[Mlir-commits] [mlir] caddfbd - [mlir][docs] Remove the BuiltinDialect documentation from langref and generate it from ODS
River Riddle
llvmlistbot at llvm.org
Fri Mar 19 18:22:01 PDT 2021
Author: River Riddle
Date: 2021-03-19T18:21:33-07:00
New Revision: caddfbd2a94c7014173ce891fc0233d58b3c9db8
URL: https://github.com/llvm/llvm-project/commit/caddfbd2a94c7014173ce891fc0233d58b3c9db8
DIFF: https://github.com/llvm/llvm-project/commit/caddfbd2a94c7014173ce891fc0233d58b3c9db8.diff
LOG: [mlir][docs] Remove the BuiltinDialect documentation from langref and generate it from ODS
Now that all of the builtin dialect is generated from ODS, its documentation in LangRef can be split out and replaced with references to Dialects/Builtin.md. LangRef is quite crusty right now and should really have a full cleanup done in a followup.
Differential Revision: https://reviews.llvm.org/D98562
Added:
mlir/docs/Dialects/Builtin.md
Modified:
mlir/docs/Diagnostics.md
mlir/docs/LangRef.md
mlir/include/mlir/IR/BuiltinTypes.td
mlir/include/mlir/IR/CMakeLists.txt
mlir/tools/mlir-tblgen/OpDocGen.cpp
Removed:
################################################################################
diff --git a/mlir/docs/Diagnostics.md b/mlir/docs/Diagnostics.md
index 9e1e4f9156c3..6300dd3dc06c 100644
--- a/mlir/docs/Diagnostics.md
+++ b/mlir/docs/Diagnostics.md
@@ -11,69 +11,9 @@ structure of the IR, operations, etc.
## Source Locations
Source location information is extremely important for any compiler, because it
-provides a baseline for debuggability and error-reporting. MLIR provides several
-
diff erent location types depending on the situational need.
-
-### CallSite Location
-
-```
-callsite-location ::= 'callsite' '(' location 'at' location ')'
-```
-
-An instance of this location allows for representing a directed stack of
-location usages. This connects a location of a `callee` with the location of a
-`caller`.
-
-### FileLineCol Location
-
-```
-filelinecol-location ::= string-literal ':' integer-literal ':' integer-literal
-```
-
-An instance of this location represents a tuple of file, line number, and column
-number. This is similar to the type of location that you get from most source
-languages.
-
-### Fused Location
-
-```
-fused-location ::= `fused` fusion-metadata? '[' location (location ',')* ']'
-fusion-metadata ::= '<' attribute-value '>'
-```
-
-An instance of a `fused` location represents a grouping of several other source
-locations, with optional metadata that describes the context of the fusion.
-There are many places within a compiler in which several constructs may be fused
-together, e.g. pattern rewriting, that normally result partial or even total
-loss of location information. With `fused` locations, this is a non-issue.
-
-### Name Location
-
-```
-name-location ::= string-literal ('(' location ')')?
-```
-
-An instance of this location allows for attaching a name to a child location.
-This can be useful for representing the locations of variable, or node,
-definitions.
-
-### Opaque Location
-
-An instance of this location essentially contains a pointer to some data
-structure that is external to MLIR and an optional location that can be used if
-the first one is not suitable. Since it contains an external structure, only the
-optional location is used during serialization.
-
-### Unknown Location
-
-```
-unknown-location ::= `unknown`
-```
-
-Source location information is an extremely integral part of the MLIR
-infrastructure. As such, location information is always present in the IR, and
-must explicitly be set to unknown. Thus an instance of the `unknown` location,
-represents an unspecified source location.
+provides a baseline for debuggability and error-reporting. The
+[builtin dialect](Dialects/Builtin.md) provides several
diff erent location
+attributes types depending on the situational need.
## Diagnostic Engine
diff --git a/mlir/docs/Dialects/Builtin.md b/mlir/docs/Dialects/Builtin.md
new file mode 100644
index 000000000000..6a1bd365d2df
--- /dev/null
+++ b/mlir/docs/Dialects/Builtin.md
@@ -0,0 +1,32 @@
+# Builtin Dialect
+
+The builtin dialect contains a core set of Attributes, Operations, and Types
+that have wide applicability across a very large number of domains and
+abstractions. Many of the components of this dialect are also instrumental in
+the implementation of the core IR. As such, this dialect is implicitly loaded in
+every `MLIRContext`, and available directly to all users of MLIR.
+
+Given the far-reaching nature of this dialect and the fact that MLIR is
+extensible by design, any potential additions are heavily scrutinized.
+
+[TOC]
+
+## Attributes
+
+[include "Dialects/BuiltinAttributes.md"]
+
+## Location Attributes
+
+A subset of the builtin attribute values correspond to
+[source locations](../Diagnostics.md#source-locations), that may be attached to
+Operations.
+
+[include "Dialects/BuiltinLocationAttributes.md"]
+
+## Operations
+
+[include "Dialects/BuiltinOps.md"]
+
+## Types
+
+[include "Dialects/BuiltinTypes.md"]
diff --git a/mlir/docs/LangRef.md b/mlir/docs/LangRef.md
index 7b58b63258a5..82cbc973e1fd 100644
--- a/mlir/docs/LangRef.md
+++ b/mlir/docs/LangRef.md
@@ -60,14 +60,13 @@ Operation](docs/Tutorials/Toy/Ch-2/#op-vs-operation-using-mlir-operations))
One obvious application of MLIR is to represent an
[SSA-based](https://en.wikipedia.org/wiki/Static_single_assignment_form) IR,
-like the LLVM core IR, with appropriate choice of Operation Types to define
-[Modules](#module), [Functions](#functions), Branches, Allocations, and
-verification constraints to ensure the SSA Dominance property. MLIR includes a
-'standard' dialect which defines just such structures. However, MLIR is
-intended to be general enough to represent other compiler-like data
-structures, such as Abstract Syntax Trees in a language frontend, generated
-instructions in a target-specific backend, or circuits in a High-Level
-Synthesis tool.
