[Mlir-commits] [mlir] 13448db - [mlir][tosa] Flip accessors used to prefixed form (NFC)

Jacques Pienaar llvmlistbot at llvm.org
Fri Jul 22 09:56:17 PDT 2022


Author: Jacques Pienaar
Date: 2022-07-22T09:56:08-07:00
New Revision: 13448db06a1dff2b88faf3054588ecae636decd0

URL: https://github.com/llvm/llvm-project/commit/13448db06a1dff2b88faf3054588ecae636decd0
DIFF: https://github.com/llvm/llvm-project/commit/13448db06a1dff2b88faf3054588ecae636decd0.diff

LOG: [mlir][tosa] Flip accessors used to prefixed form (NFC)

Follow up from dialect flip, just flipping accessors. Both forms still
generated.

Added: 
    

Modified: 
    mlir/lib/Conversion/TosaToArith/TosaToArith.cpp
    mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
    mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
    mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp
    mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
    mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
    mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
    mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
    mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp
    mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
    mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp
    mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
    mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp b/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp
index fce21e224c414..f33e086b414a8 100644
--- a/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp
+++ b/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp
@@ -28,7 +28,7 @@ class ConstOpConverter : public OpRewritePattern<tosa::ConstOp> {
 
   LogicalResult matchAndRewrite(tosa::ConstOp op,
                                 PatternRewriter &rewriter) const final {
-    rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.value());
+    rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.getValue());
     return success();
   }
 };
@@ -66,8 +66,8 @@ class ApplyScaleGenericOpConverter
   LogicalResult matchAndRewrite(tosa::ApplyScaleOp op,
                                 PatternRewriter &rewriter) const final {
     Location loc = op.getLoc();
-    Value value = op.value();
-    Value multiplier32 = op.multiplier();
+    Value value = op.getValue();
+    Value multiplier32 = op.getMultiplier();
 
     Type resultTy = op.getType();
     Type valueTy = value.getType();
@@ -78,7 +78,7 @@ class ApplyScaleGenericOpConverter
     Value one64 = getConstantValue(loc, i64Ty, 1, rewriter);
     Value thirtyOne32 = getConstantValue(loc, i32Ty, 31, rewriter);
 
-    Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.shift());
+    Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.getShift());
 
     // Compute the multiplication in 64-bits then select the high / low parts.
     Value value64 = rewriter.create<arith::ExtSIOp>(loc, i64Ty, value);
@@ -94,7 +94,7 @@ class ApplyScaleGenericOpConverter
     multiply64 = rewriter.create<arith::AddIOp>(loc, multiply64, round);
 
     // Apply double rounding if necessary.
-    if (op.double_round()) {
+    if (op.getDoubleRound()) {
       int64_t roundInt = 1 << 30;
       Value roundUp = getConstantValue(loc, i64Ty, roundInt, rewriter);
       Value roundDown = getConstantValue(loc, i64Ty, -roundInt, rewriter);
@@ -129,14 +129,14 @@ class ApplyScale32BitOpConverter : public OpRewritePattern<tosa::ApplyScaleOp> {
     Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy);
     Type i64Ty = matchContainerType(rewriter.getI64Type(), resultTy);
 
-    Value value = op.value();
+    Value value = op.getValue();
     if (getElementTypeOrSelf(value.getType()).getIntOrFloatBitWidth() > 32) {
       return failure();
     }
 
-    Value value32 = op.value();
-    Value multiplier32 = op.multiplier();
-    Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.shift());
+    Value value32 = op.getValue();
+    Value multiplier32 = op.getMultiplier();
+    Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.getShift());
 
     // Constants used during the scaling operation.
     Value zero32 = getConstantValue(loc, i32Ty, 0, rewriter);
@@ -176,7 +176,7 @@ class ApplyScale32BitOpConverter : public OpRewritePattern<tosa::ApplyScaleOp> {
         rewriter.create<arith::SelectOp>(loc, shiftOver32, shiftHighR, zero32);
 
     // Conditionally perform our double round.
-    if (op.double_round()) {
+    if (op.getDoubleRound()) {
       Value negOne32 = getConstantValue(loc, i32Ty, -1, rewriter);
       Value valuePositive = rewriter.create<arith::CmpIOp>(
           loc, arith::CmpIPredicate::sge, value32, zero32);

diff  --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 6c6478b1af6aa..05a18d7d68dc4 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -77,7 +77,7 @@ createLinalgBodyCalculationForElementwiseOp(Operation *op, ValueRange args,
 
   // tosa::MulOp
   if (isa<tosa::MulOp>(op) && elementTy.isa<FloatType>()) {
-    if (dyn_cast<tosa::MulOp>(op).shift() != 0) {
+    if (dyn_cast<tosa::MulOp>(op).getShift() != 0) {
       (void)rewriter.notifyMatchFailure(op,
                                         "Cannot have shift value for float");
       return nullptr;
@@ -137,15 +137,15 @@ createLinalgBodyCalculationForElementwiseOp(Operation *op, ValueRange args,
     return rewriter.create<arith::NegFOp>(loc, resultTypes, args);
 
   if (isa<tosa::NegateOp>(op) && elementTy.isa<IntegerType>() &&
-      !cast<tosa::NegateOp>(op).quantization_info()) {
+      !cast<tosa::NegateOp>(op).getQuantizationInfo()) {
     auto constant =
         rewriter.create<arith::ConstantOp>(loc, IntegerAttr::get(elementTy, 0));
     return rewriter.create<arith::SubIOp>(loc, resultTypes, constant, args[0]);
   }
 
   if (isa<tosa::NegateOp>(op) && elementTy.isa<IntegerType>() &&
-      cast<tosa::NegateOp>(op).quantization_info()) {
-    auto quantizationInfo = cast<tosa::NegateOp>(op).quantization_info();
+      cast<tosa::NegateOp>(op).getQuantizationInfo()) {
+    auto quantizationInfo = cast<tosa::NegateOp>(op).getQuantizationInfo();
     int32_t inputBitWidth = elementTy.getIntOrFloatBitWidth();
     int64_t inZp = quantizationInfo.value().getInputZp();
     int64_t outZp = quantizationInfo.value().getOutputZp();
@@ -978,7 +978,7 @@ class ReshapeConverterCollapse : public OpConversionPattern<tosa::ReshapeOp> {
   LogicalResult
   matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const final {
-    ShapedType operandTy = adaptor.input1().getType().cast<ShapedType>();
+    ShapedType operandTy = adaptor.getInput1().getType().cast<ShapedType>();
     ShapedType resultTy = reshape.getType().template cast<ShapedType>();
     bool isDynamic = !operandTy.hasStaticShape();
 
@@ -1021,7 +1021,7 @@ class ReshapeConverterExpand : public OpConversionPattern<tosa::ReshapeOp> {
   LogicalResult
   matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const final {
-    ShapedType operandTy = adaptor.input1().getType().cast<ShapedType>();
+    ShapedType operandTy = adaptor.getInput1().getType().cast<ShapedType>();
     ShapedType resultTy = reshape.getType().template cast<ShapedType>();
     bool isDynamic = !operandTy.hasStaticShape();
 
@@ -1065,7 +1065,7 @@ class ReshapeConverterCollapseExpand
   LogicalResult
   matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const final {
-    ShapedType operandTy = adaptor.input1().getType().cast<ShapedType>();
+    ShapedType operandTy = adaptor.getInput1().getType().cast<ShapedType>();
     ShapedType resultTy = reshape.getType().template cast<ShapedType>();
     bool isDynamic = !operandTy.hasStaticShape();
 
@@ -1086,7 +1086,7 @@ class ReshapeConverterCollapseExpand
         reshape.getLoc(),
         RankedTensorType::get(intermediateShape,
                               reshape.getType().getElementType()),
-        adaptor.input1());
+        adaptor.getInput1());
     Value expand =
         rewriter.create<tosa::ReshapeOp>(reshape.getLoc(), resultTy, collapse);
     rewriter.replaceOp(reshape, expand);
@@ -1102,7 +1102,7 @@ class TransposeConverter : public OpRewritePattern<tosa::TransposeOp> {
   LogicalResult matchAndRewrite(tosa::TransposeOp op,
                                 PatternRewriter &rewriter) const final {
     DenseIntElementsAttr perms;
-    if (!matchPattern(op.perms(), m_Constant(&perms))) {
+    if (!matchPattern(op.getPerms(), m_Constant(&perms))) {
       return failure();
     }
 
@@ -1136,7 +1136,7 @@ class TransposeConverter : public OpRewritePattern<tosa::TransposeOp> {
         rewriter.getMultiDimIdentityMap(resultTy.getRank())};
 
     rewriter.replaceOpWithNewOp<linalg::GenericOp>(
-        op, resultTy, op.input1(), ValueRange{initTensor}, affineMaps,
+        op, resultTy, op.getInput1(), ValueRange{initTensor}, affineMaps,
         getNParallelLoopsAttrs(resultTy.getRank()),
         [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
           nestedBuilder.create<linalg::YieldOp>(loc, *args.begin());
@@ -1152,28 +1152,28 @@ class RescaleConverter : public OpRewritePattern<tosa::RescaleOp> {
   LogicalResult matchAndRewrite(tosa::RescaleOp op,
                                 PatternRewriter &rewriter) const final {
     auto loc = op.getLoc();
-    auto input = op.input();
-    auto inputTy = op.input().getType().cast<ShapedType>();
-    auto outputTy = op.output().getType().cast<ShapedType>();
+    auto input = op.getInput();
+    auto inputTy = op.getInput().getType().cast<ShapedType>();
+    auto outputTy = op.getOutput().getType().cast<ShapedType>();
     unsigned rank = inputTy.getRank();
 
