5f3832322ce..6c45e40efa9ab 100644
--- a/mlir/lib/Analysis/CMakeLists.txt
+++ b/mlir/lib/Analysis/CMakeLists.txt
@@ -16,7 +16,6 @@ add_mlir_library(MLIRAnalysis
   BufferViewFlowAnalysis.cpp
   CallGraph.cpp
   DataFlowAnalysis.cpp
-  DataFlowFramework.cpp
   DataLayoutAnalysis.cpp
   IntRangeAnalysis.cpp
   Liveness.cpp

diff  --git a/mlir/lib/Analysis/DataFlowFramework.cpp b/mlir/lib/Analysis/DataFlowFramework.cpp
deleted file mode 100644
index 7f159a9b8da06..0000000000000
--- a/mlir/lib/Analysis/DataFlowFramework.cpp
+++ /dev/null
@@ -1,161 +0,0 @@
-//===- DataFlowFramework.cpp - A generic framework for data-flow analysis -===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#include "mlir/Analysis/DataFlowFramework.h"
-#include "llvm/Support/Debug.h"
-
-#define DEBUG_TYPE "dataflow"
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
-#define DATAFLOW_DEBUG(X) LLVM_DEBUG(X)
-#else
-#define DATAFLOW_DEBUG(X)
-#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS
-
-using namespace mlir;
-
-//===----------------------------------------------------------------------===//
-// GenericProgramPoint
-//===----------------------------------------------------------------------===//
-
-GenericProgramPoint::~GenericProgramPoint() = default;
-
-//===----------------------------------------------------------------------===//
-// AnalysisState
-//===----------------------------------------------------------------------===//
-
-AnalysisState::~AnalysisState() = default;
-
-//===----------------------------------------------------------------------===//
-// ProgramPoint
-//===----------------------------------------------------------------------===//
-
-void ProgramPoint::print(raw_ostream &os) const {
-  if (isNull()) {
-    os << "<NULL POINT>";
-    return;
-  }
-  if (auto *programPoint = dyn_cast<GenericProgramPoint *>())
-    return programPoint->print(os);
-  if (auto *op = dyn_cast<Operation *>())
-    return op->print(os);
-  if (auto value = dyn_cast<Value>())
-    return value.print(os);
-  if (auto *block = dyn_cast<Block *>())
-    return block->print(os);
-  auto *region = get<Region *>();
-  os << "{\n";
-  for (Block &block : *region) {
-    block.print(os);
-    os << "\n";
-  }
-  os << "}";
-}
-
-Location ProgramPoint::getLoc() const {
-  if (auto *programPoint = dyn_cast<GenericProgramPoint *>())
-    return programPoint->getLoc();
-  if (auto *op = dyn_cast<Operation *>())
-    return op->getLoc();
-  if (auto value = dyn_cast<Value>())
-    return value.getLoc();
-  if (auto *block = dyn_cast<Block *>())
-    return block->getParent()->getLoc();
-  return get<Region *>()->getLoc();
-}
-
-//===----------------------------------------------------------------------===//
-// DataFlowSolver
-//===----------------------------------------------------------------------===//
-
-LogicalResult DataFlowSolver::initializeAndRun(Operation *top) {
-  // Initialize the analyses.
-  for (DataFlowAnalysis &analysis : llvm::make_pointee_range(childAnalyses)) {
-    DATAFLOW_DEBUG(llvm::dbgs()
-                   << "Priming analysis: " << analysis.debugName << "\n");
-    if (failed(analysis.initialize(top)))
-      return failure();
-  }
-
-  // Run the analysis until fixpoint.
-  ProgramPoint point;
-  DataFlowAnalysis *analysis;
-
-  do {
-    // Exhaust the worklist.
-    while (!worklist.empty()) {
-      std::tie(point, analysis) = worklist.front();
-      worklist.pop();
-
-      DATAFLOW_DEBUG(llvm::dbgs() << "Invoking '" << analysis->debugName
-                                  << "' on: " << point << "\n");
-      if (failed(analysis->visit(point)))
-        return failure();
-    }
-
-    // "Nudge" the state of the analysis by forcefully initializing states that
-    // are still uninitialized. All uninitialized states in the graph can be
-    // initialized in any order because the analysis reached fixpoint, meaning
-    // that there are no work items that would have further nudged the analysis.
-    for (AnalysisState &state :
-         llvm::make_pointee_range(llvm::make_second_range(analysisStates))) {
-      if (!state.isUninitialized())
-        continue;
-      DATAFLOW_DEBUG(llvm::dbgs() << "Default initializing " << state.debugName
-                                  << " of " << state.point << "\n");
-      propagateIfChanged(&state, state.defaultInitialize());
-    }
-
-    // Iterate until all states are in some initialized state and the worklist
-    // is exhausted.
-  } while (!worklist.empty());
-
-  return success();
-}
-
-void DataFlowSolver::propagateIfChanged(AnalysisState *state,
-                                        ChangeResult changed) {
-  if (changed == ChangeResult::Change) {
-    DATAFLOW_DEBUG(llvm::dbgs() << "Propagating update to " << state->debugName
-                                << " of " << state->point << "\n"
-                                << "Value: " << *state << "\n");
-    for (const WorkItem &item : state->dependents)
-      enqueue(item);
-    state->onUpdate(this);
-  }
-}
-
-void DataFlowSolver::addDependency(AnalysisState *state,
-                                   DataFlowAnalysis *analysis,
-                                   ProgramPoint point) {
-  auto inserted = state->dependents.insert({point, analysis});
-  (void)inserted;
-  DATAFLOW_DEBUG({
-    if (inserted) {
-      llvm::dbgs() << "Creating dependency between " << state->debugName
-                   << " of " << state->point << "\nand " << analysis->debugName
-                   << " on " << point << "\n";
-    }
-  });
-}
-
-//===----------------------------------------------------------------------===//
-// DataFlowAnalysis
-//===----------------------------------------------------------------------===//
-
-DataFlowAnalysis::~DataFlowAnalysis() = default;
-
-DataFlowAnalysis::DataFlowAnalysis(DataFlowSolver &solver) : solver(solver) {}
-
-void DataFlowAnalysis::addDependency(AnalysisState *state, ProgramPoint point) {
-  solver.addDependency(state, this, point);
-}
-
-void DataFlowAnalysis::propagateIfChanged(AnalysisState *state,
-                                          ChangeResult changed) {
-  solver.propagateIfChanged(state, changed);
-}

