[Mlir-commits] [mlir] e52f530 - [mlir][sparse] fix two typos
Aart Bik
llvmlistbot at llvm.org
Thu Jan 13 15:12:04 PST 2022
Author: Aart Bik
Date: 2022-01-13T15:11:55-08:00
New Revision: e52f530c36e4b3f78c35f1ccd59cae75bdff7db4
URL: https://github.com/llvm/llvm-project/commit/e52f530c36e4b3f78c35f1ccd59cae75bdff7db4
DIFF: https://github.com/llvm/llvm-project/commit/e52f530c36e4b3f78c35f1ccd59cae75bdff7db4.diff
LOG: [mlir][sparse] fix two typos
(1) copy-and-past error in encoding alias name:
this is an annotation for a tensor (3-d) not a matrix (2-d).
(2) typo in "initialization"
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D117255
Added:
Modified:
mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
index 292fc072e1af9..b7fce5b3137c1 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
@@ -239,7 +239,7 @@ def SparseTensor_ExpandOp : SparseTensor_Op<"expand", []>,
dimension (e.g. a full row for matrices). The added array and count are used
to store new indices when a false value is encountered in the filled array.
All arrays should be allocated before the loop (possibly even shared between
- loops in a future optimization) so that their *dense* intitialization can be
+ loops in a future optimization) so that their *dense* initialization can be
amortized over many iterations. Setting and resetting the dense arrays in
the loop nest itself is kept *sparse* by only iterating over set elements
through an indirection using the added array, so that the operations are
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir
index 71ba247c5bc11..ca1287387d72e 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir
@@ -26,7 +26,7 @@
!Filename = type !llvm.ptr<i8>
-#SparseMatrix = #sparse_tensor.encoding<{
+#SparseTensor = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed", "compressed" ]
}>
@@ -51,14 +51,14 @@ module {
// Computes Matricized Tensor Times Khatri-Rao Product (MTTKRP) kernel. See
// http://tensor-compiler.org/docs/data_analytics/index.html.
//
- func @kernel_mttkrp(%argb: tensor<?x?x?xf64, #SparseMatrix>,
+ func @kernel_mttkrp(%argb: tensor<?x?x?xf64, #SparseTensor>,
%argc: tensor<?x?xf64>,
%argd: tensor<?x?xf64>,
%arga: tensor<?x?xf64> {linalg.inplaceable = true})
-> tensor<?x?xf64> {
%0 = linalg.generic #mttkrp
ins(%argb, %argc, %argd:
- tensor<?x?x?xf64, #SparseMatrix>, tensor<?x?xf64>, tensor<?x?xf64>)
+ tensor<?x?x?xf64, #SparseTensor>, tensor<?x?xf64>, tensor<?x?xf64>)
outs(%arga: tensor<?x?xf64>) {
^bb(%b: f64, %c: f64, %d: f64, %a: f64):
%0 = arith.mulf %b, %c : f64
@@ -87,7 +87,7 @@ module {
// Read the sparse B input from a file.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%b = sparse_tensor.new %fileName
- : !Filename to tensor<?x?x?xf64, #SparseMatrix>
+ : !Filename to tensor<?x?x?xf64, #SparseTensor>
// Initialize dense C and D inputs and dense output A.
%cdata = memref.alloc(%c3, %c5) : memref<?x?xf64>
@@ -124,7 +124,7 @@ module {
// Call kernel.
%0 = call @kernel_mttkrp(%b, %c, %d, %a)
- : (tensor<?x?x?xf64, #SparseMatrix>,
+ : (tensor<?x?x?xf64, #SparseTensor>,
tensor<?x?xf64>, tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xf64>
// Print the result for verification.
@@ -141,7 +141,7 @@ module {
memref.dealloc %adata : memref<?x?xf64>
memref.dealloc %cdata : memref<?x?xf64>
memref.dealloc %ddata : memref<?x?xf64>
- sparse_tensor.release %b : tensor<?x?x?xf64, #SparseMatrix>
+ sparse_tensor.release %b : tensor<?x?x?xf64, #SparseTensor>
return
}
More information about the Mlir-commits
mailing list