[Mlir-commits] [mlir] 61e353e - [mlir][sparse] added sparse out element wise mult integration test

Aart Bik llvmlistbot at llvm.org
Tue Nov 30 16:44:46 PST 2021


Author: Aart Bik
Date: 2021-11-30T16:44:38-08:00
New Revision: 61e353e0b623cef98a8a98f1a9aca60c0142b1ad

URL: https://github.com/llvm/llvm-project/commit/61e353e0b623cef98a8a98f1a9aca60c0142b1ad
DIFF: https://github.com/llvm/llvm-project/commit/61e353e0b623cef98a8a98f1a9aca60c0142b1ad.diff

LOG: [mlir][sparse] added sparse out element wise mult integration test

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D114822

Added: 
    mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_out_mult_elt.mlir

Modified: 
    

Removed: 
    


################################################################################
diff  --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_out_mult_elt.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_out_mult_elt.mlir
new file mode 100644
index 0000000000000..e57a86d12a111
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_out_mult_elt.mlir
@@ -0,0 +1,82 @@
+// RUN: mlir-opt %s \
+// RUN:   --sparsification --sparse-tensor-conversion \
+// RUN:   --linalg-bufferize --convert-linalg-to-loops \
+// RUN:   --convert-vector-to-scf --convert-scf-to-std \
+// RUN:   --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
+// RUN:   --std-bufferize --finalizing-bufferize --lower-affine \
+// RUN:   --convert-vector-to-llvm --convert-memref-to-llvm --convert-math-to-llvm \
+// RUN:   --convert-std-to-llvm --reconcile-unrealized-casts | \
+// RUN: mlir-cpu-runner \
+// RUN:  -e entry -entry-point-result=void  \
+// RUN:  -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
+// RUN: FileCheck %s
+
+#DCSR = #sparse_tensor.encoding<{
+  dimLevelType = [ "compressed", "compressed" ]
+}>
+
+#trait_mult_elt = {
+  indexing_maps = [
+    affine_map<(i,j) -> (i,j)>,  // A
+    affine_map<(i,j) -> (i,j)>,  // B
+    affine_map<(i,j) -> (i,j)>   // X (out)
+  ],
+  iterator_types = ["parallel", "parallel"],
+  doc = "X(i,j) = A(i,j) * B(i,j)"
+}
+
+module {
+  // Sparse kernel.
+  func @sparse_mult_elt(
+      %arga: tensor<32x16xf32, #DCSR>, %argb: tensor<32x16xf32, #DCSR>) -> tensor<32x16xf32, #DCSR> {
+    %c16 = arith.constant 16 : index
+    %c32 = arith.constant 32 : index
+    %argx = sparse_tensor.init [%c32, %c16] : tensor<32x16xf32, #DCSR>
+    %0 = linalg.generic #trait_mult_elt
+      ins(%arga, %argb: tensor<32x16xf32, #DCSR>, tensor<32x16xf32, #DCSR>)
+      outs(%argx: tensor<32x16xf32, #DCSR>) {
+        ^bb(%a: f32, %b: f32, %x: f32):
+          %1 = arith.mulf %a, %b : f32
+          linalg.yield %1 : f32
+    } -> tensor<32x16xf32, #DCSR>
+    return %0 : tensor<32x16xf32, #DCSR>
+  }
+
+  // Driver method to call and verify kernel.
+  func @entry() {
+    %c0 = arith.constant 0 : index
+    %f1 = arith.constant -1.0 : f32
+
+    // Setup very sparse matrices.
+    %ta = arith.constant sparse<
+       [ [2,2], [15,15], [31,0], [31,14] ], [ 2.0, 3.0, -2.0, 4.0 ]
+    > : tensor<32x16xf32>
+    %tb = arith.constant sparse<
+       [ [1,1], [2,0], [2,2], [2,15], [31,0], [31,15] ], [ 5.0, 6.0, 7.0, 8.0, -10.0, 9.0 ]
+    > : tensor<32x16xf32>
+    %sta = sparse_tensor.convert %ta
+      : tensor<32x16xf32> to tensor<32x16xf32, #DCSR>
+    %stb = sparse_tensor.convert %tb
+      : tensor<32x16xf32> to tensor<32x16xf32, #DCSR>
+
+    // Call kernel.
+    %0 = call @sparse_mult_elt(%sta, %stb)
+      : (tensor<32x16xf32, #DCSR>,
+         tensor<32x16xf32, #DCSR>) -> tensor<32x16xf32, #DCSR>
+
+    //
+    // Verify results. Only two entries stored in result!
+    //
+    // CHECK: ( 14, 20, -1, -1 )
+    //
+    %val = sparse_tensor.values %0 : tensor<32x16xf32, #DCSR> to memref<?xf32>
+    %vv = vector.transfer_read %val[%c0], %f1: memref<?xf32>, vector<4xf32>
+    vector.print %vv : vector<4xf32>
+
+    // Release the resources.
+    sparse_tensor.release %sta : tensor<32x16xf32, #DCSR>
+    sparse_tensor.release %stb : tensor<32x16xf32, #DCSR>
+    sparse_tensor.release %0   : tensor<32x16xf32, #DCSR>
+    return
+  }
+}


        


More information about the Mlir-commits mailing list