+like the LLVM core IR, with appropriate choice of operation types to define
+Modules, Functions, Branches, Memory Allocation, and verification constraints to
+ensure the SSA Dominance property. MLIR includes a collection of dialects which
+defines just such structures. However, MLIR is intended to be general enough to
+represent other compiler-like data structures, such as Abstract Syntax Trees in
+a language frontend, generated instructions in a target-specific backend, or
+circuits in a High-Level Synthesis tool.
Here's an example of an MLIR module:
@@ -328,96 +327,12 @@ In addition to the basic syntax above, dialects may register known operations.
This allows those dialects to support _custom assembly form_ for parsing and
printing operations. In the operation sets listed below, we show both forms.
-### Terminator Operations
+### Builtin Operations
-These are a special category of operations that *must* terminate a block, e.g.
-[branches](Dialects/Standard.md#terminator-operations). These operations may
-also have a list of successors ([blocks](#blocks) and their arguments).
-
-Example:
-
-```mlir
-// Branch to ^bb1 or ^bb2 depending on the condition %cond.
-// Pass value %v to ^bb2, but not to ^bb1.
-"cond_br"(%cond)[^bb1, ^bb2(%v : index)] : (i1) -> ()
-```
-
-### Module
-
-```
-module ::= `module` symbol-ref-id? (`attributes` dictionary-attribute)? region
-```
-
-An MLIR Module represents a top-level container operation. It contains a single
-[SSACFG region](#control-flow-and-ssacfg-regions) containing a single block
-which can contain any operations. Operations within this region cannot
-implicitly capture values defined outside the module, i.e. Modules are
-[IsolatedFromAbove](Traits.md#isolatedfromabove). Modules have an optional
-[symbol name](SymbolsAndSymbolTables.md) which can be used to refer to them in
-operations.
-
-### Functions
-
-An MLIR Function is an operation with a name containing a single [SSACFG
-region](#control-flow-and-ssacfg-regions). Operations within this region
-cannot implicitly capture values defined outside of the function,
-i.e. Functions are [IsolatedFromAbove](Traits.md#isolatedfromabove). All
-external references must use function arguments or attributes that establish a
-symbolic connection (e.g. symbols referenced by name via a string attribute
-like [SymbolRefAttr](#symbol-reference-attribute)):
-
-```
-function ::= `func` function-signature function-attributes? function-body?
-
-function-signature ::= symbol-ref-id `(` argument-list `)`
- (`->` function-result-list)?
-
-argument-list ::= (named-argument (`,` named-argument)*) | /*empty*/
-argument-list ::= (type dictionary-attribute? (`,` type dictionary-attribute?)*)
- | /*empty*/
-named-argument ::= value-id `:` type dictionary-attribute?
-
-function-result-list ::= function-result-list-parens
- | non-function-type
-function-result-list-parens ::= `(` `)`
- | `(` function-result-list-no-parens `)`
-function-result-list-no-parens ::= function-result (`,` function-result)*
-function-result ::= type dictionary-attribute?
-
-function-attributes ::= `attributes` dictionary-attribute
-function-body ::= region
-```
-
-An external function declaration (used when referring to a function declared
-in some other module) has no body. While the MLIR textual form provides a nice
-inline syntax for function arguments, they are internally represented as
-"block arguments" to the first block in the region.
-
-Only dialect attribute names may be specified in the attribute dictionaries
-for function arguments, results, or the function itself.
-
-Examples:
-
-```mlir
-// External function definitions.
-func @abort()
-func @scribble(i32, i64, memref<? x 128 x f32, #layout_map0>) -> f64
-
-// A function that returns its argument twice:
-func @count(%x: i64) -> (i64, i64)
- attributes {fruit: "banana"} {
- return %x, %x: i64, i64
-}
-
-// A function with an argument attribute
-func @example_fn_arg(%x: i32 {swift.self = unit})
-
-// A function with a result attribute
-func @example_fn_result() -> (f64 {dialectName.attrName = 0 : i64})
-
-// A function with an attribute
-func @example_fn_attr() attributes {dialectName.attrName = false}
-```
+The [builtin dialect](Dialects/Builtin.md) defines a select few operations that
+are widely applicable by MLIR dialects, such as a universal conversion cast
+operation that simplifies inter/intra dialect conversion. This dialect also
+defines a top-level `module` operation, that represents a useful IR container.
## Blocks
@@ -701,14 +616,10 @@ defines the relation between the region results and the operation results.
## Type System
-Each value in MLIR has a type defined by the type system below. There are a
-number of primitive types (like integers) and also aggregate types for tensors
-and memory buffers. MLIR [builtin types](#builtin-types) do not include
-structures, arrays, or dictionaries.
-
-MLIR has an open type system (i.e. there is no fixed list of types), and types
-may have application-specific semantics. For example, MLIR supports a set of
-[dialect types](#dialect-types).
+Each value in MLIR has a type defined by the type system. MLIR has an open type
+system (i.e. there is no fixed list of types), and types may have
+application-specific semantics. MLIR dialects may define any number of types
+with no restrictions on the abstractions they represent.
```
type ::= type-alias | dialect-type | builtin-type
@@ -806,497 +717,14 @@ the lighter syntax: `!foo.something<a%%123^^^>>>` because it contains characters
that are not allowed in the lighter syntax, as well as unbalanced `<>`
characters.
-See [here](Tutorials/DefiningAttributesAndTypes.md) to learn how to define dialect types.
+See [here](Tutorials/DefiningAttributesAndTypes.md) to learn how to define
+dialect types.
### Builtin Types
-Builtin types are a core set of [dialect types](#dialect-types) that are defined
-in a builtin dialect and thus available to all users of MLIR.
-
-```
-builtin-type ::= complex-type
- | float-type
- | function-type
- | index-type
- | integer-type
- | memref-type
- | none-type
- | tensor-type
- | tuple-type
- | vector-type
-```
-
-#### Complex Type
-
-Syntax:
-
-```
-complex-type ::= `complex` `<` type `>`
-```
-
-The value of `complex` type represents a complex number with a parameterized
-element type, which is composed of a real and imaginary value of that element
-type. The element must be a floating point or integer scalar type.
-
-Examples:
-
-```mlir
-complex<f32>
-complex<i32>
-```
-
-#### Floating Point Types
-
-Syntax:
-
-```
-// Floating point.
-float-type ::= `f16` | `bf16` | `f32` | `f64` | `f80` | `f128`
-```
-
-MLIR supports float types of certain widths that are widely used as indicated
-above.