     // This is an illegal configuration. terminate and log an error
-    if (op.double_round() && !op.scale32())
+    if (op.getDoubleRound() && !op.getScale32())
       return rewriter.notifyMatchFailure(
           op, "tosa.rescale requires scale32 for double_round to be true");
 
     auto dynamicDimsOr =
-        checkHasDynamicBatchDims(rewriter, op, {input, op.output()});
+        checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()});
     if (!dynamicDimsOr.has_value())
       return failure();
     SmallVector<Value> dynamicDims = dynamicDimsOr.value();
 
     // The shift and multiplier values.
     SmallVector<int32_t> multiplierValues;
-    getValuesFromIntArrayAttribute(op.multiplier(), multiplierValues);
+    getValuesFromIntArrayAttribute(op.getMultiplier(), multiplierValues);
 
     SmallVector<int8_t> shiftValues;
-    getValuesFromIntArrayAttribute(op.shift(), shiftValues);
+    getValuesFromIntArrayAttribute(op.getShift(), shiftValues);
 
     // If we shift by more than the bitwidth, this just sets to 0.
     for (int i = 0, s = multiplierValues.size(); i < s; i++) {
@@ -1186,7 +1186,7 @@ class RescaleConverter : public OpRewritePattern<tosa::RescaleOp> {
     // Double round only occurs if shift is greater than 31, check that this
     // is ever true.
     bool doubleRound =
-        op.double_round() &&
+        op.getDoubleRound() &&
         llvm::any_of(shiftValues, [](int32_t v) { return v > 31; });
 
     SmallVector<AffineMap> indexingMaps = {
@@ -1346,7 +1346,7 @@ class ResizeConverter : public OpRewritePattern<tosa::ResizeOp> {
   LogicalResult matchAndRewrite(tosa::ResizeOp op,
                                 PatternRewriter &rewriter) const final {
     Location loc = op.getLoc();
-    auto input = op.input();
+    auto input = op.getInput();
     auto inputTy = input.getType().cast<ShapedType>();
     auto resultTy = op.getType().cast<ShapedType>();
     auto resultElementTy = resultTy.getElementType();
@@ -1355,12 +1355,12 @@ class ResizeConverter : public OpRewritePattern<tosa::ResizeOp> {
     auto imageW = inputTy.getShape()[2];
 
     auto dynamicDimsOr =
-        checkHasDynamicBatchDims(rewriter, op, {input, op.output()});
+        checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()});
     if (!dynamicDimsOr.has_value())
       return failure();
     SmallVector<Value> dynamicDims = dynamicDimsOr.value();
 
-    if (op.mode() != "NEAREST_NEIGHBOR" && op.mode() != "BILINEAR")
+    if (op.getMode() != "NEAREST_NEIGHBOR" && op.getMode() != "BILINEAR")
       return failure();
 
     auto initTensor = rewriter.create<linalg::InitTensorOp>(
@@ -1394,19 +1394,19 @@ class ResizeConverter : public OpRewritePattern<tosa::ResizeOp> {
     Value inX =
         rewriter.create<arith::IndexCastOp>(loc, rewriter.getI32Type(), x);
 
-    int32_t shift = op.shift();
+    int32_t shift = op.getShift();
     bool floatingPointMode = shift == 0;
 
     Value yStride, xStride, yOffset, xOffset;
     if (floatingPointMode) {
-      yStride = rewriter.create<arith::ConstantOp>(loc, op.stride_fp()[0]);
-      xStride = rewriter.create<arith::ConstantOp>(loc, op.stride_fp()[1]);
-      yOffset = rewriter.create<arith::ConstantOp>(loc, op.offset_fp()[0]);
-      xOffset = rewriter.create<arith::ConstantOp>(loc, op.offset_fp()[1]);
+      yStride = rewriter.create<arith::ConstantOp>(loc, op.getStrideFp()[0]);
+      xStride = rewriter.create<arith::ConstantOp>(loc, op.getStrideFp()[1]);
+      yOffset = rewriter.create<arith::ConstantOp>(loc, op.getOffsetFp()[0]);
+      xOffset = rewriter.create<arith::ConstantOp>(loc, op.getOffsetFp()[1]);
     } else {
       SmallVector<int32_t> stride, offset;
-      getValuesFromIntArrayAttribute(op.stride(), stride);
-      getValuesFromIntArrayAttribute(op.offset(), offset);
+      getValuesFromIntArrayAttribute(op.getStride(), stride);
+      getValuesFromIntArrayAttribute(op.getOffset(), offset);
 
       yStride = rewriter.create<arith::ConstantOp>(
           loc, rewriter.getI32IntegerAttr(stride[0]));
@@ -1463,7 +1463,7 @@ class ResizeConverter : public OpRewritePattern<tosa::ResizeOp> {
       dx = rewriter.create<arith::SubIOp>(loc, x, xTrunc);
     }
 
-    if (op.mode() == "NEAREST_NEIGHBOR") {
+    if (op.getMode() == "NEAREST_NEIGHBOR") {
       Value yPred, xPred;
       // Round the index position towards the closest pixel location.
       if (floatingPointMode) {
@@ -1516,7 +1516,7 @@ class ResizeConverter : public OpRewritePattern<tosa::ResizeOp> {
       return success();
     }
 
-    if (op.mode() == "BILINEAR") {
+    if (op.getMode() == "BILINEAR") {
       Value y0 = iy;
       Value x0 = ix;
 
@@ -1634,7 +1634,7 @@ class ReduceConverter : public OpRewritePattern<SrcOp> {
 
   LogicalResult matchAndRewrite(SrcOp reduceOp,
                                 PatternRewriter &rewriter) const final {
-    return reduceMatchAndRewriteHelper(reduceOp, reduceOp.axis(), rewriter);
+    return reduceMatchAndRewriteHelper(reduceOp, reduceOp.getAxis(), rewriter);
   }
 };
 
@@ -1648,7 +1648,7 @@ struct ConcatConverter : public OpConversionPattern<tosa::ConcatOp> {
     auto resultType = op.getType().dyn_cast<RankedTensorType>();
 
     Location loc = op.getLoc();
-    int axis = op.axis();
+    int axis = op.getAxis();
     Value axisValue = rewriter.createOrFold<arith::ConstantOp>(
         loc, rewriter.getIndexAttr(axis));
     int rank = resultType.getRank();
@@ -1713,10 +1713,10 @@ class ReverseConverter : public OpRewritePattern<tosa::ReverseOp> {
   LogicalResult matchAndRewrite(tosa::ReverseOp op,
                                 PatternRewriter &rewriter) const final {
     auto loc = op.getLoc();
-    Value input = op.input();
+    Value input = op.getInput();
     auto inputTy = input.getType().template cast<ShapedType>();
     auto resultTy = op.getType().template cast<ShapedType>();
-    auto axis = op.axis();
+    auto axis = op.getAxis();
 
     SmallVector<Value> dynDims;
     for (int i = 0; i < inputTy.getRank(); i++) {
@@ -1775,7 +1775,7 @@ struct TileConverter : public OpConversionPattern<tosa::TileOp> {
   matchAndRewrite(tosa::TileOp op, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
     auto loc = op.getLoc();
-    auto input = op.input1();
+    auto input = op.getInput1();
     auto inputTy = input.getType().cast<ShapedType>();
     auto inputShape = inputTy.getShape();
     auto resultTy = op.getType().cast<ShapedType>();
@@ -1783,7 +1783,7 @@ struct TileConverter : public OpConversionPattern<tosa::TileOp> {
     int64_t rank = inputTy.getRank();
 
     SmallVector<int64_t> multiples;
-    getValuesFromIntArrayAttribute(op.multiples(), multiples);
+    getValuesFromIntArrayAttribute(op.getMultiples(), multiples);
 
     // Broadcast the newly added dimensions to their appropriate multiple.
     SmallVector<int64_t, 2> genericShape;
@@ -1837,8 +1837,8 @@ class PadConverter : public OpRewritePattern<tosa::PadOp> {
   LogicalResult matchAndRewrite(tosa::PadOp padOp,
                                 PatternRewriter &rewriter) const final {
     auto loc = padOp.getLoc();
-    auto input = padOp.input1();
-    auto padding = padOp.padding();
+    auto input = padOp.getInput1();
+    auto padding = padOp.getPadding();
 
     ShapedType inputTy = input.getType().cast<ShapedType>();
     Type elementTy = inputTy.getElementType();
@@ -1848,17 +1848,17 @@ class PadConverter : public OpRewritePattern<tosa::PadOp> {
 
     Value padConstant;
 