diff  --git a/mlir/test/Analysis/test-foo-analysis.mlir b/mlir/test/Analysis/test-foo-analysis.mlir
deleted file mode 100644
index 7c5d07396a83f..0000000000000
--- a/mlir/test/Analysis/test-foo-analysis.mlir
+++ /dev/null
@@ -1,95 +0,0 @@
-// RUN: mlir-opt -split-input-file -pass-pipeline='func.func(test-foo-analysis)' %s 2>&1 | FileCheck %s
-
-// CHECK-LABEL: function: @test_default_init
-func.func @test_default_init() -> () {
-  // CHECK: a -> 0
-  "test.foo"() {tag = "a"} : () -> ()
-  return 
-}
-
-// -----
-
-// CHECK-LABEL: function: @test_one_join
-func.func @test_one_join() -> () {
-  // CHECK: a -> 0
-  "test.foo"() {tag = "a"} : () -> ()
-  // CHECK: b -> 1
-  "test.foo"() {tag = "b", foo = 1 : ui64} : () -> ()
-  return 
-}
-
-// -----
-
-// CHECK-LABEL: function: @test_two_join
-func.func @test_two_join() -> () {
-  // CHECK: a -> 0
-  "test.foo"() {tag = "a"} : () -> ()
-  // CHECK: b -> 1
-  "test.foo"() {tag = "b", foo = 1 : ui64} : () -> ()
-  // CHECK: c -> 0
-  "test.foo"() {tag = "c", foo = 1 : ui64} : () -> ()
-  return 
-}
-
-// -----
-
-// CHECK-LABEL: function: @test_fork
-func.func @test_fork() -> () {
-  // CHECK: init -> 1
-  "test.branch"() [^bb0, ^bb1] {tag = "init", foo = 1 : ui64} : () -> ()
-
-^bb0:
-  // CHECK: a -> 3
-  "test.branch"() [^bb2] {tag = "a", foo = 2 : ui64} : () -> ()
-
-^bb1:
-  // CHECK: b -> 5
-  "test.branch"() [^bb2] {tag = "b", foo = 4 : ui64} : () -> ()
-
-^bb2:
-  // CHECK: end -> 6
-  "test.foo"() {tag = "end"} : () -> ()
-  return
-
-}
-
-// -----
-
-// CHECK-LABEL: function: @test_simple_loop
-func.func @test_simple_loop() -> () {
-  // CHECK: init -> 1
-  "test.branch"() [^bb0] {tag = "init", foo = 1 : ui64} : () -> ()
-
-^bb0:
-  // CHECK: a -> 1
-  "test.foo"() {tag = "a", foo = 3 : ui64} : () -> ()
-  "test.branch"() [^bb0, ^bb1] : () -> ()
-
-^bb1:
-  // CHECK: end -> 3
-  "test.foo"() {tag = "end"} : () -> ()
-  return
-}
-
-// -----
-
-// CHECK-LABEL: function: @test_double_loop
-func.func @test_double_loop() -> () {
-  // CHECK: init -> 2
-  "test.branch"() [^bb0] {tag = "init", foo = 2 : ui64} : () -> ()
-
-^bb0:
-  // CHECK: a -> 1
-  "test.foo"() {tag = "a", foo = 3 : ui64} : () -> ()
-  "test.branch"() [^bb0, ^bb1] : () -> ()
-
-^bb1:
-  // CHECK: b -> 4
-  "test.foo"() {tag = "b", foo = 5 : ui64} : () -> ()
-  "test.branch"() [^bb0, ^bb2] : () -> ()
-
-^bb2:
-  // CHECK: end -> 4
-  "test.foo"() {tag = "end"} : () -> ()
-  return
-}

