[Mlir-commits] [mlir] 0660f3c - [mlir][vector] Relax reduction distribution pattern
Thomas Raoux
llvmlistbot at llvm.org
Sat Jul 9 11:47:16 PDT 2022
Author: Thomas Raoux
Date: 2022-07-09T18:36:39Z
New Revision: 0660f3c5a0a083cef78f39b3105a9a8e27cf5095
URL: https://github.com/llvm/llvm-project/commit/0660f3c5a0a083cef78f39b3105a9a8e27cf5095
DIFF: https://github.com/llvm/llvm-project/commit/0660f3c5a0a083cef78f39b3105a9a8e27cf5095.diff
LOG: [mlir][vector] Relax reduction distribution pattern
Support distributing reductions with vector size multiple of the warp
size.
Differential Revision: https://reviews.llvm.org/D129387
Added:
Modified:
mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
mlir/test/Dialect/Vector/vector-warp-distribute.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
index bf6e2225e6f20..2b9635835d7b1 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
@@ -798,7 +798,7 @@ struct WarpOpReduction : public OpRewritePattern<WarpExecuteOnLane0Op> {
return rewriter.notifyMatchFailure(
warpOp, "Only rank 1 reductions can be distributed.");
// Only warp_size-sized vectors supported.
- if (static_cast<uint64_t>(vectorType.getShape()[0]) != warpOp.getWarpSize())
+ if (vectorType.getShape()[0] % warpOp.getWarpSize() != 0)
return rewriter.notifyMatchFailure(
warpOp, "Reduction vector dimension must match was size.");
// Only f32 and i32 element types are supported.
@@ -808,24 +808,26 @@ struct WarpOpReduction : public OpRewritePattern<WarpExecuteOnLane0Op> {
warpOp,
"Reduction distribution currently only supports 32bits types.");
- Location yieldLoc = yieldOperand->getOwner()->getLoc();
-
+ int64_t numElements = vectorType.getShape()[0] / warpOp.getWarpSize();
// Return vector that will be reduced from the WarpExecuteOnLane0Op.
unsigned operandIndex = yieldOperand->getOperandNumber();
SmallVector<Value> yieldValues = {reductionOp.getVector()};
- SmallVector<Type> retTypes = {VectorType::get({1}, reductionOp.getType())};
+ SmallVector<Type> retTypes = {
+ VectorType::get({numElements}, reductionOp.getType())};
unsigned numResults = warpOp.getNumResults();
WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
rewriter, warpOp, yieldValues, retTypes);
rewriter.setInsertionPointAfter(newWarpOp);
- // Every lane has one scalar value. These should be reduced.
Value laneValVec = newWarpOp.getResult(numResults);
- Value laneVal = rewriter.create<vector::ExtractOp>(yieldLoc, laneValVec, 0);
- laneVal =
- distributedReductionFn(reductionOp.getLoc(), rewriter, laneVal,
+ // First reduce on a single thread.
+ Value perLaneReduction = rewriter.create<vector::ReductionOp>(
+ reductionOp.getLoc(), reductionOp.getKind(), laneValVec);
+ // Then distribute across threads.
+ Value fullReduce =
+ distributedReductionFn(reductionOp.getLoc(), rewriter, perLaneReduction,
reductionOp.getKind(), newWarpOp.getWarpSize());
- newWarpOp.getResult(operandIndex).replaceAllUsesWith(laneVal);
+ newWarpOp.getResult(operandIndex).replaceAllUsesWith(fullReduce);
return success();
}
diff --git a/mlir/test/Dialect/Vector/vector-warp-distribute.mlir b/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
index 718a7bf1c6b08..82f6299634578 100644
--- a/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
+++ b/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
@@ -509,5 +509,39 @@ func.func @vector_reduction(%laneid: index, %m0: memref<4x2x32xf32>, %m1: memref
%5 = vector.broadcast %4 : f32 to vector<f32>
vector.transfer_write %5, %m1[] : vector<f32>, memref<f32>
}
- return
+ return
+}
+
+// -----
+
+// CHECK-PROP-LABEL: func @vector_reduction_large(
+// CHECK-PROP-SAME: %[[laneid:.*]]: index)
+// CHECK-PROP-DAG: %[[c1:.*]] = arith.constant 1 : i32
+// CHECK-PROP-DAG: %[[c2:.*]] = arith.constant 2 : i32
+// CHECK-PROP-DAG: %[[c4:.*]] = arith.constant 4 : i32
+// CHECK-PROP-DAG: %[[c8:.*]] = arith.constant 8 : i32
+// CHECK-PROP-DAG: %[[c16:.*]] = arith.constant 16 : i32
+// CHECK-PROP-DAG: %[[c32:.*]] = arith.constant 32 : i32
+// CHECK-PROP: %[[warp_op:.*]] = vector.warp_execute_on_lane_0(%[[laneid]])[32] -> (vector<2xf32>) {
+// CHECK-PROP: vector.yield %{{.*}} : vector<64xf32>
+// CHECK-PROP: }
+// CHECK-PROP: %[[a:.*]] = vector.reduction <add>, %[[warp_op]] : vector<2xf32> into f32
+// CHECK-PROP: %[[r0:.*]], %{{.*}} = gpu.shuffle xor %[[a]], %[[c1]], %[[c32]]
+// CHECK-PROP: %[[a0:.*]] = arith.addf %[[a]], %[[r0]]
+// CHECK-PROP: %[[r1:.*]], %{{.*}} = gpu.shuffle xor %[[a0]], %[[c2]], %[[c32]]
+// CHECK-PROP: %[[a1:.*]] = arith.addf %[[a0]], %[[r1]]
+// CHECK-PROP: %[[r2:.*]], %{{.*}} = gpu.shuffle xor %[[a1]], %[[c4]], %[[c32]]
+// CHECK-PROP: %[[a2:.*]] = arith.addf %[[a1]], %[[r2]]
+// CHECK-PROP: %[[r3:.*]], %{{.*}} = gpu.shuffle xor %[[a2]], %[[c8]], %[[c32]]
+// CHECK-PROP: %[[a3:.*]] = arith.addf %[[a2]], %[[r3]]
+// CHECK-PROP: %[[r4:.*]], %{{.*}} = gpu.shuffle xor %[[a3]], %[[c16]], %[[c32]]
+// CHECK-PROP: %[[a4:.*]] = arith.addf %[[a3]], %[[r4]]
+// CHECK-PROP: return %[[a4]] : f32
+func.func @vector_reduction_large(%laneid: index) -> (f32) {
+ %r = vector.warp_execute_on_lane_0(%laneid)[32] -> (f32) {
+ %0 = "some_def"() : () -> (vector<64xf32>)
+ %1 = vector.reduction <add>, %0 : vector<64xf32> into f32
+ vector.yield %1 : f32
+ }
+ return %r : f32
}
More information about the Mlir-commits
mailing list