-    if (padOp.pad_const()) {
+    if (padOp.getPadConst()) {
       padConstant = rewriter.createOrFold<tensor::ExtractOp>(
-          loc, padOp.pad_const(), ValueRange({}));
+          loc, padOp.getPadConst(), ValueRange({}));
     } else {
       Attribute constantAttr;
       if (elementTy.isa<FloatType>()) {
         constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
-      } else if (elementTy.isa<IntegerType>() && !padOp.quantization_info()) {
+      } else if (elementTy.isa<IntegerType>() && !padOp.getQuantizationInfo()) {
         constantAttr = rewriter.getIntegerAttr(elementTy, 0);
-      } else if (elementTy.isa<IntegerType>() && padOp.quantization_info()) {
-        int64_t value = padOp.quantization_info()->getInputZp();
+      } else if (elementTy.isa<IntegerType>() && padOp.getQuantizationInfo()) {
+        int64_t value = padOp.getQuantizationInfo()->getInputZp();
         constantAttr = rewriter.getIntegerAttr(elementTy, value);
       }
       if (constantAttr)
@@ -1926,12 +1926,12 @@ class ArgMaxConverter : public OpRewritePattern<tosa::ArgMaxOp> {
   LogicalResult matchAndRewrite(tosa::ArgMaxOp argmaxOp,
                                 PatternRewriter &rewriter) const final {
     auto loc = argmaxOp.getLoc();
-    Value input = argmaxOp.input();
+    Value input = argmaxOp.getInput();
     auto inputTy = input.getType().cast<ShapedType>();
-    auto resultTy = argmaxOp.output().getType().cast<ShapedType>();
+    auto resultTy = argmaxOp.getOutput().getType().cast<ShapedType>();
     auto inElementTy = inputTy.getElementType();
     auto outElementTy = resultTy.getElementType();
-    int axis = argmaxOp.axis();
+    int axis = argmaxOp.getAxis();
     auto resultMaxTy = RankedTensorType::get(resultTy.getShape(), inElementTy);
 
     if (!outElementTy.isa<IntegerType>())
@@ -2049,8 +2049,8 @@ class GatherConverter : public OpConversionPattern<tosa::GatherOp> {
 
     auto resultTy = op.getType().cast<ShapedType>();
 
-    auto dynamicDimsOr =
-        checkHasDynamicBatchDims(rewriter, op, {input, indices, op.output()});
+    auto dynamicDimsOr = checkHasDynamicBatchDims(
+        rewriter, op, {input, indices, op.getOutput()});
     if (!dynamicDimsOr.has_value())
       return failure();
     SmallVector<Value> dynamicDims = dynamicDimsOr.value();
@@ -2101,8 +2101,8 @@ class TableConverter : public OpRewritePattern<tosa::TableOp> {
   LogicalResult matchAndRewrite(tosa::TableOp op,
                                 PatternRewriter &rewriter) const final {
     auto loc = op.getLoc();
-    Value input = op.input();
-    Value table = op.table();
+    Value input = op.getInput();
+    Value table = op.getTable();
     auto inputTy = input.getType().cast<ShapedType>();
     auto tableTy = table.getType().cast<ShapedType>();
     auto resultTy = op.getType().cast<ShapedType>();

diff  --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 19df969c9c9a4..5e491f2ef437c 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -533,21 +533,21 @@ class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
                            .create<linalg::FillOp>(loc, ValueRange{zero},
                                                    ValueRange{initTensor})
                            .result();
-    if (!op.quantization_info()) {
+    if (!op.getQuantizationInfo()) {
       rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
-          op, TypeRange{op.getType()}, ValueRange{adaptor.a(), adaptor.b()},
-          ValueRange{zeroTensor});
+          op, TypeRange{op.getType()},
+          ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor});
       return success();
     }
 
-    auto quantizationInfo = *op.quantization_info();
+    auto quantizationInfo = *op.getQuantizationInfo();
     auto aZp = rewriter.create<arith::ConstantOp>(
         loc, rewriter.getI32IntegerAttr(quantizationInfo.getAZp()));
     auto bZp = rewriter.create<arith::ConstantOp>(
         loc, rewriter.getI32IntegerAttr(quantizationInfo.getBZp()));
     rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
         op, TypeRange{op.getType()},
-        ValueRange{adaptor.a(), adaptor.b(), aZp, bZp}, zeroTensor);
+        ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor);
 
     return success();
   }
@@ -562,12 +562,12 @@ class FullyConnectedConverter
                   ConversionPatternRewriter &rewriter) const final {
     Location loc = op.getLoc();
     auto outputTy = op.getType().cast<ShapedType>();
-    auto input = op.input();
+    auto input = op.getInput();
     auto inputTy = input.getType().cast<ShapedType>();
 
-    auto bias = op.bias();
+    auto bias = op.getBias();
 
-    auto weight = op.weight();
+    auto weight = op.getWeight();
     auto weightTy = weight.getType().cast<ShapedType>();
     auto weightShape = weightTy.getShape();
 
@@ -627,7 +627,7 @@ class FullyConnectedConverter
                                           outputTy.getShape(), outputETy)
             ->getResults();
 
-    if (!op.quantization_info()) {
+    if (!op.getQuantizationInfo()) {
       Value matmul = rewriter
                          .create<linalg::MatmulOp>(
                              loc, TypeRange{op.getType()},
@@ -650,7 +650,7 @@ class FullyConnectedConverter
       return success();
     }
 
-    auto quantizationInfo = *op.quantization_info();
+    auto quantizationInfo = *op.getQuantizationInfo();
     auto inputZp = rewriter.create<arith::ConstantOp>(
         loc, rewriter.getI32IntegerAttr(quantizationInfo.getInputZp()));
     auto outputZp = rewriter.create<arith::ConstantOp>(
@@ -686,14 +686,14 @@ class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> {
   LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
                                 PatternRewriter &rewriter) const final {
     Location loc = op.getLoc();
-    Value input = op.input();
+    Value input = op.getInput();
     ShapedType inputTy = input.getType().cast<ShapedType>();
 
     ShapedType resultTy = op.getType().template cast<ShapedType>();
     Type resultETy = inputTy.getElementType();
 
     auto dynamicDimsOr =
-        checkHasDynamicBatchDims(rewriter, op, {input, op.output()});
+        checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()});
     if (!dynamicDimsOr.has_value())
       return failure();
     SmallVector<Value> dynamicDims = dynamicDimsOr.value();
@@ -718,15 +718,15 @@ class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> {
     // Apply padding as necessary.
     llvm::SmallVector<int64_t> pad;
     pad.resize(2, 0);
-    getValuesFromIntArrayAttribute(op.pad(), pad);
+    getValuesFromIntArrayAttribute(op.getPad(), pad);
     pad.resize(pad.size() + 2, 0);
     Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter);
 
     Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
 
     SmallVector<int64_t> kernel, stride;
-    getValuesFromIntArrayAttribute(op.kernel(), kernel);
-    getValuesFromIntArrayAttribute(op.stride(), stride);
+    getValuesFromIntArrayAttribute(op.getKernel(), kernel);
+    getValuesFromIntArrayAttribute(op.getStride(), stride);
 
     Attribute strideAttr = rewriter.getI64VectorAttr(stride);
     Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
@@ -758,7 +758,7 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
   LogicalResult matchAndRewrite(tosa::AvgPool2dOp op,
                                 PatternRewriter &rewriter) const final {
     Location loc = op.getLoc();
-    Value input = op.input();
+    Value input = op.getInput();
     ShapedType inputTy = input.getType().cast<ShapedType>();
     Type inElementTy = inputTy.getElementType();
 
@@ -770,7 +770,7 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
     ShapedType accTy = resultTy.clone(accETy);
 
     auto dynamicDimsOr =
-        checkHasDynamicBatchDims(rewriter, op, {input, op.output()});
+        checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()});
     if (!dynamicDimsOr.has_value())
       return failure();
     SmallVector<Value> dynamicDims = dynamicDimsOr.value();
@@ -778,7 +778,7 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
     // Apply padding as necessary.
     llvm::SmallVector<int64_t> pad;
     pad.resize(2, 0);
-    getValuesFromIntArrayAttribute(op.pad(), pad);
+    getValuesFromIntArrayAttribute(op.getPad(), pad);
     pad.resize(pad.size() + 2, 0);
     Attribute padAttr = rewriter.getZeroAttr(inElementTy);
     Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter);
@@ -787,8 +787,8 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
     Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
 
     SmallVector<int64_t> kernel, stride;
-    getValuesFromIntArrayAttribute(op.kernel(), kernel);
-    getValuesFromIntArrayAttribute(op.stride(), stride);
+    getValuesFromIntArrayAttribute(op.getKernel(), kernel);
+    getValuesFromIntArrayAttribute(op.getStride(), stride);
 
     Attribute strideAttr = rewriter.getI64VectorAttr(stride);
     Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
@@ -889,8 +889,8 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
 
             // If we have quantization information we need to apply an offset
             // for the input zp value.
-            if (op.quantization_info()) {
-              auto quantizationInfo = *op.quantization_info();
+            if (op.getQuantizationInfo()) {
+              auto quantizationInfo = *op.getQuantizationInfo();
               auto inputZp = rewriter.create<arith::ConstantOp>(
                   loc, b.getIntegerAttr(accETy, quantizationInfo.getInputZp()));
               Value offset =
@@ -925,8 +925,8 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
 
             // If we have quantization information we need to apply output
             // zeropoint.
-            if (op.quantization_info()) {
-              auto quantizationInfo = *op.quantization_info();
+            if (op.getQuantizationInfo()) {
+              auto quantizationInfo = *op.getQuantizationInfo();
               auto outputZp = rewriter.create<arith::ConstantOp>(
                   loc, b.getIntegerAttr(scaled.getType(),
                                         quantizationInfo.getOutputZp()));

diff  --git a/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp b/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp
index 6a5f046559e3b..46e751e8f0ff1 100644
--- a/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp
+++ b/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp
@@ -32,7 +32,7 @@ static void inlineIfCase(Region &srcRegion, Region &dstRegion,
 
   auto yield = cast<YieldOp>(headBlock->getTerminator());
   rewriter.setInsertionPoint(yield);
-  rewriter.create<scf::YieldOp>(yield.getLoc(), yield.inputs());
+  rewriter.create<scf::YieldOp>(yield.getLoc(), yield.getInputs());
   rewriter.eraseOp(yield);
 
   headBlock->eraseArguments(
@@ -55,7 +55,7 @@ static void inlineWhileCase(Region &srcRegion, Region &dstRegion,
                                       headBlock->getArguments());
   } else {
     rewriter.setInsertionPoint(yield);
-    rewriter.create<scf::YieldOp>(yield.getLoc(), yield.inputs());
+    rewriter.create<scf::YieldOp>(yield.getLoc(), yield.getInputs());
   }
   rewriter.eraseOp(yield);
 }
@@ -68,13 +68,14 @@ class IfOpConverter : public OpRewritePattern<tosa::IfOp> {
 