diff  --git a/mlir/test/lib/Analysis/CMakeLists.txt b/mlir/test/lib/Analysis/CMakeLists.txt
index d0b9d2be4f6ea..02ca3a1481993 100644
--- a/mlir/test/lib/Analysis/CMakeLists.txt
+++ b/mlir/test/lib/Analysis/CMakeLists.txt
@@ -3,7 +3,6 @@ add_mlir_library(MLIRTestAnalysis
   TestAliasAnalysis.cpp
   TestCallGraph.cpp
   TestDataFlow.cpp
-  TestDataFlowFramework.cpp
   TestLiveness.cpp
   TestMatchReduction.cpp
   TestMemRefBoundCheck.cpp

diff  --git a/mlir/test/lib/Analysis/TestDataFlowFramework.cpp b/mlir/test/lib/Analysis/TestDataFlowFramework.cpp
deleted file mode 100644
index 329be3c5446f9..0000000000000
--- a/mlir/test/lib/Analysis/TestDataFlowFramework.cpp
+++ /dev/null
@@ -1,188 +0,0 @@
-//===- TestDataFlowFramework.cpp - Test data-flow analysis framework ------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#include "mlir/Analysis/DataFlowFramework.h"
-#include "mlir/Dialect/Func/IR/FuncOps.h"
-#include "mlir/Pass/Pass.h"
-
-using namespace mlir;
-
-namespace {
-/// This analysis state represents an integer that is XOR'd with other states.
-class FooState : public AnalysisState {
-public:
-  MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(FooState)
-
-  using AnalysisState::AnalysisState;
-
-  /// Default-initialize the state to zero.
-  ChangeResult defaultInitialize() override { return join(0); }
-
-  /// Returns true if the state is uninitialized.
-  bool isUninitialized() const override { return !state; }
-
-  /// Print the integer value or "none" if uninitialized.
-  void print(raw_ostream &os) const override {
-    if (state)
-      os << *state;
-    else
-      os << "none";
-  }
-
-  /// Join the state with another. If either is unintialized, take the
-  /// initialized value. Otherwise, XOR the integer values.
-  ChangeResult join(const FooState &rhs) {
-    if (rhs.isUninitialized())
-      return ChangeResult::NoChange;
-    return join(*rhs.state);
-  }
-  ChangeResult join(uint64_t value) {
-    if (isUninitialized()) {
-      state = value;
-      return ChangeResult::Change;
-    }
-    uint64_t before = *state;
-    state = before ^ value;
-    return before == *state ? ChangeResult::NoChange : ChangeResult::Change;
-  }
-
-  /// Set the value of the state directly.
-  ChangeResult set(const FooState &rhs) {
-    if (state == rhs.state)
-      return ChangeResult::NoChange;
-    state = rhs.state;
-    return ChangeResult::Change;
-  }
-
-  /// Returns the integer value of the state.
-  uint64_t getValue() const { return *state; }
-
-private:
-  /// An optional integer value.
-  Optional<uint64_t> state;
-};
-
-/// This analysis computes `FooState` across operations and control-flow edges.
-/// If an op specifies a `foo` integer attribute, the contained value is XOR'd
-/// with the value before the operation.
-class FooAnalysis : public DataFlowAnalysis {
-public:
-  MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(FooAnalysis)
-
-  using DataFlowAnalysis::DataFlowAnalysis;
-
-  LogicalResult initialize(Operation *top) override;
-  LogicalResult visit(ProgramPoint point) override;
-
-private:
-  void visitBlock(Block *block);
-  void visitOperation(Operation *op);
-};
-
-struct TestFooAnalysisPass
