[Mlir-commits] [mlir] 789c88e - [mlir] Fix unintentional mutation by VectorType/RankedTensorType::Builder dropDim
Nicolas Vasilache
llvmlistbot at llvm.org
Mon Nov 22 02:55:29 PST 2021
Author: Nicolas Vasilache
Date: 2021-11-22T10:51:50Z
New Revision: 789c88e80e878ed866a2d8cfe29c7fd36082274c
URL: https://github.com/llvm/llvm-project/commit/789c88e80e878ed866a2d8cfe29c7fd36082274c
DIFF: https://github.com/llvm/llvm-project/commit/789c88e80e878ed866a2d8cfe29c7fd36082274c.diff
LOG: [mlir] Fix unintentional mutation by VectorType/RankedTensorType::Builder dropDim
Differential Revision: https://reviews.llvm.org/D113933
Added:
Modified:
mlir/include/mlir/IR/BuiltinTypes.h
mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
mlir/lib/Dialect/Vector/VectorTransforms.cpp
Removed:
################################################################################
diff --git a/mlir/include/mlir/IR/BuiltinTypes.h b/mlir/include/mlir/IR/BuiltinTypes.h
index b4ce23a72915c..f3d2c24073dc6 100644
--- a/mlir/include/mlir/IR/BuiltinTypes.h
+++ b/mlir/include/mlir/IR/BuiltinTypes.h
@@ -283,12 +283,14 @@ class RankedTensorType::Builder {
return *this;
}
- /// Create a new RankedTensor by erasing a dim from shape @pos.
- RankedTensorType dropDim(unsigned pos) {
+ /// Erase a dim from shape @pos.
+ Builder &dropDim(unsigned pos) {
assert(pos < shape.size() && "overflow");
- SmallVector<int64_t, 4> newShape(shape.begin(), shape.end());
- newShape.erase(newShape.begin() + pos);
- return setShape(newShape);
+ if (storage.empty())
+ storage.append(shape.begin(), shape.end());
+ storage.erase(storage.begin() + pos);
+ shape = {storage.data(), storage.size()};
+ return *this;
}
operator RankedTensorType() {
@@ -297,6 +299,8 @@ class RankedTensorType::Builder {
private:
ArrayRef<int64_t> shape;
+ // Owning shape data for copy-on-write operations.
+ SmallVector<int64_t> storage;
Type elementType;
Attribute encoding;
};
@@ -327,23 +331,29 @@ class VectorType::Builder {
return *this;
}
- /// Create a new VectorType by erasing a dim from shape @pos.
+ /// Erase a dim from shape @pos.
+ Builder &dropDim(unsigned pos) {
+ assert(pos < shape.size() && "overflow");
+ if (storage.empty())
+ storage.append(shape.begin(), shape.end());
+ storage.erase(storage.begin() + pos);
+ shape = {storage.data(), storage.size()};
+ return *this;
+ }
+
/// In the particular case where the vector has a single dimension that we
/// drop, return the scalar element type.
// TODO: unify once we have a VectorType that supports 0-D.
- Type dropDim(unsigned pos) {
- assert(pos < shape.size() && "overflow");
- if (shape.size() == 1)
+ operator Type() {
+ if (shape.empty())
return elementType;
- SmallVector<int64_t, 4> newShape(shape.begin(), shape.end());
- newShape.erase(newShape.begin() + pos);
- return setShape(newShape);
+ return VectorType::get(shape, elementType);
}
- operator VectorType() { return VectorType::get(shape, elementType); }
-
private:
ArrayRef<int64_t> shape;
+ // Owning shape data for copy-on-write operations.
+ SmallVector<int64_t> storage;
Type elementType;
};
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
index 657f2b7605589..36bb0171823f7 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
@@ -876,9 +876,12 @@ struct DownscaleSizeOneWindowed2DConvolution final
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
- auto newInputType = RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
- auto newFilterType = RTTBuilder(filterType).dropDim((removeH ? 0 : 1));
- auto newOutputType = RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
+ RankedTensorType newInputType =
+ RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
+ RankedTensorType newFilterType =
+ RTTBuilder(filterType).dropDim((removeH ? 0 : 1));
+ RankedTensorType newOutputType =
+ RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
// Rank-reduce operands.
Location loc = convOp.getLoc();
@@ -948,9 +951,12 @@ struct DownscaleDepthwiseConv2DNhwcHwcOp final
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
- auto newInputType = RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
- auto newKernelType = RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
- auto newOutputType = RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
+ RankedTensorType newInputType =
+ RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
+ RankedTensorType newKernelType =
+ RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
+ RankedTensorType newOutputType =
+ RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
// Rank-reduce operands.
Location loc = convOp.getLoc();
diff --git a/mlir/lib/Dialect/Vector/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/VectorTransforms.cpp
index 37f3c31e6a48d..5760e80bfcaff 100644
--- a/mlir/lib/Dialect/Vector/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/VectorTransforms.cpp
@@ -94,15 +94,16 @@ static Value reshapeLoad(Location loc, Value val, VectorType type,
}
// Unroll leading dimensions.
VectorType vType = lowType.cast<VectorType>();
- auto resType = VectorType::Builder(type).dropDim(index).cast<VectorType>();
+ Type resType = VectorType::Builder(type).dropDim(index);
+ auto resVectorType = resType.cast<VectorType>();
Value result = rewriter.create<arith::ConstantOp>(
- loc, resType, rewriter.getZeroAttr(resType));
- for (int64_t d = 0, e = resType.getDimSize(0); d < e; d++) {
+ loc, resVectorType, rewriter.getZeroAttr(resVectorType));
+ for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) {
auto posAttr = rewriter.getI64ArrayAttr(d);
Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
- result =
- rewriter.create<vector::InsertOp>(loc, resType, load, result, posAttr);
+ result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result,
+ posAttr);
}
return result;
}
More information about the Mlir-commits
mailing list