   LogicalResult matchAndRewrite(tosa::IfOp op,
                                 PatternRewriter &rewriter) const final {
-    auto condition = rewriter.create<tensor::ExtractOp>(op.getLoc(), op.cond());
+    auto condition =
+        rewriter.create<tensor::ExtractOp>(op.getLoc(), op.getCond());
     auto newIf = rewriter.create<scf::IfOp>(op.getLoc(), op.getResultTypes(),
                                             condition, true);
 
-    inlineIfCase(op.then_branch(), newIf.getThenRegion(), op.inputs(),
+    inlineIfCase(op.getThenBranch(), newIf.getThenRegion(), op.getInputs(),
                  rewriter);
-    inlineIfCase(op.else_branch(), newIf.getElseRegion(), op.inputs(),
+    inlineIfCase(op.getElseBranch(), newIf.getElseRegion(), op.getInputs(),
                  rewriter);
 
     rewriter.replaceOp(op, newIf.getResults());
@@ -89,12 +90,12 @@ class WhileOpConverter : public OpRewritePattern<tosa::WhileOp> {
   LogicalResult matchAndRewrite(tosa::WhileOp op,
                                 PatternRewriter &rewriter) const final {
     auto newWhile = rewriter.create<scf::WhileOp>(
-        op.getLoc(), op.getResultTypes(), op.inputs());
+        op.getLoc(), op.getResultTypes(), op.getInputs());
     rewriter.createBlock(&newWhile.getBefore());
     rewriter.createBlock(&newWhile.getAfter());
 
-    inlineWhileCase(op.cond(), newWhile.getBefore(), rewriter, true);
-    inlineWhileCase(op.body(), newWhile.getAfter(), rewriter, false);
+    inlineWhileCase(op.getCond(), newWhile.getBefore(), rewriter, true);
+    inlineWhileCase(op.getBody(), newWhile.getAfter(), rewriter, false);
 
     rewriter.replaceOp(op, newWhile.getResults());
 

diff  --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index ebc0e611f4382..438e6fe4b7e2c 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -29,10 +29,10 @@ class SliceOpConverter : public OpRewritePattern<tosa::SliceOp> {
   LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
                                 PatternRewriter &rewriter) const final {
     Location loc = sliceOp.getLoc();
-    Value input = sliceOp.input();
+    Value input = sliceOp.getInput();
     SmallVector<int64_t> strides;
-    auto starts = sliceOp.start();
-    auto sizes = sliceOp.size();
+    auto starts = sliceOp.getStart();
+    auto sizes = sliceOp.getSize();
     strides.resize(sliceOp.getType().template cast<ShapedType>().getRank(), 1);
 
     SmallVector<Value> dynSizes;

diff  --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 7bb6339c69b7f..7b9e9f1580081 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -38,17 +38,17 @@ struct ConcatOptimization : public OpRewritePattern<tosa::ConcatOp> {
 
   LogicalResult matchAndRewrite(tosa::ConcatOp op,
                                 PatternRewriter &rewriter) const override {
-    if (op.input1().size() != 1)
+    if (op.getInput1().size() != 1)
       return failure();
-    if (op.input1().front().getType() != op.getType()) {
+    if (op.getInput1().front().getType() != op.getType()) {
       rewriter
           .replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
-                                              op.input1().front())
+                                              op.getInput1().front())
           .getResult();
       return success();
     }
 
-    rewriter.replaceOp(op, op.input1().front());
+    rewriter.replaceOp(op, op.getInput1().front());
     return success();
   }
 };
@@ -63,14 +63,14 @@ struct ReshapeReshapeOptimization : public OpRewritePattern<tosa::ReshapeOp> {
 
   LogicalResult matchAndRewrite(tosa::ReshapeOp op,
                                 PatternRewriter &rewriter) const override {
-    Value input = op.input1();
+    Value input = op.getInput1();
     Operation *definingOp = input.getDefiningOp();
     if (!definingOp)
       return failure();
 
     if (tosa::ReshapeOp reshapeOp = dyn_cast<tosa::ReshapeOp>(definingOp)) {
       rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
-          op, op.getType(), reshapeOp.input1(), op.new_shape());
+          op, op.getType(), reshapeOp.getInput1(), op.getNewShape());
       return success();
     }
 
@@ -83,8 +83,8 @@ struct ReshapeConstOptimization : public OpRewritePattern<tosa::ReshapeOp> {
 
   LogicalResult matchAndRewrite(tosa::ReshapeOp op,
                                 PatternRewriter &rewriter) const override {
-    Value input = op.input1();
-    ArrayAttr newShape = op.new_shape();
+    Value input = op.getInput1();
+    ArrayAttr newShape = op.getNewShape();
 
     // Check if input is constant
     DenseElementsAttr inputAttr;
@@ -118,12 +118,12 @@ void ReshapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
 }
 
 LogicalResult SelectOp::canonicalize(SelectOp op, PatternRewriter &rewriter) {
-  auto notOp = op.pred().getDefiningOp<tosa::LogicalNotOp>();
+  auto notOp = op.getPred().getDefiningOp<tosa::LogicalNotOp>();
   if (!notOp)
     return failure();
   rewriter.updateRootInPlace(op, [&]() {
     op.getOperation()->setOperands(
-        {notOp.input1(), op.on_false(), op.on_true()});
+        {notOp.getInput1(), op.getOnFalse(), op.getOnTrue()});
   });
   return success();
 }
@@ -133,7 +133,7 @@ struct NoOpOptimization : public OpRewritePattern<tosa::TransposeOp> {
 
   LogicalResult matchAndRewrite(tosa::TransposeOp op,
                                 PatternRewriter &rewriter) const override {
-    auto perm = op.perms();
+    auto perm = op.getPerms();
 
     DenseIntElementsAttr permAttr;
     if (!matchPattern(perm, m_Constant(&permAttr))) {
@@ -150,7 +150,7 @@ struct NoOpOptimization : public OpRewritePattern<tosa::TransposeOp> {
       }
     }
 
-    rewriter.replaceOp(op, op.input1());
+    rewriter.replaceOp(op, op.getInput1());
     return success();
   }
 };
@@ -165,15 +165,15 @@ struct AddZeroOptimization : public OpRewritePattern<tosa::AddOp> {
 
   LogicalResult matchAndRewrite(tosa::AddOp op,
                                 PatternRewriter &rewriter) const override {
-    auto input1 = op.input1();
-    auto input2 = op.input2();
+    auto input1 = op.getInput1();
+    auto input2 = op.getInput2();
 
     DenseElementsAttr input1Attr;
     if (matchPattern(input1, m_Constant(&input1Attr)) && input1Attr.isSplat() &&
         input2.getType() == op.getType()) {
       if (input1Attr.getType().getElementType().isa<IntegerType>() &&
           input1Attr.getSplatValue<APInt>().isZero()) {
-        rewriter.replaceOp(op, op.input2());
+        rewriter.replaceOp(op, op.getInput2());
         return success();
       }
     }
@@ -183,7 +183,7 @@ struct AddZeroOptimization : public OpRewritePattern<tosa::AddOp> {
         input1.getType() == op.getType()) {
       if (input2Attr.getType().getElementType().isa<IntegerType>() &&
           input2Attr.getSplatValue<APInt>().isZero()) {
-        rewriter.replaceOp(op, op.input1());
+        rewriter.replaceOp(op, op.getInput1());
         return success();
       }
     }
@@ -202,21 +202,21 @@ struct MulOneOptimization : public OpRewritePattern<tosa::MulOp> {
 
   LogicalResult matchAndRewrite(tosa::MulOp op,
                                 PatternRewriter &rewriter) const override {
-    auto input1 = op.input1();
-    auto input2 = op.input2();
+    auto input1 = op.getInput1();
+    auto input2 = op.getInput2();
 
     DenseElementsAttr input1Attr;
     if (matchPattern(input1, m_Constant(&input1Attr)) && input1Attr.isSplat() &&
         input2.getType() == op.getType()) {
       if (input1Attr.getType().getElementType().isa<FloatType>() &&
           input1Attr.getSplatValue<APFloat>().isExactlyValue(1)) {
-        rewriter.replaceOp(op, op.input2());
+        rewriter.replaceOp(op, op.getInput2());
         return success();
       }
 
       if (input1Attr.getType().getElementType().isa<IntegerType>() &&
           matchPattern(input1, m_One())) {
-        rewriter.replaceOp(op, op.input2());
+        rewriter.replaceOp(op, op.getInput2());
         return success();
       }
     }
@@ -226,13 +226,13 @@ struct MulOneOptimization : public OpRewritePattern<tosa::MulOp> {
         input1.getType() == op.getType()) {
       if (input2Attr.getType().getElementType().isa<FloatType>() &&
           input2Attr.getSplatValue<APFloat>().isExactlyValue(1)) {
-        rewriter.replaceOp(op, op.input1());
+        rewriter.replaceOp(op, op.getInput1());
         return success();
       }
 
       if (input2Attr.getType().getElementType().isa<IntegerType>() &&
           matchPattern(input2, m_One())) {
-        rewriter.replaceOp(op, op.input1());
+        rewriter.replaceOp(op, op.getInput1());
         return success();
       }
     }
@@ -251,11 +251,11 @@ struct MaterializePadValue : public OpRewritePattern<tosa::PadOp> {
 