-
-#### Function Type
-
-Syntax:
-
-```
-// MLIR functions can return multiple values.
-function-result-type ::= type-list-parens
- | non-function-type
-
-function-type ::= type-list-parens `->` function-result-type
-```
-
-MLIR supports first-class functions: for example, the
-[`constant` operation](Dialects/Standard.md#stdconstant-constantop) produces the
-address of a function as a value. This value may be passed to and
-returned from functions, merged across control flow boundaries with
-[block arguments](#blocks), and called with the
-[`call_indirect` operation](Dialects/Standard.md#call-indirect-operation).
-
-Function types are also used to indicate the arguments and results of
-[operations](#operations).
-
-#### Index Type
-
-Syntax:
-
-```
-// Target word-sized integer.
-index-type ::= `index`
-```
-
-The `index` type is a signless integer whose size is equal to the natural
-machine word of the target
-([rationale](Rationale/Rationale.md#integer-signedness-semantics)) and is used
-by the affine constructs in MLIR. Unlike fixed-size integers, it cannot be used
-as an element of vector
-([rationale](Rationale/Rationale.md#index-type-disallowed-in-vector-types)).
-
-**Rationale:** integers of platform-specific bit widths are practical to express
-sizes, dimensionalities and subscripts.
-
-#### Integer Type
-
-Syntax:
-
-```
-// Sized integers like i1, i4, i8, i16, i32.
-signed-integer-type ::= `si` [1-9][0-9]*
-unsigned-integer-type ::= `ui` [1-9][0-9]*
-signless-integer-type ::= `i` [1-9][0-9]*
-integer-type ::= signed-integer-type |
- unsigned-integer-type |
- signless-integer-type
-```
-
-MLIR supports arbitrary precision integer types. Integer types have a designated
-width and may have signedness semantics.
-
-**Rationale:** low precision integers (like `i2`, `i4` etc) are useful for
-low-precision inference chips, and arbitrary precision integers are useful for
-hardware synthesis (where a 13 bit multiplier is a lot cheaper/smaller than a 16
-bit one).
-
-TODO: Need to decide on a representation for quantized integers
-([initial thoughts](Rationale/Rationale.md#quantized-integer-operations)).
-
-#### Memref Type
-
-Syntax:
-
-```
-memref-type ::= ranked-memref-type | unranked-memref-type
-
-ranked-memref-type ::= `memref` `<` dimension-list-ranked type
- (`,` layout-specification)? (`,` memory-space)? `>`
-
-unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>`
-
-stride-list ::= `[` (dimension (`,` dimension)*)? `]`
-strided-layout ::= `offset:` dimension `,` `strides: ` stride-list
-semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
-layout-specification ::= semi-affine-map-composition | strided-layout
-memory-space ::= integer-literal /* | TODO: address-space-id */
-```
-
-A `memref` type is a reference to a region of memory (similar to a buffer
-pointer, but more powerful). The buffer pointed to by a memref can be allocated,
-aliased and deallocated. A memref can be used to read and write data from/to the
-memory region which it references. Memref types use the same shape specifier as
-tensor types. Note that `memref<f32>`, `memref<0 x f32>`, `memref<1 x 0 x f32>`,
-and `memref<0 x 1 x f32>` are all
diff erent types.
-
-A `memref` is allowed to have an unknown rank (e.g. `memref<*xf32>`). The
-purpose of unranked memrefs is to allow external library functions to receive
-memref arguments of any rank without versioning the functions based on the rank.
-Other uses of this type are disallowed or will have undefined behavior.
-
-##### Codegen of Unranked Memref
-
-Using unranked memref in codegen besides the case mentioned above is highly
-discouraged. Codegen is concerned with generating loop nests and specialized
-instructions for high-performance, unranked memref is concerned with hiding the
-rank and thus, the number of enclosing loops required to iterate over the data.
-However, if there is a need to code-gen unranked memref, one possible path is to
-cast into a static ranked type based on the dynamic rank. Another possible path
-is to emit a single while loop conditioned on a linear index and perform
-delinearization of the linear index to a dynamic array containing the (unranked)
-indices. While this is possible, it is expected to not be a good idea to perform
-this during codegen as the cost of the translations is expected to be
-prohibitive and optimizations at this level are not expected to be worthwhile.
-If expressiveness is the main concern, irrespective of performance, passing
-unranked memrefs to an external C++ library and implementing rank-agnostic logic
-there is expected to be significantly simpler.
-
-Unranked memrefs may provide expressiveness gains in the future and help bridge
-the gap with unranked tensors. Unranked memrefs will not be expected to be
-exposed to codegen but one may query the rank of an unranked memref (a special
-op will be needed for this purpose) and perform a switch and cast to a ranked
-memref as a prerequisite to codegen.
-
-Example:
-
-```mlir
-// With static ranks, we need a function for each possible argument type
-%A = alloc() : memref<16x32xf32>
-%B = alloc() : memref<16x32x64xf32>
-call @helper_2D(%A) : (memref<16x32xf32>)->()
-call @helper_3D(%B) : (memref<16x32x64xf32>)->()
-
-// With unknown rank, the functions can be unified under one unranked type
-%A = alloc() : memref<16x32xf32>
-%B = alloc() : memref<16x32x64xf32>
-// Remove rank info
-%A_u = memref_cast %A : memref<16x32xf32> -> memref<*xf32>
-%B_u = memref_cast %B : memref<16x32x64xf32> -> memref<*xf32>
-// call same function with dynamic ranks
-call @helper(%A_u) : (memref<*xf32>)->()
-call @helper(%B_u) : (memref<*xf32>)->()
-```
-
-The core syntax and representation of a layout specification is a
-[semi-affine map](Dialects/Affine.md#semi-affine-maps). Additionally, syntactic
-sugar is supported to make certain layout specifications more intuitive to read.
-For the moment, a `memref` supports parsing a strided form which is converted to
-a semi-affine map automatically.
-
-The memory space of a memref is specified by a target-specific attribute.
-It might be an integer value, string, dictionary or custom dialect attribute.
-The empty memory space (attribute is None) is target specific.
-
-The notionally dynamic value of a memref value includes the address of the
-buffer allocated, as well as the symbols referred to by the shape, layout map,
-and index maps.
