[Mlir-commits] [mlir] 1976ad7 - [mlir][sparse] Add 3-dimensional sparse tensor multiplication integration test
Aart Bik
llvmlistbot at llvm.org
Fri Jul 15 12:13:00 PDT 2022
Author: Rajas Vanjape
Date: 2022-07-15T12:12:51-07:00
New Revision: 1976ad70c519c9b1d491517ca2b6f31a49b93b04
URL: https://github.com/llvm/llvm-project/commit/1976ad70c519c9b1d491517ca2b6f31a49b93b04
DIFF: https://github.com/llvm/llvm-project/commit/1976ad70c519c9b1d491517ca2b6f31a49b93b04.diff
LOG: [mlir][sparse] Add 3-dimensional sparse tensor multiplication integration test
This diff adds an integration test which does element wise multiplication for two sparse 3-d tensors of size 3x3x5
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D129638
Added:
mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_tensor_mul.mlir
Modified:
Removed:
################################################################################
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_tensor_mul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_tensor_mul.mlir
new file mode 100644
index 0000000000000..34807b439b831
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_tensor_mul.mlir
@@ -0,0 +1,102 @@
+// RUN: mlir-opt %s --sparse-compiler | \
+// RUN: mlir-cpu-runner \
+// RUN: -e entry -entry-point-result=void \
+// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
+// RUN: FileCheck %s
+
+#ST = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed", "compressed"]}>
+
+//
+// Trait for 3-d tensor element wise multiplication.
+//
+#trait_mul = {
+ indexing_maps = [
+ affine_map<(i,j,k) -> (i,j,k)>, // A (in)
+ affine_map<(i,j,k) -> (i,j,k)>, // B (in)
+ affine_map<(i,j,k) -> (i,j,k)> // X (out)
+ ],
+ iterator_types = ["parallel", "parallel", "parallel"],
+ doc = "X(i,j,k) = A(i,j,k) * B(i,j,k)"
+}
+
+module {
+ // Multiplies two 3-d sparse tensors element-wise into a new sparse tensor.
+ func.func @tensor_mul(%arga: tensor<?x?x?xf64, #ST>,
+ %argb: tensor<?x?x?xf64, #ST>) -> tensor<?x?x?xf64, #ST> {
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %c2 = arith.constant 2 : index
+ %d0 = tensor.dim %arga, %c0 : tensor<?x?x?xf64, #ST>
+ %d1 = tensor.dim %arga, %c1 : tensor<?x?x?xf64, #ST>
+ %d2 = tensor.dim %arga, %c2 : tensor<?x?x?xf64, #ST>
+ %xt = bufferization.alloc_tensor(%d0, %d1, %d2) : tensor<?x?x?xf64, #ST>
+ %0 = linalg.generic #trait_mul
+ ins(%arga, %argb: tensor<?x?x?xf64, #ST>, tensor<?x?x?xf64, #ST>)
+ outs(%xt: tensor<?x?x?xf64, #ST>) {
+ ^bb(%a: f64, %b: f64, %x: f64):
+ %1 = arith.mulf %a, %b : f64
+ linalg.yield %1 : f64
+ } -> tensor<?x?x?xf64, #ST>
+ return %0 : tensor<?x?x?xf64, #ST>
+ }
+
+ // Driver method to call and verify tensor multiplication kernel.
+ func.func @entry() {
+ %c0 = arith.constant 0 : index
+ %default_val = arith.constant -1.0 : f64
+
+ // Setup sparse tensor A
+ %ta = arith.constant dense<
+ [ [ [1.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 0.0, 0.0, 0.0, 0.0 ],
+ [1.2, 0.0, 3.5, 0.0, 0.0 ] ],
+ [ [0.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 0.0, 0.0, 0.0, 0.0 ] ],
+ [ [2.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 0.0, 4.0, 0.0, 0.0 ]] ]> : tensor<3x3x5xf64>
+
+ // Setup sparse tensor B
+ %tb = arith.constant dense<
+ [ [ [0.0, 0.0, 0.0, 0.0, 4.0 ],
+ [0.0, 0.0, 0.0, 0.0, 0.0 ],
+ [2.0, 0.0, 1.0, 0.0, 0.0 ] ],
+ [ [0.0, 0.0, 0.0, 0.0, 9.0 ],
+ [0.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 7.0, 0.0, 0.0, 0.0 ] ],
+ [ [1.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 0.0, 0.0, 0.0, 0.0 ],
+ [0.0, 0.0, 2.0, 0.0, 0.0 ]] ]> : tensor<3x3x5xf64>
+
+ %sta = sparse_tensor.convert %ta : tensor<3x3x5xf64> to tensor<?x?x?xf64, #ST>
+ %stb = sparse_tensor.convert %tb : tensor<3x3x5xf64> to tensor<?x?x?xf64, #ST>
+
+
+ // Call sparse tensor multiplication kernel.
+ %0 = call @tensor_mul(%sta, %stb)
+ : (tensor<?x?x?xf64, #ST>, tensor<?x?x?xf64, #ST>) -> tensor<?x?x?xf64, #ST>
+
+ // Verify results
+ //
+ // CHECK: ( 2.4, 3.5, 2, 8, -1, -1, -1, -1 )
+ // CHECK-NEXT: ( ( ( 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ), ( 2.4, 0, 3.5, 0, 0 ) ),
+ // CHECK-SAME: ( ( 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ) ),
+ // CHECK-SAME: ( ( 2, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ), ( 0, 0, 8, 0, 0 ) ) )
+ //
+ %m1 = sparse_tensor.values %0 : tensor<?x?x?xf64, #ST> to memref<?xf64>
+ %v1 = vector.transfer_read %m1[%c0], %default_val: memref<?xf64>, vector<8xf64>
+ vector.print %v1 : vector<8xf64>
+
+ // Print %0 in dense form.
+ %dt = sparse_tensor.convert %0 : tensor<?x?x?xf64, #ST> to tensor<?x?x?xf64>
+ %v2 = vector.transfer_read %dt[%c0, %c0, %c0], %default_val: tensor<?x?x?xf64>, vector<3x3x5xf64>
+ vector.print %v2 : vector<3x3x5xf64>
+
+ // Release the resources.
+ sparse_tensor.release %sta : tensor<?x?x?xf64, #ST>
+ sparse_tensor.release %stb : tensor<?x?x?xf64, #ST>
+ sparse_tensor.release %0 : tensor<?x?x?xf64, #ST>
+ return
+ }
+}
More information about the Mlir-commits
mailing list