   LogicalResult matchAndRewrite(tosa::PadOp op,
                                 PatternRewriter &rewriter) const override {
-    if (op.pad_const())
+    if (op.getPadConst())
       return failure();
 
-    auto input = op.input1();
-    auto padding = op.padding();
+    auto input = op.getInput1();
+    auto padding = op.getPadding();
 
     ShapedType inputTy = input.getType().cast<ShapedType>();
     Type elementTy = inputTy.getElementType();
@@ -263,10 +263,10 @@ struct MaterializePadValue : public OpRewritePattern<tosa::PadOp> {
     Attribute constantAttr;
     if (elementTy.isa<FloatType>()) {
       constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
-    } else if (elementTy.isa<IntegerType>() && !op.quantization_info()) {
+    } else if (elementTy.isa<IntegerType>() && !op.getQuantizationInfo()) {
       constantAttr = rewriter.getIntegerAttr(elementTy, 0);
-    } else if (elementTy.isa<IntegerType>() && op.quantization_info()) {
-      auto value = op.quantization_info()->getInputZp();
+    } else if (elementTy.isa<IntegerType>() && op.getQuantizationInfo()) {
+      auto value = op.getQuantizationInfo()->getInputZp();
       constantAttr = rewriter.getIntegerAttr(elementTy, value);
     }
 
@@ -298,8 +298,8 @@ struct MaxPool2dIsNoOp : public OpRewritePattern<tosa::MaxPool2dOp> {
 
   LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
                                 PatternRewriter &rewriter) const override {
-    Value input = op.input();
-    Value output = op.output();
+    Value input = op.getInput();
+    Value output = op.getOutput();
     ShapedType inputType = input.getType().cast<ShapedType>();
     ShapedType outputType = output.getType().cast<ShapedType>();
 
@@ -333,8 +333,9 @@ struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> {
 
   LogicalResult matchAndRewrite(tosa::ClampOp op,
                                 PatternRewriter &rewriter) const override {
-    Value input = op.input();
-    auto inputType = op.input().getType().template dyn_cast<RankedTensorType>();
+    Value input = op.getInput();
+    auto inputType =
+        op.getInput().getType().template dyn_cast<RankedTensorType>();
     auto inputElementType = inputType.getElementType();
 
     if (!inputType.hasStaticShape()) {
@@ -342,8 +343,8 @@ struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> {
     }
 
     if (inputElementType.isF32()) {
-      auto minClamp = op.min_fp();
-      auto maxClamp = op.max_fp();
+      auto minClamp = op.getMinFp();
+      auto maxClamp = op.getMaxFp();
       bool isMin = (minClamp.isLargest() || minClamp.isInfinity()) &&
                    minClamp.isNegative();
       bool isMax = (maxClamp.isLargest() || maxClamp.isInfinity()) &&
@@ -357,8 +358,8 @@ struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> {
     }
 
     if (inputElementType.isUnsignedInteger()) {
-      int64_t minClamp = op.min_int();
-      int64_t maxClamp = op.max_int();
+      int64_t minClamp = op.getMinInt();
+      int64_t maxClamp = op.getMaxInt();
 
       int64_t intMin =
           APInt::getMinValue(inputElementType.getIntOrFloatBitWidth())
@@ -375,8 +376,8 @@ struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> {
     }
 
     if (inputElementType.isa<IntegerType>()) {
-      int64_t minClamp = op.min_int();
-      int64_t maxClamp = op.max_int();
+      int64_t minClamp = op.getMinInt();
+      int64_t maxClamp = op.getMaxInt();
 
       int64_t intMin =
           APInt::getSignedMinValue(inputElementType.getIntOrFloatBitWidth())
@@ -401,21 +402,22 @@ struct ClampClampOptimization : public OpRewritePattern<tosa::ClampOp> {
 
   LogicalResult matchAndRewrite(tosa::ClampOp op,
                                 PatternRewriter &rewriter) const override {
-    Value input = op.input();
+    Value input = op.getInput();
 
     Operation *definingOp = input.getDefiningOp();
     if (!definingOp)
       return failure();
 
     if (tosa::ClampOp clampOp = dyn_cast<tosa::ClampOp>(definingOp)) {
-      auto minFp = std::max(op.min_fp(), clampOp.min_fp()).convertToFloat();
-      auto maxFp = std::min(op.max_fp(), clampOp.max_fp()).convertToFloat();
+      auto minFp = std::max(op.getMinFp(), clampOp.getMinFp()).convertToFloat();
+      auto maxFp = std::min(op.getMaxFp(), clampOp.getMaxFp()).convertToFloat();
 
-      auto minInt = std::max(op.min_int(), clampOp.min_int());
-      auto maxInt = std::min(op.max_int(), clampOp.max_int());
+      auto minInt = std::max(op.getMinInt(), clampOp.getMinInt());
+      auto maxInt = std::min(op.getMaxInt(), clampOp.getMaxInt());
 
       rewriter.replaceOpWithNewOp<tosa::ClampOp>(
-          op, op.getType(), clampOp.input(), rewriter.getI64IntegerAttr(minInt),
+          op, op.getType(), clampOp.getInput(),
+          rewriter.getI64IntegerAttr(minInt),
           rewriter.getI64IntegerAttr(maxInt), rewriter.getF32FloatAttr(minFp),
           rewriter.getF32FloatAttr(maxFp));
       return success();
@@ -436,14 +438,14 @@ void ClampOp::getCanonicalizationPatterns(RewritePatternSet &results,
 //===----------------------------------------------------------------------===//
 
 OpFoldResult CastOp::fold(ArrayRef<Attribute> operands) {
-  if (input().getType() == getType())
-    return input();
+  if (getInput().getType() == getType())
+    return getInput();
   return {};
 }
 
 OpFoldResult ConstOp::fold(ArrayRef<Attribute> operands) {
   assert(operands.empty() && "constant has no operands");
-  return valueAttr();
+  return getValueAttr();
 }
 
 #define REDUCE_FOLDER(OP)                                                      \
@@ -465,12 +467,12 @@ REDUCE_FOLDER(ReduceSumOp)
 #undef REDUCE_FOLDER
 
 OpFoldResult ReshapeOp::fold(ArrayRef<Attribute> operands) {
-  auto inputTy = input1().getType().dyn_cast<RankedTensorType>();
+  auto inputTy = getInput1().getType().dyn_cast<RankedTensorType>();
   auto outputTy = getType().dyn_cast<RankedTensorType>();
 
   if (!inputTy || !outputTy || inputTy != outputTy)
     return {};
-  return input1();
+  return getInput1();
 }
 
 OpFoldResult PadOp::fold(ArrayRef<Attribute> operands) {
@@ -478,7 +480,7 @@ OpFoldResult PadOp::fold(ArrayRef<Attribute> operands) {
   if (operands[1]) {
     auto densePad = operands[1].cast<DenseElementsAttr>();
     if (densePad.isSplat() && densePad.getSplatValue<APInt>().isZero()) {
-      return input1();
+      return getInput1();
     }
   }
 
@@ -486,20 +488,20 @@ OpFoldResult PadOp::fold(ArrayRef<Attribute> operands) {
 }
 
 OpFoldResult SliceOp::fold(ArrayRef<Attribute> operands) {
-  auto inputTy = input().getType().dyn_cast<RankedTensorType>();
+  auto inputTy = getInput().getType().dyn_cast<RankedTensorType>();
   auto outputTy = getType().dyn_cast<RankedTensorType>();
 
   if (!inputTy || !outputTy || inputTy != outputTy)
     return {};
   if (inputTy.hasStaticShape())
-    return input();
+    return getInput();
 
   return {};
 }
 
 OpFoldResult tosa::SelectOp::fold(ArrayRef<Attribute> operands) {
-  if (on_true() == on_false())
-    return on_true();
+  if (getOnTrue() == getOnFalse())
+    return getOnTrue();
 
   auto predicate = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
   if (!predicate)
@@ -507,18 +509,18 @@ OpFoldResult tosa::SelectOp::fold(ArrayRef<Attribute> operands) {
 
   if (!predicate.isSplat())
     return {};
-  return predicate.getSplatValue<APInt>().getBoolValue() ? on_true()
-                                                         : on_false();
+  return predicate.getSplatValue<APInt>().getBoolValue() ? getOnTrue()
+                                                         : getOnFalse();
 }
 
 OpFoldResult TileOp::fold(ArrayRef<Attribute> operands) {
   bool allOnes = true;
-  for (Attribute val : multiples().getValue()) {
+  for (Attribute val : getMultiples().getValue()) {
     allOnes = allOnes && val.cast<IntegerAttr>().getValue().getSExtValue() == 1;
   }
 
-  if (allOnes && input1().getType() == getType())
-    return input1();
+  if (allOnes && getInput1().getType() == getType())
+    return getInput1();
   return {};
 }
 