-
-Examples of memref static type
-
-```mlir
-// Identity index/layout map
-#identity = affine_map<(d0, d1) -> (d0, d1)>
-
-// Column major layout.
-#col_major = affine_map<(d0, d1, d2) -> (d2, d1, d0)>
-
-// A 2-d tiled layout with tiles of size 128 x 256.
-#tiled_2d_128x256 = affine_map<(d0, d1) -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
-
-// A tiled data layout with non-constant tile sizes.
-#tiled_dynamic = affine_map<(d0, d1)[s0, s1] -> (d0 floordiv s0, d1 floordiv s1,
- d0 mod s0, d1 mod s1)>
-
-// A layout that yields a padding on two at either end of the minor dimension.
-#padded = affine_map<(d0, d1) -> (d0, (d1 + 2) floordiv 2, (d1 + 2) mod 2)>
-
-
-// The dimension list "16x32" defines the following 2D index space:
-//
-// { (i, j) : 0 <= i < 16, 0 <= j < 32 }
-//
-memref<16x32xf32, #identity>
-
-// The dimension list "16x4x?" defines the following 3D index space:
-//
-// { (i, j, k) : 0 <= i < 16, 0 <= j < 4, 0 <= k < N }
-//
-// where N is a symbol which represents the runtime value of the size of
-// the third dimension.
-//
-// %N here binds to the size of the third dimension.
-%A = alloc(%N) : memref<16x4x?xf32, #col_major>
-
-// A 2-d dynamic shaped memref that also has a dynamically sized tiled layout.
-// The memref index space is of size %M x %N, while %B1 and %B2 bind to the
-// symbols s0, s1 respectively of the layout map #tiled_dynamic. Data tiles of
-// size %B1 x %B2 in the logical space will be stored contiguously in memory.
-// The allocation size will be (%M ceildiv %B1) * %B1 * (%N ceildiv %B2) * %B2
-// f32 elements.
-%T = alloc(%M, %N) [%B1, %B2] : memref<?x?xf32, #tiled_dynamic>
-
-// A memref that has a two-element padding at either end. The allocation size
-// will fit 16 * 64 float elements of data.
-%P = alloc() : memref<16x64xf32, #padded>
-
-// Affine map with symbol 's0' used as offset for the first dimension.
-#imapS = affine_map<(d0, d1) [s0] -> (d0 + s0, d1)>
-// Allocate memref and bind the following symbols:
-// '%n' is bound to the dynamic second dimension of the memref type.
-// '%o' is bound to the symbol 's0' in the affine map of the memref type.
-%n = ...
-%o = ...
-%A = alloc (%n)[%o] : <16x?xf32, #imapS>
-```
-
-##### Index Space
-
-A memref dimension list defines an index space within which the memref can be
-indexed to access data.
-
-##### Index
-
-Data is accessed through a memref type using a multidimensional index into the
-multidimensional index space defined by the memref's dimension list.
-
-Examples
-
-```mlir
-// Allocates a memref with 2D index space:
-// { (i, j) : 0 <= i < 16, 0 <= j < 32 }
-%A = alloc() : memref<16x32xf32, #imapA>
-
-// Loads data from memref '%A' using a 2D index: (%i, %j)
-%v = load %A[%i, %j] : memref<16x32xf32, #imapA>
-```
-
-##### Index Map
-
-An index map is a one-to-one
-[semi-affine map](Dialects/Affine.md#semi-affine-maps) that transforms a
-multidimensional index from one index space to another. For example, the
-following figure shows an index map which maps a 2-dimensional index from a 2x2
-index space to a 3x3 index space, using symbols `S0` and `S1` as offsets.
-
-![Index Map Example](/includes/img/index-map.svg)
-
-The number of domain dimensions and range dimensions of an index map can be
-
diff erent, but must match the number of dimensions of the input and output index
-spaces on which the map operates. The index space is always non-negative and
-integral. In addition, an index map must specify the size of each of its range
-dimensions onto which it maps. Index map symbols must be listed in order with
-symbols for dynamic dimension sizes first, followed by other required symbols.
-
-##### Layout Map
-
-A layout map is a [semi-affine map](Dialects/Affine.md#semi-affine-maps) which
-encodes logical to physical index space mapping, by mapping input dimensions to
-their ordering from most-major (slowest varying) to most-minor (fastest
-varying). Therefore, an identity layout map corresponds to a row-major layout.
-Identity layout maps do not contribute to the MemRef type identification and are
-discarded on construction. That is, a type with an explicit identity map is
-`memref<?x?xf32, (i,j)->(i,j)>` is strictly the same as the one without layout
-maps, `memref<?x?xf32>`.
-
-Layout map examples:
-
-```mlir
-// MxN matrix stored in row major layout in memory:
-#layout_map_row_major = (i, j) -> (i, j)
-
-// MxN matrix stored in column major layout in memory:
-#layout_map_col_major = (i, j) -> (j, i)
-
-// MxN matrix stored in a 2-d blocked/tiled layout with 64x64 tiles.
-#layout_tiled = (i, j) -> (i floordiv 64, j floordiv 64, i mod 64, j mod 64)
-```
-
-##### Affine Map Composition
-
-A memref specifies a semi-affine map composition as part of its type. A
-semi-affine map composition is a composition of semi-affine maps beginning with
-zero or more index maps, and ending with a layout map. The composition must be
-conformant: the number of dimensions of the range of one map, must match the
-number of dimensions of the domain of the next map in the composition.
-
-The semi-affine map composition specified in the memref type, maps from accesses
-used to index the memref in load/store operations to other index spaces (i.e.
-logical to physical index mapping). Each of the
-[semi-affine maps](Dialects/Affine.md) and thus its composition is required to
-be one-to-one.
-
-The semi-affine map composition can be used in dependence analysis, memory
-access pattern analysis, and for performance optimizations like vectorization,
-copy elision and in-place updates. If an affine map composition is not specified
-for the memref, the identity affine map is assumed.