-    : public PassWrapper<TestFooAnalysisPass, OperationPass<func::FuncOp>> {
-  MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestFooAnalysisPass)
-
-  StringRef getArgument() const override { return "test-foo-analysis"; }
-
-  void runOnOperation() override;
-};
-} // namespace
-
-LogicalResult FooAnalysis::initialize(Operation *top) {
-  if (top->getNumRegions() != 1)
-    return top->emitError("expected a single region top-level op");
-
-  // Initialize the top-level state.
-  getOrCreate<FooState>(&top->getRegion(0).front())->join(0);
-
-  // Visit all nested blocks and operations.
-  for (Block &block : top->getRegion(0)) {
-    visitBlock(&block);
-    for (Operation &op : block) {
-      if (op.getNumRegions())
-        return op.emitError("unexpected op with regions");
-      visitOperation(&op);
-    }
-  }
-  return success();
-}
-
-LogicalResult FooAnalysis::visit(ProgramPoint point) {
-  if (auto *op = point.dyn_cast<Operation *>()) {
-    visitOperation(op);
-    return success();
-  }
-  if (auto *block = point.dyn_cast<Block *>()) {
-    visitBlock(block);
-    return success();
-  }
-  return emitError(point.getLoc(), "unknown point kind");
-}
-
-void FooAnalysis::visitBlock(Block *block) {
-  if (block->isEntryBlock()) {
-    // This is the initial state. Let the framework default-initialize it.
-    return;
-  }
-  FooState *state = getOrCreate<FooState>(block);
-  ChangeResult result = ChangeResult::NoChange;
-  for (Block *pred : block->getPredecessors()) {
-    // Join the state at the terminators of all predecessors.
-    const FooState *predState =
-        getOrCreateFor<FooState>(block, pred->getTerminator());
-    result |= state->join(*predState);
-  }
-  propagateIfChanged(state, result);
-}
-
-void FooAnalysis::visitOperation(Operation *op) {
-  FooState *state = getOrCreate<FooState>(op);
-  ChangeResult result = ChangeResult::NoChange;
-
-  // Copy the state across the operation.
-  const FooState *prevState;
-  if (Operation *prev = op->getPrevNode())
-    prevState = getOrCreateFor<FooState>(op, prev);
-  else
-    prevState = getOrCreateFor<FooState>(op, op->getBlock());
-  result |= state->set(*prevState);
-
-  // Modify the state with the attribute, if specified.
-  if (auto attr = op->getAttrOfType<IntegerAttr>("foo")) {
-    uint64_t value = attr.getUInt();
-    result |= state->join(value);
-  }
-  propagateIfChanged(state, result);
-}
-
-void TestFooAnalysisPass::runOnOperation() {
-  func::FuncOp func = getOperation();
-  DataFlowSolver solver;
-  solver.load<FooAnalysis>();
-  if (failed(solver.initializeAndRun(func)))
-    return signalPassFailure();
-
-  raw_ostream &os = llvm::errs();
-  os << "function: @" << func.getSymName() << "\n";
-
-  func.walk([&](Operation *op) {
-    auto tag = op->getAttrOfType<StringAttr>("tag");
-    if (!tag)
-      return;
-    const FooState *state = solver.lookupState<FooState>(op);
-    assert(state && !state->isUninitialized());
-    os << tag.getValue() << " -> " << state->getValue() << "\n";
-  });
-}
-
-namespace mlir {
-namespace test {
-void registerTestFooAnalysisPass() { PassRegistration<TestFooAnalysisPass>(); }
-} // namespace test
-} // namespace mlir