@@ -537,7 +539,7 @@ OpFoldResult TransposeOp::fold(ArrayRef<Attribute> operands) {
       [](const APInt &val) { return val.getSExtValue(); }));
 
   if (llvm::equal(llvm::seq<int64_t>(0, perms.size()), perms) &&
-      input1().getType() == getType())
-    return input1();
+      getInput1().getType() == getType())
+    return getInput1();
   return {};
 }

diff  --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 38a067bcd6551..11ff2a00fcba1 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -67,7 +67,7 @@ struct TosaInlinerInterface : public DialectInlinerInterface {
 //===----------------------------------------------------------------------===//
 
 /// Returns the while loop body.
-Region &tosa::WhileOp::getLoopBody() { return body(); }
+Region &tosa::WhileOp::getLoopBody() { return getBody(); }
 
 //===----------------------------------------------------------------------===//
 // Tosa dialect initialization.
@@ -101,16 +101,18 @@ Operation *TosaDialect::materializeConstant(OpBuilder &builder, Attribute value,
 template <typename T>
 static LogicalResult verifyConvOp(T op) {
   // All TOSA conv ops have an input() and weight().
-  auto inputType = op.input().getType().template dyn_cast<RankedTensorType>();
-  auto weightType = op.weight().getType().template dyn_cast<RankedTensorType>();
+  auto inputType =
+      op.getInput().getType().template dyn_cast<RankedTensorType>();
+  auto weightType =
+      op.getWeight().getType().template dyn_cast<RankedTensorType>();
 
   // Must be ranked tensor types
   if (!inputType) {
-    op.emitOpError("expect a ranked tensor for input, got ") << op.input();
+    op.emitOpError("expect a ranked tensor for input, got ") << op.getInput();
     return failure();
   }
   if (!weightType) {
-    op.emitOpError("expect a ranked tensor for weight, got ") << op.weight();
+    op.emitOpError("expect a ranked tensor for weight, got ") << op.getWeight();
     return failure();
   }
 
@@ -130,8 +132,8 @@ static LogicalResult verifyConvOp(T op) {
 
   // Quantized type must have constructed the quantizationattr, and unquantized
   // types should not have a quantizationattr.
-  if ((inputIsQuant && !op.quantization_info()) ||
-      (!inputIsQuant && op.quantization_info())) {
+  if ((inputIsQuant && !op.getQuantizationInfo()) ||
+      (!inputIsQuant && op.getQuantizationInfo())) {
     op.emitOpError("quantizationattr is required for quantized type, and not "
                    "allowed for float type");
     return failure();
@@ -141,7 +143,7 @@ static LogicalResult verifyConvOp(T op) {
 }
 
 LogicalResult tosa::AvgPool2dOp::verify() {
-  auto inputETy = input().getType().cast<ShapedType>().getElementType();
+  auto inputETy = getInput().getType().cast<ShapedType>().getElementType();
   auto resultETy = getType().cast<ShapedType>().getElementType();
 
   if (auto quantType = inputETy.dyn_cast<mlir::quant::UniformQuantizedType>())
@@ -538,7 +540,7 @@ LogicalResult tosa::SliceOp::inferReturnTypeComponents(
     MLIRContext *context, ::llvm::Optional<Location> location,
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
-  ArrayAttr sizes = SliceOpAdaptor(operands, attributes).size();
+  ArrayAttr sizes = SliceOpAdaptor(operands, attributes).getSize();
   SmallVector<int64_t> outputShape;
   outputShape.reserve(sizes.size());
   for (auto val : sizes) {
@@ -570,7 +572,7 @@ LogicalResult tosa::TileOp::inferReturnTypeComponents(
     ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
   TileOpAdaptor adaptor(operands, attributes);
-  ArrayAttr multiples = adaptor.multiples();
+  ArrayAttr multiples = adaptor.getMultiples();
   ShapeAdaptor inputShape = operands.getShape(0);
   SmallVector<int64_t> outputShape;
   if (!inputShape.hasRank()) {
@@ -606,7 +608,7 @@ LogicalResult tosa::ReshapeOp::inferReturnTypeComponents(
   ReshapeOpAdaptor adaptor(operands, attributes);
   ShapeAdaptor inputShape = operands.getShape(0);
 
-  ArrayAttr newShape = adaptor.new_shape();
+  ArrayAttr newShape = adaptor.getNewShape();
   llvm::SmallVector<int64_t> newShapeValue;
   getI64Values(newShape, newShapeValue);
 
@@ -741,7 +743,7 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
   int32_t inHeight = ShapedType::kDynamicSize;
   int32_t inWidth = ShapedType::kDynamicSize;
 
-  ShapeAdaptor inputShape = operands.getShape(adaptor.input());
+  ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
   if (inputShape.hasRank()) {
     outputShape[0] = inputShape.getDimSize(0);
     outputShape[3] = inputShape.getDimSize(3);
@@ -750,9 +752,9 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
     inWidth = inputShape.getDimSize(2);
   }
 
-  int32_t shift = adaptor.shift();
+  int32_t shift = adaptor.getShift();
   llvm::SmallVector<int64_t> newShape;
-  getI64Values(adaptor.output_size(), newShape);
+  getI64Values(adaptor.getOutputSize(), newShape);
   outputShape[1] = newShape[0];
   outputShape[2] = newShape[1];
 
@@ -760,10 +762,10 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
   llvm::SmallVector<int64_t> offsetInt;
   llvm::SmallVector<double> strideFp;
   llvm::SmallVector<double> offsetFp;
-  getI64Values(adaptor.offset(), offsetInt);
-  getF64Values(adaptor.offset_fp(), offsetFp);
-  getI64Values(adaptor.stride(), strideInt);
-  getF64Values(adaptor.stride_fp(), strideFp);
+  getI64Values(adaptor.getOffset(), offsetInt);
+  getF64Values(adaptor.getOffsetFp(), offsetFp);
+  getI64Values(adaptor.getStride(), strideInt);
+  getF64Values(adaptor.getStrideFp(), strideFp);
 
   // If we have a 0 zero in integers we know that the resize indexing needs to
   // be performed in floating point. Use the floating point varient to compute
@@ -1022,7 +1024,7 @@ LogicalResult Conv2DOp::inferReturnTypeComponents(
 
   // Input shape describes input width/height and batch.
 
-  ShapeAdaptor inputShape = operands.getShape(adaptor.input());
+  ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
   if (inputShape.hasRank()) {
     outputShape[0] = inputShape.getDimSize(0);
     inputHeight = inputShape.getDimSize(1);
@@ -1030,7 +1032,7 @@ LogicalResult Conv2DOp::inferReturnTypeComponents(
   }
 
   // Weight shapes describes the filter width/height and the output channels.
-  ShapeAdaptor weightShape = operands.getShape(adaptor.weight());
+  ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight());
   if (weightShape.hasRank()) {
     outputShape[3] = weightShape.getDimSize(0);
     weightHeight = weightShape.getDimSize(1);
@@ -1038,7 +1040,7 @@ LogicalResult Conv2DOp::inferReturnTypeComponents(
   }
 
   // Bias shape can describe the output channels.
-  ShapeAdaptor biasShape = operands.getShape(adaptor.bias());
+  ShapeAdaptor biasShape = operands.getShape(adaptor.getBias());
   if (biasShape.hasRank()) {
     outputShape[3] = ShapedType::isDynamic(outputShape[3])
                          ? biasShape.getDimSize(0)
@@ -1049,9 +1051,9 @@ LogicalResult Conv2DOp::inferReturnTypeComponents(
   llvm::SmallVector<int64_t> padding;
   llvm::SmallVector<int64_t> stride;
 
-  getI64Values(adaptor.dilation(), dilation);
-  getI64Values(adaptor.pad(), padding);
-  getI64Values(adaptor.stride(), stride);
+  getI64Values(adaptor.getDilation(), dilation);
+  getI64Values(adaptor.getPad(), padding);
+  getI64Values(adaptor.getStride(), stride);
 
   if (!ShapedType::isDynamic(inputHeight) &&
       !ShapedType::isDynamic(weightHeight)) {
@@ -1091,7 +1093,7 @@ LogicalResult Conv3DOp::inferReturnTypeComponents(
   int32_t weightDepth = ShapedType::kDynamicSize;
 
   // Input shape describes input width/height and batch.
-  ShapeAdaptor inputShape = operands.getShape(adaptor.input());
+  ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
   if (inputShape.hasRank()) {
     outputShape[0] = inputShape.getDimSize(0);
     inputHeight = inputShape.getDimSize(1);
@@ -1100,7 +1102,7 @@ LogicalResult Conv3DOp::inferReturnTypeComponents(
   }
 
   // Weight shapes describes the filter width/height and the output channels.
-  ShapeAdaptor weightShape = operands.getShape(adaptor.weight());
+  ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight());
   if (weightShape.hasRank()) {
     outputShape[4] = weightShape.getDimSize(0);
     weightHeight = weightShape.getDimSize(1);
@@ -1109,7 +1111,7 @@ LogicalResult Conv3DOp::inferReturnTypeComponents(
   }
 
   // Bias shape can describe the output channels.
-  ShapeAdaptor biasShape = operands.getShape(adaptor.bias());
+  ShapeAdaptor biasShape = operands.getShape(adaptor.getBias());
   if (biasShape.hasRank()) {
     outputShape[4] =
         (outputShape[4] == -1) ? biasShape.getDimSize(0) : outputShape[4];
@@ -1119,9 +1121,9 @@ LogicalResult Conv3DOp::inferReturnTypeComponents(
   llvm::SmallVector<int64_t> padding;
   llvm::SmallVector<int64_t> stride;
 