-
-##### Strided MemRef
-
-A memref may specify strides as part of its type. A stride specification is a
-list of integer values that are either static or `?` (dynamic case). Strides
-encode the distance, in number of elements, in (linear) memory between
-successive entries along a particular dimension. A stride specification is
-syntactic sugar for an equivalent strided memref representation using
-semi-affine maps. For example, `memref<42x16xf32, offset: 33, strides: [1, 64]>`
-specifies a non-contiguous memory region of `42` by `16` `f32` elements such
-that:
-
-1. the minimal size of the enclosing memory region must be `33 + 42 * 1 + 16 *
- 64 = 1066` elements;
-2. the address calculation for accessing element `(i, j)` computes `33 + i +
- 64 * j`
-3. the distance between two consecutive elements along the inner dimension is
- `1` element and the distance between two consecutive elements along the
- outer dimension is `64` elements.
-
-This corresponds to a column major view of the memory region and is internally
-represented as the type `memref<42x16xf32, (i, j) -> (33 + i + 64 * j)>`.
-
-The specification of strides must not alias: given an n-D strided memref,
-indices `(i1, ..., in)` and `(j1, ..., jn)` may not refer to the same memory
-address unless `i1 == j1, ..., in == jn`.
-
-Strided memrefs represent a view abstraction over preallocated data. They are
-constructed with special ops, yet to be introduced. Strided memrefs are a
-special subclass of memrefs with generic semi-affine map and correspond to a
-normalized memref descriptor when lowering to LLVM.
-
-#### None Type
-
-Syntax:
-
-```
-none-type ::= `none`
-```
-
-The `none` type is a unit type, i.e. a type with exactly one possible value,
-where its value does not have a defined dynamic representation.
-
-#### Tensor Type
-
-Syntax:
-
-```
-tensor-type ::= `tensor` `<` dimension-list type `>`
-
-dimension-list ::= dimension-list-ranked | (`*` `x`)
-dimension-list-ranked ::= (dimension `x`)*
-dimension ::= `?` | decimal-literal
-```
-
-Values with tensor type represents aggregate N-dimensional data values, and
-have a known element type. It may have an unknown rank (indicated by `*`) or may
-have a fixed rank with a list of dimensions. Each dimension may be a static
-non-negative decimal constant or be dynamically determined (indicated by `?`).
-
-The runtime representation of the MLIR tensor type is intentionally abstracted -
-you cannot control layout or get a pointer to the data. For low level buffer
-access, MLIR has a [`memref` type](#memref-type). This abstracted runtime
-representation holds both the tensor data values as well as information about
-the (potentially dynamic) shape of the tensor. The
-[`dim` operation](Dialects/Standard.md#dim-operation) returns the size of a
-dimension from a value of tensor type.
-
-Note: hexadecimal integer literals are not allowed in tensor type declarations
-to avoid confusion between `0xf32` and `0 x f32`. Zero sizes are allowed in
-tensors and treated as other sizes, e.g., `tensor<0 x 1 x i32>` and `tensor<1 x
-0 x i32>` are
diff erent types. Since zero sizes are not allowed in some other
-types, such tensors should be optimized away before lowering tensors to vectors.
-
-Examples:
-
-```mlir
-// Tensor with unknown rank.
-tensor<* x f32>
-
-// Known rank but unknown dimensions.
-tensor<? x ? x ? x ? x f32>
-
-// Partially known dimensions.
-tensor<? x ? x 13 x ? x f32>
-
-// Full static shape.
-tensor<17 x 4 x 13 x 4 x f32>
-
-// Tensor with rank zero. Represents a scalar.
-tensor<f32>
-
-// Zero-element dimensions are allowed.
-tensor<0 x 42 x f32>
-
-// Zero-element tensor of f32 type (hexadecimal literals not allowed here).
-tensor<0xf32>
-```
-
-#### Tuple Type
-
-Syntax:
-
-```
-tuple-type ::= `tuple` `<` (type ( `,` type)*)? `>`
-```
-
-The value of `tuple` type represents a fixed-size collection of elements, where
-each element may be of a
diff erent type.
-
-**Rationale:** Though this type is first class in the type system, MLIR provides
-no standard operations for operating on `tuple` types
-([rationale](Rationale/Rationale.md#tuple-types)).
-
-Examples:
-
-```mlir
-// Empty tuple.
-tuple<>
-
-// Single element
-tuple<f32>
-
-// Many elements.
-tuple<i32, f32, tensor<i1>, i5>
-```
-
-#### Vector Type
-
-Syntax:
-
-```
-vector-type ::= `vector` `<` static-dimension-list vector-element-type `>`
-vector-element-type ::= float-type | integer-type
-
-static-dimension-list ::= (decimal-literal `x`)+
-```
-
-The vector type represents a SIMD style vector, used by target-specific
-operation sets like AVX. While the most common use is for 1D vectors (e.g.
-vector<16 x f32>) we also support multidimensional registers on targets that
-support them (like TPUs).
-
-Vector shapes must be positive decimal integers.
-
-Note: hexadecimal integer literals are not allowed in vector type declarations,
-`vector<0x42xi32>` is invalid because it is interpreted as a 2D vector with
-shape `(0, 42)` and zero shapes are not allowed.
+The [builtin dialect](Dialects/Builtin.md) defines a set of types that are
+directly usable by any other dialect in MLIR. These types cover a range from
+primitive integer and floating-point types, function types, and more.
## Attributes
@@ -1401,263 +829,7 @@ attribute values.
### Builtin Attribute Values
-Builtin attributes are a core set of
-[dialect attribute values](#dialect-attribute-values) that are defined in a
-builtin dialect and thus available to all users of MLIR.
-
-```
-builtin-attribute ::= affine-map-attribute
- | array-attribute
- | bool-attribute
- | dictionary-attribute
- | elements-attribute
- | float-attribute
- | integer-attribute
- | integer-set-attribute
- | string-attribute
- | symbol-ref-attribute
- | type-attribute
- | unit-attribute
-```
-
-#### AffineMap Attribute
-
-Syntax:
-
-```
-affine-map-attribute ::= `affine_map` `<` affine-map `>`
-```
-
-An affine-map attribute is an attribute that represents an affine-map object.
-
-#### Array Attribute
-
-Syntax:
-
-```
-array-attribute ::= `[` (attribute-value (`,` attribute-value)*)? `]`
-```
-
-An array attribute is an attribute that represents a collection of attribute
-values.
