[Mlir-commits] [mlir] c6b96ae - [mlir][linalg] Remove IndexedGenericOp support from LinalgBufferize...
Tobias Gysi
llvmlistbot at llvm.org
Wed May 12 05:16:17 PDT 2021
Author: Tobias Gysi
Date: 2021-05-12T12:15:05Z
New Revision: c6b96ae06f70bd0ecd28995ffc45d87edd89a84d
URL: https://github.com/llvm/llvm-project/commit/c6b96ae06f70bd0ecd28995ffc45d87edd89a84d
DIFF: https://github.com/llvm/llvm-project/commit/c6b96ae06f70bd0ecd28995ffc45d87edd89a84d.diff
LOG: [mlir][linalg] Remove IndexedGenericOp support from LinalgBufferize...
after introducing the IndexedGenericOp to GenericOp canonicalization (https://reviews.llvm.org/D101612).
Differential Revision: https://reviews.llvm.org/D102308
Added:
Modified:
mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
mlir/test/Dialect/Linalg/bufferize.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
index ea250138582a..2627732790c7 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
@@ -71,18 +71,17 @@ allocateBuffersForResults(Location loc, LinalgOp linalgOp, ValueRange outputs,
return success();
}
-/// Specialization for `linalg::GenericOp` and `linalg::IndexedGenericOp`.
+/// Specialization for `linalg::GenericOp`.
/// A pattern to convert Generic Linalg operations which work on tensors to
/// use buffers. BufferPlacement pass should be later used to move
/// Alloc operations to the correct positions and insert the missing Dealloc
/// operations in the correct places.
-template <typename GenericOpTy>
static void
finalizeBufferAllocationForGenericOp(ConversionPatternRewriter &rewriter,
- GenericOpTy genericOp, ValueRange inputs,
+ GenericOp genericOp, ValueRange inputs,
ValueRange outputs) {
// Generate a new linalg operation that works on buffers.
- auto newGenericOp = rewriter.create<GenericOpTy>(
+ auto newGenericOp = rewriter.create<GenericOp>(
genericOp.getLoc(),
/*resultTensorTypes=*/llvm::None,
/*inputs=*/inputs,
@@ -116,7 +115,6 @@ static void finalizeBufferAllocation(ConversionPatternRewriter &rewriter,
linalg::LinalgOp linalgOp,
ValueRange inputs, ValueRange outputs) {
assert(!isa<linalg::GenericOp>(linalgOp.getOperation()));
- assert(!isa<linalg::IndexedGenericOp>(linalgOp.getOperation()));
SmallVector<Value, 8> newOperands = inputs;
newOperands.append(outputs.begin(), outputs.end());
auto otherOperands = linalgOp.getAssumedNonShapedOperands();
@@ -195,6 +193,10 @@ class BufferizeAnyLinalgOp : public OpInterfaceConversionPattern<LinalgOp> {
LogicalResult
matchAndRewrite(LinalgOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
+ // Canonicalize indexed generic operations before bufferization.
+ if (isa<IndexedGenericOp>(op))
+ return failure();
+
// GenericOpAdaptor below expects an `operand_segment_sizes` attribute.
if (!op->hasAttr("operand_segment_sizes"))
return failure();
@@ -215,15 +217,8 @@ class BufferizeAnyLinalgOp : public OpInterfaceConversionPattern<LinalgOp> {
// Delegate to the linalg generic pattern.
if (auto genericOp = dyn_cast<linalg::GenericOp>(*op)) {
- finalizeBufferAllocationForGenericOp<GenericOp>(
- rewriter, genericOp, adaptor.inputs(), newOutputBuffers);
- return success();
- }
-
- // Delegate to the linalg indexed generic pattern.
- if (auto genericOp = dyn_cast<linalg::IndexedGenericOp>(*op)) {
- finalizeBufferAllocationForGenericOp<IndexedGenericOp>(
- rewriter, genericOp, adaptor.inputs(), newOutputBuffers);
+ finalizeBufferAllocationForGenericOp(rewriter, genericOp,
+ adaptor.inputs(), newOutputBuffers);
return success();
}
diff --git a/mlir/test/Dialect/Linalg/bufferize.mlir b/mlir/test/Dialect/Linalg/bufferize.mlir
index 0270c5e4ab79..99bd5c635a87 100644
--- a/mlir/test/Dialect/Linalg/bufferize.mlir
+++ b/mlir/test/Dialect/Linalg/bufferize.mlir
@@ -91,32 +91,6 @@ func @multiple_results(%arg0: tensor<4xf32>) -> (tensor<4xf32>, tensor<4xf32>) {
// -----
-#map0 = affine_map<(d0) -> (d0)>
-
-// CHECK-LABEL: func @multiple_results_indexed
-// CHECK: %[[RESULT0:.*]] = memref.alloc() : memref<4xi32>
-// CHECK: %[[RESULT1:.*]] = memref.alloc() : memref<4xi32>
-// CHECK: linalg.generic
-// CHECK-SAME: ins(%{{.*}} : memref<4xi32>)
-// CHECK-SAME: outs(%[[RESULT0]], %[[RESULT1]] : memref<4xi32>, memref<4xi32>)
-// CHECK-NEXT: ^bb0(%{{.*}}: i32, %{{.*}}: i32, %{{.*}}: i32):
-func @multiple_results_indexed(%arg0: tensor<4xi32>)
- -> (tensor<4xi32>, tensor<4xi32>) {
- %0, %1 = linalg.indexed_generic {
- indexing_maps = [#map0, #map0, #map0],
- iterator_types = ["parallel"]
- } ins(%arg0 : tensor<4xi32>)
- outs (%arg0, %arg0 : tensor<4xi32>, tensor<4xi32>) {
- ^bb0(%i: index, %gen_arg1: i32, %out1: i32, %out2: i32):
- %i_i32 = index_cast %i : index to i32
- %tmp1 = addi %gen_arg1, %i_i32 : i32
- linalg.yield %tmp1, %tmp1 : i32, i32
- } -> tensor<4xi32>, tensor<4xi32>
- return %0, %1 : tensor<4xi32>, tensor<4xi32>
-}
-
-// -----
-
#map_2d = affine_map<(d0, d1) -> (d0, d1)>
// Check that the allocs properly consider the
diff erent shapes of the output
More information about the Mlir-commits
mailing list