[Mlir-commits] [mlir] 5b0d6bf - [MLIR] Add function to create Float16 array attribute
Sean Silva
llvmlistbot at llvm.org
Wed Jul 20 14:58:25 PDT 2022
Author: Tanyo Kwok
Date: 2022-07-20T21:58:15Z
New Revision: 5b0d6bf2102bd56b179238f2ce0dac11d43b4bc3
URL: https://github.com/llvm/llvm-project/commit/5b0d6bf2102bd56b179238f2ce0dac11d43b4bc3
DIFF: https://github.com/llvm/llvm-project/commit/5b0d6bf2102bd56b179238f2ce0dac11d43b4bc3.diff
LOG: [MLIR] Add function to create Float16 array attribute
This patch adds a new function mlirDenseElementsAttrFloat16Get(),
which accepts the shaped type, the number of Float16 values, and a
pointer to an array of Float16 values, each of which is a uint16_t
value.
This commit is repeating https://reviews.llvm.org/D123981 + #761 but for Float16
Differential Revision: https://reviews.llvm.org/D130069
Added:
Modified:
mlir/include/mlir-c/BuiltinAttributes.h
mlir/lib/CAPI/IR/BuiltinAttributes.cpp
mlir/test/CAPI/ir.c
Removed:
################################################################################
diff --git a/mlir/include/mlir-c/BuiltinAttributes.h b/mlir/include/mlir-c/BuiltinAttributes.h
index ce4514094ecb3..050408d1f87aa 100644
--- a/mlir/include/mlir-c/BuiltinAttributes.h
+++ b/mlir/include/mlir-c/BuiltinAttributes.h
@@ -381,6 +381,8 @@ MLIR_CAPI_EXPORTED MlirAttribute mlirDenseElementsAttrDoubleGet(
MlirType shapedType, intptr_t numElements, const double *elements);
MLIR_CAPI_EXPORTED MlirAttribute mlirDenseElementsAttrBFloat16Get(
MlirType shapedType, intptr_t numElements, const uint16_t *elements);
+MLIR_CAPI_EXPORTED MlirAttribute mlirDenseElementsAttrFloat16Get(
+ MlirType shapedType, intptr_t numElements, const uint16_t *elements);
/// Creates a dense elements attribute with the given shaped type from string
/// elements.
diff --git a/mlir/lib/CAPI/IR/BuiltinAttributes.cpp b/mlir/lib/CAPI/IR/BuiltinAttributes.cpp
index 759b708952e2f..ba3481ae1e2d3 100644
--- a/mlir/lib/CAPI/IR/BuiltinAttributes.cpp
+++ b/mlir/lib/CAPI/IR/BuiltinAttributes.cpp
@@ -479,6 +479,13 @@ MlirAttribute mlirDenseElementsAttrBFloat16Get(MlirType shapedType,
const void *buffer = static_cast<const void *>(elements);
return mlirDenseElementsAttrRawBufferGet(shapedType, bufferSize, buffer);
}
+MlirAttribute mlirDenseElementsAttrFloat16Get(MlirType shapedType,
+ intptr_t numElements,
+ const uint16_t *elements) {
+ size_t bufferSize = numElements * 2;
+ const void *buffer = static_cast<const void *>(elements);
+ return mlirDenseElementsAttrRawBufferGet(shapedType, bufferSize, buffer);
+}
MlirAttribute mlirDenseElementsAttrStringGet(MlirType shapedType,
intptr_t numElements,
diff --git a/mlir/test/CAPI/ir.c b/mlir/test/CAPI/ir.c
index 9c1f95c70c296..be5366012bbe2 100644
--- a/mlir/test/CAPI/ir.c
+++ b/mlir/test/CAPI/ir.c
@@ -959,6 +959,7 @@ int printBuiltinAttributes(MlirContext ctx) {
float floats[] = {0.0f, 1.0f};
double doubles[] = {0.0, 1.0};
uint16_t bf16s[] = {0x0, 0x3f80};
+ uint16_t f16s[] = {0x0, 0x3c00};
MlirAttribute encoding = mlirAttributeGetNull();
MlirAttribute boolElements = mlirDenseElementsAttrBoolGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1), encoding),
