[Mlir-commits] [mlir] ebf8d74 - [mlir][linalg][bufferize] Fix bufferize bug where non-tensor ops are not skipped
Matthias Springer
llvmlistbot at llvm.org
Wed Nov 17 23:26:45 PST 2021
Author: Matthias Springer
Date: 2021-11-18T16:20:22+09:00
New Revision: ebf8d74e929d908829eda4ad8548ec21e2dbc6ae
URL: https://github.com/llvm/llvm-project/commit/ebf8d74e929d908829eda4ad8548ec21e2dbc6ae
DIFF: https://github.com/llvm/llvm-project/commit/ebf8d74e929d908829eda4ad8548ec21e2dbc6ae.diff
LOG: [mlir][linalg][bufferize] Fix bufferize bug where non-tensor ops are not skipped
`BufferizableOpInterface::bufferize` will only be called on ops that
have tensor operands and/or results.
Differential Revision: https://reviews.llvm.org/D113962
Added:
Modified:
mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp
mlir/test/Dialect/Linalg/comprehensive-module-bufferize-invalid.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp
index 96fc066e7553e..fdea306a2cd17 100644
--- a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp
+++ b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp
@@ -1114,16 +1114,19 @@ LogicalResult mlir::linalg::comprehensive_bufferize::bufferizeOp(
if (isa<memref::BufferCastOp, memref::TensorLoadOp>(op))
return success();
+ // Check if op has tensor results or operands.
+ auto isaTensor = [](Type t) { return t.isa<TensorType>(); };
+ bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
+ bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
+ if (!hasTensorResult && !hasTensorOperand)
+ return success();
+
// Bufferize using `BufferizableOpInterface`.
if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op))
return bufferizableOp.bufferize(b, state);
// Other op with tensors. No bufferization method specified.
- auto isaTensor = [](Type t) { return t.isa<TensorType>(); };
- if (any_of(op->getOperandTypes(), isaTensor) ||
- any_of(op->getResultTypes(), isaTensor))
- return op->emitError() << "unsupported op with tensors";
- return success();
+ return op->emitError() << "unsupported op with tensors";
}
static LogicalResult bufferizeFuncOpInternals(
@@ -2482,10 +2485,9 @@ struct TransferReadOpInterface
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
- if (transferReadOp.getShapedType().isa<MemRefType>())
- return failure();
-
// TransferReadOp always reads from the bufferized op.source().
+ assert(transferReadOp.getShapedType().isa<TensorType>() &&
+ "only tensor types expected");
Value v = state.lookupBuffer(transferReadOp.source());
transferReadOp.sourceMutable().assign(v);
return success();
@@ -2530,12 +2532,11 @@ struct TransferWriteOpInterface
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
- if (writeOp.getShapedType().isa<MemRefType>())
- return failure();
-
// Create a new transfer_write on buffer that doesn't have a return value.
// Leave the previous transfer_write to dead code as it still has uses at
// this point.
+ assert(writeOp.getShapedType().isa<TensorType>() &&
+ "only tensor types expected");
Value resultBuffer = getResultBuffer(b, op->getResult(0), state);
if (!resultBuffer)
return failure();
diff --git a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-invalid.mlir b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-invalid.mlir
index 6edc7d1090c36..a3e799bf1faaf 100644
--- a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-invalid.mlir
+++ b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-invalid.mlir
@@ -167,16 +167,3 @@ func @main() -> tensor<4xi32> {
}
return %r: tensor<4xi32>
}
-
-// -----
-
-func @main() -> i32 {
- %c0 = arith.constant 0: index
- // expected-error @+1 {{expected result-less scf.execute_region containing op}}
- %r = scf.execute_region -> i32 {
- %A = arith.constant dense<[1, 2, 3, 4]> : tensor<4xi32>
- %e = tensor.extract %A[%c0]: tensor<4xi32>
- scf.yield %e: i32
- }
- return %r: i32
-}
More information about the Mlir-commits
mailing list