[Mlir-commits] [mlir] 340314c - Reorder mmt4d shapes:
Geoffrey Martin-Noble
llvmlistbot at llvm.org
Mon Sep 13 12:10:02 PDT 2021
Author: Benoit Jacob
Date: 2021-09-13T12:09:22-07:00
New Revision: 340314c4dcc801d8f493c45cafd79c79c6e8e58e
URL: https://github.com/llvm/llvm-project/commit/340314c4dcc801d8f493c45cafd79c79c6e8e58e
DIFF: https://github.com/llvm/llvm-project/commit/340314c4dcc801d8f493c45cafd79c79c6e8e58e.diff
LOG: Reorder mmt4d shapes:
* Revert https://reviews.llvm.org/D107307 so that both LHS and RHS have
the same layout with K0 as the innermost dimension.
* Continuing from https://reviews.llvm.org/D107003, move also 'K'
to the outer side, so that now the inter-tile dimensions as all outer,
and the intra-tile dimensions are all inner.
Reviewed By: asaadaldien
Differential Revision: https://reviews.llvm.org/D109692
Added:
Modified:
mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index ec71aa59ab916..70c4a3c59a38d 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -181,7 +181,7 @@ structured_op: !LinalgStructuredOpConfig
name: rhs
usage: InputOperand
type_var: RhsType
- shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s4, s1, s3, s5)>
+ shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s4, s1, s5, s3)>
- !LinalgOperandDefConfig
name: accum
usage: OutputOperand
@@ -189,19 +189,19 @@ structured_op: !LinalgStructuredOpConfig
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s4, s2, s5)>
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- - affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d4, d2,
+ - affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d2, d3,
d5)>
- - affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d1, d4, d5,
- d3)>
- - affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d1, d2,
- d3)>
+ - affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d1, d2, d4,
+ d5)>
+ - affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d1, d3,
+ d4)>
iterator_types:
- parallel
- parallel
+ - reduction
- parallel
- parallel
- reduction
- - reduction
assignments:
- !ScalarAssign
arg: accum
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index 38db294428c94..fc37a2e8fa3a4 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -39,7 +39,7 @@ def quantized_matmul(
@linalg_structured_op
def mmt4d(lhs=TensorDef(TV.LhsType, S.M, S.K, S.M0, S.K0),
- rhs=TensorDef(TV.RhsType, S.N, S.K, S.K0, S.N0),
+ rhs=TensorDef(TV.RhsType, S.N, S.K, S.N0, S.K0),
accum=TensorDef(TV.AccumType, S.M, S.N, S.M0, S.N0,
output=True)):
"""Performs a matrix-matrix-transpose multiplication of two 4D inputs.
@@ -52,9 +52,9 @@ def mmt4d(lhs=TensorDef(TV.LhsType, S.M, S.K, S.M0, S.K0),
'0' suffixes below, for instance the LHS matrix shape (M, K, M0, K0) reads
as: MxK tiles, each of shape M0xK0.
"""
- domain(D.m, D.n, D.m0, D.n0, D.k, D.k0)
+ domain(D.m, D.n, D.k, D.m0, D.n0, D.k0)
implements(ContractionOpInterface)
- accum[D.m, D.n, D.m0, D.n0] += cast(TV.AccumType, lhs[D.m, D.k, D.m0, D.k0]) * cast(TV.AccumType, rhs[D.n, D.k, D.k0, D.n0])
+ accum[D.m, D.n, D.m0, D.n0] += cast(TV.AccumType, lhs[D.m, D.k, D.m0, D.k0]) * cast(TV.AccumType, rhs[D.n, D.k, D.n0, D.k0])
@linalg_structured_op
def batch_matmul(
More information about the Mlir-commits
mailing list