-
-#### Boolean Attribute
-
-Syntax:
-
-```
-bool-attribute ::= bool-literal
-```
-
-A boolean attribute is a literal attribute that represents a one-bit boolean
-value, true or false.
-
-#### Dictionary Attribute
-
-Syntax:
-
-```
-dictionary-attribute ::= `{` (attribute-entry (`,` attribute-entry)*)? `}`
-```
-
-A dictionary attribute is an attribute that represents a sorted collection of
-named attribute values. The elements are sorted by name, and each name must be
-unique within the collection.
-
-#### Elements Attributes
-
-Syntax:
-
-```
-elements-attribute ::= dense-elements-attribute
- | opaque-elements-attribute
- | sparse-elements-attribute
-```
-
-An elements attribute is a literal attribute that represents a constant
-[vector](#vector-type) or [tensor](#tensor-type) value.
-
-##### Dense Elements Attribute
-
-Syntax:
-
-```
-dense-elements-attribute ::= `dense` `<` attribute-value `>` `:`
- ( tensor-type | vector-type )
-```
-
-A dense elements attribute is an elements attribute where the storage for the
-constant vector or tensor value has been densely packed. The attribute supports
-storing integer or floating point elements, with integer/index/floating element
-types. It also support storing string elements with a custom dialect string
-element type.
-
-##### Opaque Elements Attribute
-
-Syntax:
-
-```
-opaque-elements-attribute ::= `opaque` `<` dialect-namespace `,`
- hex-string-literal `>` `:`
- ( tensor-type | vector-type )
-```
-
-An opaque elements attribute is an elements attribute where the content of the
-value is opaque. The representation of the constant stored by this elements
-attribute is only understood, and thus decodable, by the dialect that created
-it.
-
-Note: The parsed string literal must be in hexadecimal form.
-
-##### Sparse Elements Attribute
-
-Syntax:
-
-```
-sparse-elements-attribute ::= `sparse` `<` attribute-value `,` attribute-value
- `>` `:` ( tensor-type | vector-type )
-```
-
-A sparse elements attribute is an elements attribute that represents a sparse
-vector or tensor object. This is where very few of the elements are non-zero.
-
-The attribute uses COO (coordinate list) encoding to represent the sparse
-elements of the elements attribute. The indices are stored via a 2-D tensor of
-64-bit integer elements with shape [N, ndims], which specifies the indices of
-the elements in the sparse tensor that contains non-zero values. The element
-values are stored via a 1-D tensor with shape [N], that supplies the
-corresponding values for the indices.
-
-Example:
-
-```mlir
- sparse<[[0, 0], [1, 2]], [1, 5]> : tensor<3x4xi32>
-
-// This represents the following tensor:
-/// [[1, 0, 0, 0],
-/// [0, 0, 5, 0],
-/// [0, 0, 0, 0]]
-```
-
-#### Float Attribute
-
-Syntax:
-
-```
-float-attribute ::= (float-literal (`:` float-type)?)
- | (hexadecimal-literal `:` float-type)
-```
-
-A float attribute is a literal attribute that represents a floating point value
-of the specified [float type](#floating-point-types). It can be represented in
-the hexadecimal form where the hexadecimal value is interpreted as bits of the
-underlying binary representation. This form is useful for representing infinity
-and NaN floating point values. To avoid confusion with integer attributes,
-hexadecimal literals _must_ be followed by a float type to define a float
-attribute.
-
-Examples:
-
-```
-42.0 // float attribute defaults to f64 type
-42.0 : f32 // float attribute of f32 type
-0x7C00 : f16 // positive infinity
-0x7CFF : f16 // NaN (one of possible values)
-42 : f32 // Error: expected integer type
-```
-
-#### Integer Attribute
-
-Syntax:
-
-```
-integer-attribute ::= integer-literal ( `:` (index-type | integer-type) )?
-```
-
-An integer attribute is a literal attribute that represents an integral value of
-the specified integer or index type. The default type for this attribute, if one
-is not specified, is a 64-bit integer.
-
-##### Integer Set Attribute
-
-Syntax:
-
-```
-integer-set-attribute ::= `affine_set` `<` integer-set `>`
-```
-
-An integer-set attribute is an attribute that represents an integer-set object.
-
-#### String Attribute
-
-Syntax:
-
-```
-string-attribute ::= string-literal (`:` type)?
-```
-
-A string attribute is an attribute that represents a string literal value.
-
-#### Symbol Reference Attribute
-
-Syntax:
-
-```
-symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
-```
-
-A symbol reference attribute is a literal attribute that represents a named
-reference to an operation that is nested within an operation with the
-`OpTrait::SymbolTable` trait. As such, this reference is given meaning by the
-nearest parent operation containing the `OpTrait::SymbolTable` trait. It may
-optionally contain a set of nested references that further resolve to a symbol
-nested within a
diff erent symbol table.
-
-This attribute can only be held internally by
-[array attributes](#array-attribute) and
-[dictionary attributes](#dictionary-attribute)(including the top-level operation
-attribute dictionary), i.e. no other attribute kinds such as Locations or
-extended attribute kinds.
-
-**Rationale:** Identifying accesses to global data is critical to
-enabling efficient multi-threaded compilation. Restricting global
-data access to occur through symbols and limiting the places that can
-legally hold a symbol reference simplifies reasoning about these data
-accesses.
-
-See [`Symbols And SymbolTables`](SymbolsAndSymbolTables.md) for more
-information.
-
-#### Type Attribute
-
-Syntax:
-
-```
-type-attribute ::= type
-```
-
-A type attribute is an attribute that represents a [type object](#type-system).
-
-#### Unit Attribute
-
-```
-unit-attribute ::= `unit`
-```
-
-A unit attribute is an attribute that represents a value of `unit` type. The
-`unit` type allows only one value forming a singleton set. This attribute value
-is used to represent attributes that only have meaning from their existence.
-
-One example of such an attribute could be the `swift.self` attribute. This
-attribute indicates that a function parameter is the self/context parameter. It
-could be represented as a [boolean attribute](#boolean-attribute)(true or
-false), but a value of false doesn't really bring any value. The parameter
-either is the self/context or it isn't.
-
-```mlir
-// A unit attribute defined with the `unit` value specifier.
-func @verbose_form(i1) attributes {dialectName.unitAttr = unit}
-
-// A unit attribute can also be defined without the value specifier.
