[Mlir-commits] [mlir] a924fcc - [mlir][sparse] add sparse kernels test to sparse compiler test suite

Aart Bik llvmlistbot at llvm.org
Wed Sep 22 14:56:52 PDT 2021


Author: Aart Bik
Date: 2021-09-22T14:56:39-07:00
New Revision: a924fcc7c3193b50a64908c8480389de45801555

URL: https://github.com/llvm/llvm-project/commit/a924fcc7c3193b50a64908c8480389de45801555
DIFF: https://github.com/llvm/llvm-project/commit/a924fcc7c3193b50a64908c8480389de45801555.diff

LOG: [mlir][sparse] add sparse kernels test to sparse compiler test suite

This test makes sure kernels map to efficient sparse code, i.e. all
compressed for-loops, no co-iterating while loops.  In addition, this
revision removes the special constant folding inside the sparse
compiler in favor of Mahesh' new generic linalg folding. Thanks!

NOTE: relies on Mahesh fix, which needs to be rebased first

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D110001

Added: 
    mlir/test/Dialect/SparseTensor/sparse_kernels.mlir

Modified: 
    mlir/include/mlir/Dialect/SparseTensor/Utils/Merger.h
    mlir/lib/Dialect/SparseTensor/Utils/Merger.cpp
    mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir
    mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/SparseTensor/Utils/Merger.h b/mlir/include/mlir/Dialect/SparseTensor/Utils/Merger.h
index 1090d7f27029c..d396f7a50ef50 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Utils/Merger.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/Utils/Merger.h
@@ -230,7 +230,6 @@ class Merger {
                  Value v1);
 
 private:
-  bool isZero(unsigned e) const;
   bool maybeZero(unsigned e) const;
   bool isInvariant(unsigned e) const;
   Type inferType(unsigned e, Value src);

diff  --git a/mlir/lib/Dialect/SparseTensor/Utils/Merger.cpp b/mlir/lib/Dialect/SparseTensor/Utils/Merger.cpp
index e5f408802b4fa..4a18a0a7441c8 100644
--- a/mlir/lib/Dialect/SparseTensor/Utils/Merger.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Utils/Merger.cpp
@@ -489,11 +489,6 @@ unsigned Merger::buildLattices(unsigned e, unsigned i) {
     //  ---+---+---+    ---+---+---+
     //  !x | 0 | y |    !x | 0 |-y |
     //   x | x |x+y|     x | x |x-y|
-    //
-    // TODO: remove this zero "folding" in favor of external pass into linalg
-    //
-    if (isZero(tensorExps[e].children.e1))
-      return buildLattices(tensorExps[e].children.e0, i);
     return takeDisj(kind, // take binary disjunction
                     buildLattices(tensorExps[e].children.e0, i),
                     buildLattices(tensorExps[e].children.e1, i));
@@ -516,17 +511,6 @@ Optional<unsigned> Merger::buildTensorExpFromLinalg(linalg::GenericOp op) {
   return buildTensorExp(op, yield->getOperand(0));
 }
 
-/// Only returns true if we are certain this is a zero.
-bool Merger::isZero(unsigned e) const {
-  if (tensorExps[e].kind == kInvariant) {
-    if (auto c = tensorExps[e].val.getDefiningOp<ConstantIntOp>())
-      return c.getValue() == 0;
-    if (auto c = tensorExps[e].val.getDefiningOp<ConstantFloatOp>())
-      return c.getValue().isZero();
-  }
-  return false;
-}
-
 /// Only returns false if we are certain this is a nonzero.
 bool Merger::maybeZero(unsigned e) const {
   if (tensorExps[e].kind == kInvariant) {