@@ -1000,6 +1001,9 @@ int printBuiltinAttributes(MlirContext ctx) {
MlirAttribute bf16Elements = mlirDenseElementsAttrBFloat16Get(
mlirRankedTensorTypeGet(2, shape, mlirBF16TypeGet(ctx), encoding), 2,
bf16s);
+ MlirAttribute f16Elements = mlirDenseElementsAttrFloat16Get(
+ mlirRankedTensorTypeGet(2, shape, mlirF16TypeGet(ctx), encoding), 2,
+ f16s);
if (!mlirAttributeIsADenseElements(boolElements) ||
!mlirAttributeIsADenseElements(uint8Elements) ||
@@ -1010,7 +1014,8 @@ int printBuiltinAttributes(MlirContext ctx) {
!mlirAttributeIsADenseElements(int64Elements) ||
!mlirAttributeIsADenseElements(floatElements) ||
!mlirAttributeIsADenseElements(doubleElements) ||
- !mlirAttributeIsADenseElements(bf16Elements))
+ !mlirAttributeIsADenseElements(bf16Elements) ||
+ !mlirAttributeIsADenseElements(f16Elements))
return 14;
if (mlirDenseElementsAttrGetBoolValue(boolElements, 1) != 1 ||
@@ -1037,6 +1042,7 @@ int printBuiltinAttributes(MlirContext ctx) {
mlirAttributeDump(floatElements);
mlirAttributeDump(doubleElements);
mlirAttributeDump(bf16Elements);
+ mlirAttributeDump(f16Elements);
// CHECK: dense<{{\[}}[false, true]]> : tensor<1x2xi1>
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui8>
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi8>
@@ -1047,6 +1053,7 @@ int printBuiltinAttributes(MlirContext ctx) {
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf32>
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf64>
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xbf16>
+ // CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf16>
MlirAttribute splatBool = mlirDenseElementsAttrBoolSplatGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1), encoding),
@@ -1125,13 +1132,16 @@ int printBuiltinAttributes(MlirContext ctx) {
(double *)mlirDenseElementsAttrGetRawData(doubleElements);
uint16_t *bf16RawData =
(uint16_t *)mlirDenseElementsAttrGetRawData(bf16Elements);
+ uint16_t *f16RawData =
+ (uint16_t *)mlirDenseElementsAttrGetRawData(f16Elements);
if (uint8RawData[0] != 0u || uint8RawData[1] != 1u || int8RawData[0] != 0 ||
int8RawData[1] != 1 || uint32RawData[0] != 0u || uint32RawData[1] != 1u ||
int32RawData[0] != 0 || int32RawData[1] != 1 || uint64RawData[0] != 0u ||
uint64RawData[1] != 1u || int64RawData[0] != 0 || int64RawData[1] != 1 ||
floatRawData[0] != 0.0f || floatRawData[1] != 1.0f ||
doubleRawData[0] != 0.0 || doubleRawData[1] != 1.0 ||
- bf16RawData[0] != 0 || bf16RawData[1] != 0x3f80)
+ bf16RawData[0] != 0 || bf16RawData[1] != 0x3f80 || f16RawData[0] != 0 ||
+ f16RawData[1] != 0x3c00)
return 18;
mlirAttributeDump(splatBool);
@@ -1156,9 +1166,11 @@ int printBuiltinAttributes(MlirContext ctx) {
mlirAttributeDump(mlirElementsAttrGetValue(floatElements, 2, uints64));
mlirAttributeDump(mlirElementsAttrGetValue(doubleElements, 2, uints64));
mlirAttributeDump(mlirElementsAttrGetValue(bf16Elements, 2, uints64));
+ mlirAttributeDump(mlirElementsAttrGetValue(f16Elements, 2, uints64));
// CHECK: 1.000000e+00 : f32
// CHECK: 1.000000e+00 : f64
// CHECK: 1.000000e+00 : bf16
+ // CHECK: 1.000000e+00 : f16
int64_t indices[] = {0, 1};
int64_t one = 1;
More information about the Mlir-commits
mailing list