-func @simple_form(i1) attributes {dialectName.unitAttr}
-```
+The [builtin dialect](Dialects/Builtin.md) defines a set of attribute values
+that are directly usable by any other dialect in MLIR. These types cover a range
+from primitive integer and floating-point values, attribute dictionaries, dense
+multi-dimensional arrays, and more.
diff --git a/mlir/include/mlir/IR/BuiltinTypes.td b/mlir/include/mlir/IR/BuiltinTypes.td
index 02f699ab3628..22d194db3b68 100644
--- a/mlir/include/mlir/IR/BuiltinTypes.td
+++ b/mlir/include/mlir/IR/BuiltinTypes.td
@@ -131,7 +131,6 @@ def Builtin_Function : Builtin_Type<"Function"> {
The function type can be thought of as a function signature. It consists of
a list of formal parameter types and a list of formal result types.
- ```
}];
let parameters = (ins "ArrayRef<Type>":$inputs, "ArrayRef<Type>":$results);
let builders = [
diff --git a/mlir/include/mlir/IR/CMakeLists.txt b/mlir/include/mlir/IR/CMakeLists.txt
index e44e5dc218b1..963d6a87eee2 100644
--- a/mlir/include/mlir/IR/CMakeLists.txt
+++ b/mlir/include/mlir/IR/CMakeLists.txt
@@ -26,4 +26,7 @@ mlir_tablegen(BuiltinTypes.h.inc -gen-typedef-decls)
mlir_tablegen(BuiltinTypes.cpp.inc -gen-typedef-defs)
add_public_tablegen_target(MLIRBuiltinTypesIncGen)
-add_mlir_doc(BuiltinOps -gen-dialect-doc Builtin Dialects/)
+add_mlir_doc(BuiltinAttributes -gen-attrdef-doc BuiltinAttributes Dialects/)
+add_mlir_doc(BuiltinLocationAttributes -gen-attrdef-doc BuiltinLocationAttributes Dialects/)
+add_mlir_doc(BuiltinOps -gen-op-doc BuiltinOps Dialects/)
+add_mlir_doc(BuiltinTypes -gen-typedef-doc BuiltinTypes Dialects/)
diff --git a/mlir/tools/mlir-tblgen/OpDocGen.cpp b/mlir/tools/mlir-tblgen/OpDocGen.cpp
index 45325deb2b79..d869aed8cb7d 100644
--- a/mlir/tools/mlir-tblgen/OpDocGen.cpp
+++ b/mlir/tools/mlir-tblgen/OpDocGen.cpp
@@ -162,46 +162,51 @@ static void emitTypeDoc(const Type &type, raw_ostream &os) {
// TypeDef Documentation
//===----------------------------------------------------------------------===//
-/// Emit the assembly format of a type.
-static void emitTypeAssemblyFormat(TypeDef td, raw_ostream &os) {
+static void emitAttrOrTypeDefAssemblyFormat(const AttrOrTypeDef &def,
+ raw_ostream &os) {
SmallVector<AttrOrTypeParameter, 4> parameters;
- td.getParameters(parameters);
- if (parameters.size() == 0) {
- os << "\nSyntax: `!" << td.getDialect().getName() << "." << td.getMnemonic()
- << "`\n";
+ def.getParameters(parameters);
+ if (parameters.empty()) {
+ os << "\nSyntax: `!" << def.getDialect().getName() << "."
+ << def.getMnemonic() << "`\n";
return;
}
- os << "\nSyntax:\n\n```\n!" << td.getDialect().getName() << "."
- << td.getMnemonic() << "<\n";
- for (auto *it = parameters.begin(), *e = parameters.end(); it < e; ++it) {
- os << " " << it->getSyntax();
- if (it < parameters.end() - 1)
+ os << "\nSyntax:\n\n```\n!" << def.getDialect().getName() << "."
+ << def.getMnemonic() << "<\n";
+ for (auto it : llvm::enumerate(parameters)) {
+ const AttrOrTypeParameter ¶m = it.value();
+ os << " " << param.getSyntax();
+ if (it.index() < (parameters.size() - 1))
os << ",";
- os << " # " << it->getName() << "\n";
+ os << " # " << param.getName() << "\n";
}
os << ">\n```\n";
}
-static void emitTypeDefDoc(TypeDef td, raw_ostream &os) {
- os << llvm::formatv("### `{0}` ({1})\n", td.getName(), td.getCppClassName());
+static void emitAttrOrTypeDefDoc(const AttrOrTypeDef &def, raw_ostream &os) {
+ os << llvm::formatv("### {0}\n", def.getCppClassName());
- // Emit the summary, syntax, and description if present.
- if (td.hasSummary())
- os << "\n" << td.getSummary() << "\n";
- if (td.getMnemonic() && td.getPrinterCode() && *td.getPrinterCode() == "" &&
- td.getParserCode() && *td.getParserCode() == "")
- emitTypeAssemblyFormat(td, os);
- if (td.hasDescription()) {
+ // Emit the summary if present.
+ if (def.hasSummary())
+ os << "\n" << def.getSummary() << "\n";
+
+ // Emit the syntax if present.
+ if (def.getMnemonic() && def.getPrinterCode() == StringRef() &&
+ def.getParserCode() == StringRef())
+ emitAttrOrTypeDefAssemblyFormat(def, os);
+
+ // Emit the description if present.
+ if (def.hasDescription()) {
os << "\n";
- mlir::tblgen::emitDescription(td.getDescription(), os);
+ mlir::tblgen::emitDescription(def.getDescription(), os);
}
- // Emit attribute documentation.
+ // Emit parameter documentation.