diff  --git a/mlir/tools/mlir-opt/mlir-opt.cpp b/mlir/tools/mlir-opt/mlir-opt.cpp
index 9e872ab63f5f4..b50cfa964290f 100644
--- a/mlir/tools/mlir-opt/mlir-opt.cpp
+++ b/mlir/tools/mlir-opt/mlir-opt.cpp
@@ -77,7 +77,6 @@ void registerTestDiagnosticsPass();
 void registerTestDominancePass();
 void registerTestDynamicPipelinePass();
 void registerTestExpandMathPass();
-void registerTestFooAnalysisPass();
 void registerTestComposeSubView();
 void registerTestMultiBuffering();
 void registerTestIntRangeInference();
@@ -176,7 +175,6 @@ void registerTestPasses() {
   mlir::test::registerTestDominancePass();
   mlir::test::registerTestDynamicPipelinePass();
   mlir::test::registerTestExpandMathPass();
-  mlir::test::registerTestFooAnalysisPass();
   mlir::test::registerTestComposeSubView();
   mlir::test::registerTestMultiBuffering();
   mlir::test::registerTestIntRangeInference();

diff  --git a/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel b/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel
index 8585b7792b081..ffb3d5e0b52cf 100644
--- a/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel
+++ b/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel
@@ -5787,12 +5787,17 @@ cc_library(
             "lib/Analysis/*/*.cpp",
             "lib/Analysis/*/*.h",
         ],
+        exclude = [
+            "lib/Analysis/Vector*.cpp",
+            "lib/Analysis/Vector*.h",
+        ],
     ),
     hdrs = glob(
         [
             "include/mlir/Analysis/*.h",
             "include/mlir/Analysis/*/*.h",
         ],
+        exclude = ["include/mlir/Analysis/Vector*.h"],
     ),
     includes = ["include"],
     deps = [

diff  --git a/utils/bazel/llvm-project-overlay/mlir/test/BUILD.bazel b/utils/bazel/llvm-project-overlay/mlir/test/BUILD.bazel
index fa401a56a2552..2f5da7e9fee65 100644
--- a/utils/bazel/llvm-project-overlay/mlir/test/BUILD.bazel
+++ b/utils/bazel/llvm-project-overlay/mlir/test/BUILD.bazel
@@ -26,7 +26,6 @@ cc_library(
         "//mlir:AffineAnalysis",
         "//mlir:AffineDialect",
         "//mlir:Analysis",
-        "//mlir:FuncDialect",
         "//mlir:IR",
         "//mlir:MemRefDialect",
         "//mlir:Pass",


        


More information about the Mlir-commits mailing list