diff  --git a/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir b/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir
new file mode 100644
index 0000000000000..b65686e1c0916
--- /dev/null
+++ b/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir
@@ -0,0 +1,157 @@
+// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
+// RUN: mlir-opt %s \
+// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
+// RUN: --sparsification | FileCheck %s
+
+#DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>
+
+// CHECK-LABEL:   func @matmul(
+// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>,
+// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<20x30xf32>,
+// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<10x30xf32>) -> tensor<10x30xf32> {
+// CHECK-DAG:       %[[VAL_3:.*]] = constant 0 : index
+// CHECK-DAG:       %[[VAL_4:.*]] = constant 1 : index
+// CHECK-DAG:       %[[VAL_5:.*]] = constant 30 : index
+// CHECK:           %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<20x30xf32>
+// CHECK:           %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<10x30xf32>
+// CHECK:           %[[VAL_13:.*]] = memref.alloc() : memref<10x30xf32>
+// CHECK:           memref.copy %[[VAL_12]], %[[VAL_13]] : memref<10x30xf32> to memref<10x30xf32>
+// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref<?xindex>
+// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
+// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_4]] {
+// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
+// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex>
+// CHECK:             %[[VAL_19:.*]] = addi %[[VAL_16]], %[[VAL_4]] : index
+// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex>
+// CHECK:             scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_4]] {
+// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_21]]] : memref<?xindex>
+// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xf32>
+// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] {
+// CHECK:                 %[[VAL_25:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_24]]] : memref<10x30xf32>
+// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]], %[[VAL_24]]] : memref<20x30xf32>
+// CHECK:                 %[[VAL_27:.*]] = mulf %[[VAL_23]], %[[VAL_26]] : f32
+// CHECK:                 %[[VAL_28:.*]] = addf %[[VAL_25]], %[[VAL_27]] : f32
+// CHECK:                 memref.store %[[VAL_28]], %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_24]]] : memref<10x30xf32>
+// CHECK:               }
+// CHECK:             }
+// CHECK:           }
+// CHECK:           %[[VAL_29:.*]] = memref.tensor_load %[[VAL_13]] : memref<10x30xf32>
+// CHECK:           return %[[VAL_29]] : tensor<10x30xf32>
+// CHECK:         }
+func @matmul(%a: tensor<10x20xf32, #DCSR>,
+             %b: tensor<20x30xf32>,
+             %c: tensor<10x30xf32>) -> tensor<10x30xf32> {
+  %0 = linalg.matmul
+    ins(%a, %b: tensor<10x20xf32, #DCSR>, tensor<20x30xf32>)
+    outs(%c: tensor<10x30xf32>) -> tensor<10x30xf32>
+  return %0 : tensor<10x30xf32>
+}
+
+// CHECK-LABEL:   func @conv2d(
+// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<8x8xi32>,
+// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>,
+// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<6x6xi32>) -> tensor<6x6xi32> {
+// CHECK-DAG:       %[[VAL_3:.*]] = constant 0 : index
+// CHECK-DAG:       %[[VAL_4:.*]] = constant 1 : index
+// CHECK-DAG:       %[[VAL_5:.*]] = constant 6 : index
+// CHECK:           %[[VAL_6:.*]] = memref.buffer_cast %[[VAL_0]] : memref<8x8xi32>
+// CHECK:           %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<6x6xi32>
+// CHECK:           %[[VAL_13:.*]] = memref.alloc() : memref<6x6xi32>
+// CHECK:           memref.copy %[[VAL_12]], %[[VAL_13]] : memref<6x6xi32> to memref<6x6xi32>
+// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_3]]] : memref<?xindex>
+// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
+// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_4]] {
+// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex>
+// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_16]]] : memref<?xindex>
+// CHECK:             %[[VAL_19:.*]] = addi %[[VAL_16]], %[[VAL_4]] : index
+// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex>
+// CHECK:             scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_4]] {
+// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xindex>
+// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]]] : memref<?xi32>
+// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] {
+// CHECK:                 scf.for %[[VAL_25:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] {
+// CHECK:                   %[[VAL_26:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_25]], %[[VAL_24]]] : memref<6x6xi32>
+// CHECK:                   %[[VAL_27:.*]] = addi %[[VAL_25]], %[[VAL_17]] : index
+// CHECK:                   %[[VAL_28:.*]] = addi %[[VAL_24]], %[[VAL_22]] : index
+// CHECK:                   %[[VAL_29:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_27]], %[[VAL_28]]] : memref<8x8xi32>
+// CHECK:                   %[[VAL_30:.*]] = muli %[[VAL_29]], %[[VAL_23]] : i32
+// CHECK:                   %[[VAL_31:.*]] = addi %[[VAL_26]], %[[VAL_30]] : i32
+// CHECK:                   memref.store %[[VAL_31]], %[[VAL_13]]{{\[}}%[[VAL_25]], %[[VAL_24]]] : memref<6x6xi32>
+// CHECK:                 }
+// CHECK:               }
+// CHECK:             }
+// CHECK:           }
+// CHECK:           %[[VAL_32:.*]] = memref.tensor_load %[[VAL_13]] : memref<6x6xi32>
+// CHECK:           return %[[VAL_32]] : tensor<6x6xi32>
+// CHECK:         }
+func @conv2d(%input:  tensor<8x8xi32>,
+             %filter: tensor<3x3xi32, #DCSR>,
+             %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
+  %0 = linalg.conv_2d
+    ins  (%input, %filter: tensor<8x8xi32>, tensor<3x3xi32, #DCSR>)
+    outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
+  return %0 : tensor<6x6xi32>
+}
+
+// CHECK-LABEL:   func @quantized_matmul(
+// CHECK-SAME:                           %[[VAL_0:.*]]: tensor<5x3xi8>,
+// CHECK-SAME:                           %[[VAL_1:.*]]: tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>,
+// CHECK-SAME:                           %[[VAL_2:.*]]: tensor<5x6xi64>) -> tensor<5x6xi64> {
+// CHECK-DAG:       %[[VAL_3:.*]] = constant 2 : i64
+// CHECK-DAG:       %[[VAL_4:.*]] = constant 0 : index
+// CHECK-DAG:       %[[VAL_5:.*]] = constant 1 : index
+// CHECK-DAG:       %[[VAL_6:.*]] = constant 5 : index
+// CHECK:           %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_0]] : memref<5x3xi8>
+// CHECK:           %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
+// CHECK:           %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_2]] : memref<5x6xi64>
+// CHECK:           %[[VAL_14:.*]] = memref.alloc() : memref<5x6xi64>
+// CHECK:           memref.copy %[[VAL_13]], %[[VAL_14]] : memref<5x6xi64> to memref<5x6xi64>
+// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
+// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xindex>
+// CHECK:           scf.for %[[VAL_17:.*]] = %[[VAL_15]] to %[[VAL_16]] step %[[VAL_5]] {
+// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_17]]] : memref<?xindex>
+// CHECK:             %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_17]]] : memref<?xindex>
+// CHECK:             %[[VAL_20:.*]] = addi %[[VAL_17]], %[[VAL_5]] : index
+// CHECK:             %[[VAL_21:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<?xindex>
+// CHECK:             scf.for %[[VAL_22:.*]] = %[[VAL_19]] to %[[VAL_21]] step %[[VAL_5]] {
+// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xindex>
+// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_22]]] : memref<?xi8>
+// CHECK:               scf.for %[[VAL_25:.*]] = %[[VAL_4]] to %[[VAL_6]] step %[[VAL_5]] {
+// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_25]], %[[VAL_23]]] : memref<5x6xi64>
+// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]], %[[VAL_18]]] : memref<5x3xi8>
+// CHECK:                 %[[VAL_28:.*]] = sexti %[[VAL_27]] : i8 to i64
+// CHECK:                 %[[VAL_29:.*]] = subi %[[VAL_28]], %[[VAL_3]] : i64
+// CHECK:                 %[[VAL_30:.*]] = sexti %[[VAL_24]] : i8 to i64
+// CHECK:                 %[[VAL_31:.*]] = muli %[[VAL_29]], %[[VAL_30]] : i64
+// CHECK:                 %[[VAL_32:.*]] = addi %[[VAL_26]], %[[VAL_31]] : i64
+// CHECK:                 memref.store %[[VAL_32]], %[[VAL_14]]{{\[}}%[[VAL_25]], %[[VAL_23]]] : memref<5x6xi64>
+// CHECK:               }
+// CHECK:             }
+// CHECK:           }
+// CHECK:           %[[VAL_33:.*]] = memref.tensor_load %[[VAL_14]] : memref<5x6xi64>
+// CHECK:           return %[[VAL_33]] : tensor<5x6xi64>
+// CHECK:         }
+func @quantized_matmul(%input1: tensor<5x3xi8>,
+                       %input2: tensor<3x6xi8, #DCSR>,
+                       %output: tensor<5x6xi64>) -> tensor<5x6xi64> {
+  %c0 = constant 0 : i32
+  %c2 = constant 2 : i32
+  %0 = linalg.quantized_matmul
+    ins(%input1, %input2, %c2, %c0 : tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, i32, i32)
+    outs(%output : tensor<5x6xi64>) -> tensor<5x6xi64>
+  return %0: tensor<5x6xi64>
+}