SmallVector<AttrOrTypeParameter, 4> parameters;
- td.getParameters(parameters);
+ def.getParameters(parameters);
if (!parameters.empty()) {
- os << "\n#### Type parameters:\n\n";
+ os << "\n#### Parameters:\n\n";
os << "| Parameter | C++ type | Description |\n"
<< "| :-------: | :-------: | ----------- |\n";
for (const auto &it : parameters) {
@@ -214,24 +219,35 @@ static void emitTypeDefDoc(TypeDef td, raw_ostream &os) {
os << "\n";
}
+static void emitAttrOrTypeDefDoc(const RecordKeeper &recordKeeper,
+ raw_ostream &os, StringRef recordTypeName) {
+ std::vector<llvm::Record *> defs =
+ recordKeeper.getAllDerivedDefinitions(recordTypeName);
+
+ os << "<!-- Autogenerated by mlir-tblgen; don't manually edit -->\n";
+ for (const llvm::Record *def : defs)
+ emitAttrOrTypeDefDoc(AttrOrTypeDef(def), os);
+}
+
//===----------------------------------------------------------------------===//
// Dialect Documentation
//===----------------------------------------------------------------------===//
-static void emitDialectDoc(const Dialect &dialect, ArrayRef<Operator> ops,
- ArrayRef<Type> types, ArrayRef<TypeDef> typeDefs,
- raw_ostream &os) {
- os << "# ";
- if (dialect.getName().empty())
- os << "Builtin";
- else
- os << "'" << dialect.getName() << "'";
- os << " Dialect\n\n";
+static void emitDialectDoc(const Dialect &dialect, ArrayRef<AttrDef> attrDefs,
+ ArrayRef<Operator> ops, ArrayRef<Type> types,
+ ArrayRef<TypeDef> typeDefs, raw_ostream &os) {
+ os << "# '" << dialect.getName() << "' Dialect\n\n";
emitIfNotEmpty(dialect.getSummary(), os);
emitIfNotEmpty(dialect.getDescription(), os);
os << "[TOC]\n\n";
+ if (!attrDefs.empty()) {
+ os << "## Attribute definition\n\n";
+ for (const AttrDef &def : attrDefs)
+ emitAttrOrTypeDefDoc(def, os);
+ }
+
// TODO: Add link between use and def for types
if (!types.empty()) {
os << "## Type constraint definition\n\n";
@@ -247,46 +263,68 @@ static void emitDialectDoc(const Dialect &dialect, ArrayRef<Operator> ops,
if (!typeDefs.empty()) {
os << "## Type definition\n\n";
- for (const TypeDef &td : typeDefs)
- emitTypeDefDoc(td, os);
+ for (const TypeDef &def : typeDefs)
+ emitAttrOrTypeDefDoc(def, os);
}
}
static void emitDialectDoc(const RecordKeeper &recordKeeper, raw_ostream &os) {
- const auto &opDefs = recordKeeper.getAllDerivedDefinitions("Op");
- const auto &typeDefs = recordKeeper.getAllDerivedDefinitions("DialectType");
- const auto &typeDefDefs = recordKeeper.getAllDerivedDefinitions("TypeDef");
+ std::vector<Record *> opDefs = recordKeeper.getAllDerivedDefinitions("Op");
+ std::vector<Record *> typeDefs =
+ recordKeeper.getAllDerivedDefinitions("DialectType");
+ std::vector<Record *> typeDefDefs =
+ recordKeeper.getAllDerivedDefinitions("TypeDef");
+ std::vector<Record *> attrDefDefs =
+ recordKeeper.getAllDerivedDefinitions("AttrDef");
std::set<Dialect> dialectsWithDocs;
- std::map<Dialect, std::vector<Operator>> dialectOps;
- std::map<Dialect, std::vector<Type>> dialectTypes;
- std::map<Dialect, std::vector<TypeDef>> dialectTypeDefs;
+
+ llvm::StringMap<std::vector<AttrDef>> dialectAttrDefs;
+ llvm::StringMap<std::vector<Operator>> dialectOps;
+ llvm::StringMap<std::vector<Type>> dialectTypes;
+ llvm::StringMap<std::vector<TypeDef>> dialectTypeDefs;
+ for (auto *attrDef : attrDefDefs) {
+ AttrDef attr(attrDef);
+ dialectAttrDefs[attr.getDialect().getName()].push_back(attr);
+ dialectsWithDocs.insert(attr.getDialect());
+ }
for (auto *opDef : opDefs) {
Operator op(opDef);
- dialectOps[op.getDialect()].push_back(op);
+ dialectOps[op.getDialect().getName()].push_back(op);
dialectsWithDocs.insert(op.getDialect());
}
for (auto *typeDef : typeDefs) {
Type type(typeDef);
if (auto dialect = type.getDialect())
- dialectTypes[dialect].push_back(type);
+ dialectTypes[dialect.getName()].push_back(type);
}
for (auto *typeDef : typeDefDefs) {
TypeDef type(typeDef);
- dialectTypeDefs[type.getDialect()].push_back(type);
+ dialectTypeDefs[type.getDialect().getName()].push_back(type);
dialectsWithDocs.insert(type.getDialect());
}
os << "<!-- Autogenerated by mlir-tblgen; don't manually edit -->\n";
- for (auto dialect : dialectsWithDocs)
- emitDialectDoc(dialect, dialectOps[dialect], dialectTypes[dialect],
- dialectTypeDefs[dialect], os);
+ for (const Dialect &dialect : dialectsWithDocs) {
+ StringRef dialectName = dialect.getName();
+ emitDialectDoc(dialect, dialectAttrDefs[dialectName],
+ dialectOps[dialectName], dialectTypes[dialectName],
+ dialectTypeDefs[dialectName], os);
+ }
}
//===----------------------------------------------------------------------===//
// Gen Registration
//===----------------------------------------------------------------------===//
+static mlir::GenRegistration
+ genAttrRegister("gen-attrdef-doc",
+ "Generate dialect attribute documentation",
+ [](const RecordKeeper &records, raw_ostream &os) {
+ emitAttrOrTypeDefDoc(records, os, "AttrDef");
+ return false;
+ });
+
static mlir::GenRegistration
genOpRegister("gen-op-doc", "Generate dialect documentation",
[](const RecordKeeper &records, raw_ostream &os) {
@@ -294,6 +332,13 @@ static mlir::GenRegistration
return false;
});
+static mlir::GenRegistration
+ genTypeRegister("gen-typedef-doc", "Generate dialect type documentation",
+ [](const RecordKeeper &records, raw_ostream &os) {
+ emitAttrOrTypeDefDoc(records, os, "TypeDef");
+ return false;
+ });
+
static mlir::GenRegistration
genRegister("gen-dialect-doc", "Generate dialect documentation",
[](const RecordKeeper &records, raw_ostream &os) {
More information about the Mlir-commits
mailing list