-  getI64Values(adaptor.dilation(), dilation);
-  getI64Values(adaptor.pad(), padding);
-  getI64Values(adaptor.stride(), stride);
+  getI64Values(adaptor.getDilation(), dilation);
+  getI64Values(adaptor.getPad(), padding);
+  getI64Values(adaptor.getStride(), stride);
 
   if (!ShapedType::isDynamic(inputHeight) &&
       !ShapedType::isDynamic(weightHeight)) {
@@ -1183,7 +1185,7 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
   int32_t depthChannels = ShapedType::kDynamicSize;
 
   // Input shape describes input width/height and batch.
-  ShapeAdaptor inputShape = operands.getShape(adaptor.input());
+  ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
   if (inputShape.hasRank()) {
     outputShape[0] = inputShape.getDimSize(0);
     inputHeight = inputShape.getDimSize(1);
@@ -1192,7 +1194,7 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
   }
 
   // Weight shapes describes the filter width/height and the output channels.
-  ShapeAdaptor weightShape = operands.getShape(adaptor.weight());
+  ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight());
   if (weightShape.hasRank()) {
     weightHeight = weightShape.getDimSize(0);
     weightWidth = weightShape.getDimSize(1);
@@ -1210,7 +1212,7 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
   }
 
   // Bias shape can describe the output channels.
-  ShapeAdaptor biasShape = operands.getShape(adaptor.bias());
+  ShapeAdaptor biasShape = operands.getShape(adaptor.getBias());
   if (biasShape.hasRank()) {
     outputShape[3] = ShapedType::isDynamic(outputShape[3])
                          ? biasShape.getDimSize(0)
@@ -1221,9 +1223,9 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
   llvm::SmallVector<int64_t> padding;
   llvm::SmallVector<int64_t> stride;
 
-  getI64Values(adaptor.dilation(), dilation);
-  getI64Values(adaptor.pad(), padding);
-  getI64Values(adaptor.stride(), stride);
+  getI64Values(adaptor.getDilation(), dilation);
+  getI64Values(adaptor.getPad(), padding);
+  getI64Values(adaptor.getStride(), stride);
 
   if (!ShapedType::isDynamic(inputHeight) &&
       !ShapedType::isDynamic(weightHeight)) {
@@ -1253,7 +1255,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
   TransposeConv2DOp::Adaptor adaptor(operands.getValues(), attributes);
   llvm::SmallVector<int64_t> outputShape;
-  getI64Values(adaptor.out_shape(), outputShape);
+  getI64Values(adaptor.getOutShape(), outputShape);
 
   int32_t inputWidth = ShapedType::kDynamicSize;
   int32_t inputHeight = ShapedType::kDynamicSize;
@@ -1261,7 +1263,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
   int32_t weightHeight = ShapedType::kDynamicSize;
 
   // Input shape describes input width/height and batch.
-  ShapeAdaptor inputShape = operands.getShape(adaptor.input());
+  ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
   if (inputShape.hasRank()) {
     outputShape[0] = ShapedType::isDynamic(outputShape[0])
                          ? inputShape.getDimSize(0)
@@ -1271,7 +1273,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
   }
 
   // Weight shapes describes the filter width/height and the output channels.
-  ShapeAdaptor weightShape = operands.getShape(adaptor.filter());
+  ShapeAdaptor weightShape = operands.getShape(adaptor.getFilter());
   if (weightShape.hasRank()) {
     outputShape[3] = ShapedType::isDynamic(outputShape[3])
                          ? weightShape.getDimSize(0)
@@ -1281,7 +1283,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
   }
 
   // Bias shape can describe the output channels.
-  ShapeAdaptor biasShape = operands.getShape(adaptor.input());
+  ShapeAdaptor biasShape = operands.getShape(adaptor.getInput());
   if (biasShape.hasRank()) {
     outputShape[3] = ShapedType::isDynamic(outputShape[3])
                          ? biasShape.getDimSize(0)
@@ -1291,8 +1293,8 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
   llvm::SmallVector<int64_t> padding;
   llvm::SmallVector<int64_t> stride;
 
-  getI64Values(adaptor.out_pad(), padding);
-  getI64Values(adaptor.stride(), stride);
+  getI64Values(adaptor.getOutPad(), padding);
+  getI64Values(adaptor.getStride(), stride);
 
   if (!ShapedType::isDynamic(inputHeight) &&
       !ShapedType::isDynamic(weightHeight)) {

diff  --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
index cde230da0f01f..5898fadddef32 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp
@@ -25,8 +25,8 @@ struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
 
   LogicalResult matchAndRewrite(tosa::Conv2DOp op,
                                 PatternRewriter &rewriter) const override {
-    Value input = op.input();
-    Value weight = op.weight();
+    Value input = op.getInput();
+    Value weight = op.getWeight();
     ShapedType inputType = input.getType().cast<ShapedType>();
     ShapedType weightType = weight.getType().cast<ShapedType>();
     ShapedType resultType = op.getType().cast<ShapedType>();
@@ -41,7 +41,7 @@ struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
       return rewriter.notifyMatchFailure(op, "unranked weight input");
 
     // Stride must be 1 for this optimization.
-    for (APInt stride : op.stride().getAsValueRange<IntegerAttr>()) {
+    for (APInt stride : op.getStride().getAsValueRange<IntegerAttr>()) {
       if (!stride.isOne())
         return failure();
     }
@@ -83,18 +83,18 @@ struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
         RankedTensorType::get(fullyConnectedShape, resultType.getElementType());
 
     Value fullyConnectedValue;
-    if (op.quantization_info()) {
+    if (op.getQuantizationInfo()) {
       fullyConnectedValue =
           rewriter
               .create<tosa::FullyConnectedOp>(
                   op.getLoc(), fullyConnectedShapeType, reshapedInput,
-                  reshapedWeight, op.bias(), *op.quantization_info())
+                  reshapedWeight, op.getBias(), *op.getQuantizationInfo())
               .getResult();
     } else {
       fullyConnectedValue = rewriter
                                 .create<tosa::FullyConnectedOp>(
                                     op.getLoc(), fullyConnectedShapeType,
-                                    reshapedInput, reshapedWeight, op.bias())
+                                    reshapedInput, reshapedWeight, op.getBias())
                                 .getResult();
     }
 

diff  --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp
index b4bac42029e49..d82a13ea6f515 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp
@@ -26,11 +26,11 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
 
   LogicalResult matchAndRewrite(tosa::DepthwiseConv2DOp op,
                                 PatternRewriter &rewriter) const override {
-    Value input = op.input();
-    Value weight = op.weight();
+    Value input = op.getInput();
+    Value weight = op.getWeight();
     ShapedType inputType = input.getType().cast<ShapedType>();
     ShapedType weightType = weight.getType().cast<ShapedType>();
-    ShapedType resultType = op.output().getType().cast<ShapedType>();
+    ShapedType resultType = op.getOutput().getType().cast<ShapedType>();
     Type inputEType = inputType.getElementType();
 
     if (!(inputType.hasStaticShape() && weightType.hasStaticShape() &&
@@ -39,12 +39,12 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
     }
 
     // Quantization information needs to still be performed.
-    if (op.quantization_info() || !inputEType.isa<FloatType>()) {
+    if (op.getQuantizationInfo() || !inputEType.isa<FloatType>()) {
       return failure();
     }
 
     // Stride must be 1 for this optimization.
-    for (Attribute stride : op.stride().getValue()) {
+    for (Attribute stride : op.getStride().getValue()) {
       if (!stride.cast<IntegerAttr>().getValue().isOne()) {
         return failure();
       }
@@ -95,7 +95,7 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
             .getResult();
 
     // Reshape output to [N, H, W, C * M].
-    auto outputShape = op.output().getType().cast<ShapedType>().getShape();
+    auto outputShape = op.getOutput().getType().cast<ShapedType>().getShape();
     auto outputShapeType = RankedTensorType::get(
         outputShape,
         input.getType().dyn_cast<RankedTensorType>().getElementType());
@@ -106,7 +106,7 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
     // Add in the bias.
     rewriter
         .replaceOpWithNewOp<tosa::AddOp>(op, outputShapeType, outputValue,
-                                         op.bias())
+                                         op.getBias())
         .getResult();
     return success();
   }

diff  --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
index 9db99c517c540..148130a6aa147 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
@@ -98,8 +98,8 @@ class TransposeConvNonStridedConverter
     llvm::SmallVector<int64_t> pad;
     llvm::SmallVector<int64_t> stride;
 
-    getValuesFromIntArrayAttribute(op.out_pad().cast<ArrayAttr>(), pad);
-    getValuesFromIntArrayAttribute(op.stride().cast<ArrayAttr>(), stride);
+    getValuesFromIntArrayAttribute(op.getOutPad().cast<ArrayAttr>(), pad);
+    getValuesFromIntArrayAttribute(op.getStride().cast<ArrayAttr>(), stride);
 
     // If striding is all 1 we can modify padding and reverse the kernel along
     // the x/y direction to make it a regular convolution. This is much simpler
@@ -126,11 +126,11 @@ class TransposeConvNonStridedConverter
         loc, weightTy, reverse1, rewriter.getI64IntegerAttr(2));
 
     Value conv2d;
-    if (op.quantization_info()) {
+    if (op.getQuantizationInfo()) {
       conv2d = rewriter.create<tosa::Conv2DOp>(
           loc, resultTy, input, reverse2, bias,
           rewriter.getI64ArrayAttr(convPad), rewriter.getI64ArrayAttr(stride),
-          rewriter.getI64ArrayAttr({1, 1}), *op.quantization_info());
+          rewriter.getI64ArrayAttr({1, 1}), *op.getQuantizationInfo());
     } else {
       conv2d = rewriter.create<tosa::Conv2DOp>(
           loc, resultTy, input, reverse2, bias,
@@ -167,8 +167,8 @@ class TransposeConvStridedConverter
     llvm::SmallVector<int64_t> pad;
     llvm::SmallVector<int64_t> stride;
 