diff  --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir
index 42a6068644d9f..63627db19d555 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir
@@ -1,5 +1,5 @@
 // RUN: mlir-opt %s \
-// RUN:   --linalg-generalize-named-ops \
+// RUN:   --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
 // RUN:   --sparsification --sparse-tensor-conversion \
 // RUN:   --convert-vector-to-scf --convert-scf-to-std \
 // RUN:   --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
@@ -14,7 +14,7 @@
 // Do the same run, but now with SIMDization as well. This should not change the outcome.
 //
 // RUN: mlir-opt %s \
-// RUN:   --linalg-generalize-named-ops \
+// RUN:   --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
 // RUN:   --sparsification="vectorization-strategy=2 vl=2" --sparse-tensor-conversion \
 // RUN:   --convert-vector-to-scf --convert-scf-to-std \
 // RUN:   --func-bufferize --tensor-constant-bufferize --tensor-bufferize \

diff  --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir
index bb72653bfe6dc..ffc07ae880f21 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir
@@ -1,5 +1,5 @@
 // RUN: mlir-opt %s \
-// RUN:   --linalg-generalize-named-ops \
+// RUN:   --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
 // RUN:   --sparsification --sparse-tensor-conversion \
 // RUN:   --convert-vector-to-scf --convert-scf-to-std \
 // RUN:   --func-bufferize --tensor-constant-bufferize --tensor-bufferize \


        


More information about the Mlir-commits mailing list