-    getValuesFromIntArrayAttribute(op.out_pad().cast<ArrayAttr>(), pad);
-    getValuesFromIntArrayAttribute(op.stride().cast<ArrayAttr>(), stride);
+    getValuesFromIntArrayAttribute(op.getOutPad().cast<ArrayAttr>(), pad);
+    getValuesFromIntArrayAttribute(op.getStride().cast<ArrayAttr>(), stride);
 
     // If striding is all 1 we can modify padding and reverse the kernel along
     // the x/y direction to make it a regular convolution. This is much simpler
@@ -200,8 +200,8 @@ class TransposeConvStridedConverter
     Value weightPaddingVal = createOpAndInfer<tosa::ConstOp>(
         rewriter, loc, weightPaddingAttr.getType(), weightPaddingAttr);
 
-    if (op.quantization_info().has_value()) {
-      auto quantInfo = op.quantization_info().value();
+    if (op.getQuantizationInfo().has_value()) {
+      auto quantInfo = op.getQuantizationInfo().value();
       weight = createOpAndInfer<tosa::PadOp>(
           rewriter, loc, UnrankedTensorType::get(weightETy), weight,
           weightPaddingVal, nullptr,
@@ -264,8 +264,8 @@ class TransposeConvStridedConverter
     Value inputPaddingVal = createOpAndInfer<tosa::ConstOp>(
         rewriter, loc, inputPaddingAttr.getType(), inputPaddingAttr);
 
-    if (op.quantization_info().has_value()) {
-      auto quantInfo = op.quantization_info().value();
+    if (op.getQuantizationInfo().has_value()) {
+      auto quantInfo = op.getQuantizationInfo().value();
       input = createOpAndInfer<tosa::PadOp>(
           rewriter, loc, UnrankedTensorType::get(inputETy), input,
           inputPaddingVal, nullptr,
@@ -288,14 +288,14 @@ class TransposeConvStridedConverter
 
     // Perform the convolution using the zero bias.
     Value conv2d;
-    if (op.quantization_info()) {
+    if (op.getQuantizationInfo()) {
       conv2d = createOpAndInfer<tosa::Conv2DOp>(
                    rewriter, loc, UnrankedTensorType::get(resultETy), input,
                    weight, zeroBias,
                    /*pad=*/rewriter.getI64ArrayAttr({0, 0, 0, 0}),
                    /*stride=*/rewriter.getI64ArrayAttr({1, 1}),
                    /*dilation=*/rewriter.getI64ArrayAttr({1, 1}),
-                   *op.quantization_info())
+                   *op.getQuantizationInfo())
                    .getResult();
     } else {
       conv2d = createOpAndInfer<tosa::Conv2DOp>(

diff  --git a/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp
index 5f14cf68321af..f86605da54ef2 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp
@@ -31,21 +31,21 @@ struct TosaFoldConstantTranspose : public OpRewritePattern<tosa::TransposeOp> {
       return failure();
 
     DenseElementsAttr inputValues;
-    if (!matchPattern(op.input1(), m_Constant(&inputValues)))
+    if (!matchPattern(op.getInput1(), m_Constant(&inputValues)))
       return failure();
     // Make sure the input is a constant that has a single user.
-    if (!llvm::hasSingleElement(op.input1().getDefiningOp()->getUsers()))
+    if (!llvm::hasSingleElement(op.getInput1().getDefiningOp()->getUsers()))
       return failure();
 
     DenseIntElementsAttr permAttr;
-    if (!matchPattern(op.perms(), m_Constant(&permAttr)))
+    if (!matchPattern(op.getPerms(), m_Constant(&permAttr)))
       return failure();
     auto permValues = llvm::to_vector<6>(llvm::map_range(
         // TOSA allows both 32- and 64-bit integer tensors here.
         permAttr.getValues<APInt>(),
         [](const APInt &val) { return val.getZExtValue(); }));
 
-    auto inputType = op.input1().getType().cast<ShapedType>();
+    auto inputType = op.getInput1().getType().cast<ShapedType>();
     ArrayRef<int64_t> inputShape = inputType.getShape();
     int64_t numElements = inputType.getNumElements();
 

diff  --git a/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
index e24a81ed249ba..61f601456f0f1 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
@@ -144,8 +144,8 @@ struct ConvertTosaOp : public OpRewritePattern<OpTy> {
   LogicalResult matchAndRewrite(OpTy tosaBinaryOp,
                                 PatternRewriter &rewriter) const override {
 
-    Value input1 = tosaBinaryOp.input1();
-    Value input2 = tosaBinaryOp.input2();
+    Value input1 = tosaBinaryOp.getInput1();
+    Value input2 = tosaBinaryOp.getInput2();
     Value output = tosaBinaryOp.getResult();
 
     auto outputType = output.getType().dyn_cast<RankedTensorType>();
@@ -174,9 +174,9 @@ struct ConvertTosaOp<tosa::MulOp> : public OpRewritePattern<tosa::MulOp> {
   LogicalResult matchAndRewrite(tosa::MulOp tosaBinaryOp,
                                 PatternRewriter &rewriter) const override {
 
-    Value input1 = tosaBinaryOp.input1();
-    Value input2 = tosaBinaryOp.input2();
-    int32_t shift = tosaBinaryOp.shift();
+    Value input1 = tosaBinaryOp.getInput1();
+    Value input2 = tosaBinaryOp.getInput2();
+    int32_t shift = tosaBinaryOp.getShift();
     Value output = tosaBinaryOp.getResult();
     auto outputType = output.getType().dyn_cast<RankedTensorType>();
     if (!outputType)
@@ -206,9 +206,9 @@ struct ConvertTosaOp<tosa::ArithmeticRightShiftOp>
   LogicalResult matchAndRewrite(tosa::ArithmeticRightShiftOp tosaBinaryOp,
                                 PatternRewriter &rewriter) const override {
 
-    Value input1 = tosaBinaryOp.input1();
-    Value input2 = tosaBinaryOp.input2();
-    int32_t round = tosaBinaryOp.round();
+    Value input1 = tosaBinaryOp.getInput1();
+    Value input2 = tosaBinaryOp.getInput2();
+    int32_t round = tosaBinaryOp.getRound();
     Value output = tosaBinaryOp.getResult();
     auto outputType = output.getType().dyn_cast<RankedTensorType>();
     if (!outputType)

diff  --git a/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp b/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp
index e7f3a40f307bb..ec103b75fa082 100644
--- a/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp
+++ b/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp
@@ -42,7 +42,7 @@ ConvertTosaNegateOp::matchAndRewrite(Operation *op,
   auto tosaNegateOp = cast<tosa::NegateOp>(op);
 
   auto inputType =
-      tosaNegateOp.input1().getType().dyn_cast<mlir::RankedTensorType>();
+      tosaNegateOp.getInput1().getType().dyn_cast<mlir::RankedTensorType>();
   // skip if input is not ranked tensor type
   if (!inputType)
     return failure();
@@ -83,7 +83,7 @@ ConvertTosaNegateOp::matchAndRewrite(Operation *op,
                            rewriter.getBoolAttr(narrowRange)));
 
   ElementsAttr inputElems;
-  if (!matchPattern(tosaNegateOp.input1(), m_Constant(&inputElems)))
+  if (!matchPattern(tosaNegateOp.getInput1(), m_Constant(&inputElems)))
     return failure();
 
   auto newConstOp =
@@ -112,14 +112,14 @@ ConvertTosaConv2DOp::matchAndRewrite(Operation *op,
   auto tosaConv2DOp = cast<tosa::Conv2DOp>(op);
 
   auto inputType =
-      tosaConv2DOp.input().getType().dyn_cast<mlir::RankedTensorType>();
+      tosaConv2DOp.getInput().getType().dyn_cast<mlir::RankedTensorType>();
 
   // skip if input is not ranked tensor type
   if (!inputType)
     return failure();
 
   auto weightType =
-      tosaConv2DOp.weight().getType().dyn_cast<mlir::RankedTensorType>();
+      tosaConv2DOp.getWeight().getType().dyn_cast<mlir::RankedTensorType>();
 
   // skip if wt is not ranked tensor type
   if (!weightType)
@@ -146,9 +146,9 @@ ConvertTosaConv2DOp::matchAndRewrite(Operation *op,
       RankedTensorType::get(outputType.getShape(), rewriter.getIntegerType(32));
 
   auto newTosaConv2DOp = rewriter.create<tosa::Conv2DOp>(
-      op->getLoc(), newTosaConv2DOpType, tosaConv2DOp.input(),
-      tosaConv2DOp.weight(), tosaConv2DOp.bias(), tosaConv2DOp.pad(),
-      tosaConv2DOp.stride(), tosaConv2DOp.dilation());
+      op->getLoc(), newTosaConv2DOpType, tosaConv2DOp.getInput(),
+      tosaConv2DOp.getWeight(), tosaConv2DOp.getBias(), tosaConv2DOp.getPad(),
+      tosaConv2DOp.getStride(), tosaConv2DOp.getDilation());
 
   // Create rescale to quantized type
   double inputScale = inputQType.getScale();


        


More information about the Mlir-commits mailing list