[Mlir-commits] [mlir] 83bf801 - [mlir][NFC] Move SubTensorOp and SubTensorInsertOp to TensorDialect
Matthias Springer
llvmlistbot at llvm.org
Mon Jun 21 08:15:07 PDT 2021
Author: Matthias Springer
Date: 2021-06-22T00:11:21+09:00
New Revision: 83bf801f5f266c788f025a3efbb0c83817137c3b
URL: https://github.com/llvm/llvm-project/commit/83bf801f5f266c788f025a3efbb0c83817137c3b
DIFF: https://github.com/llvm/llvm-project/commit/83bf801f5f266c788f025a3efbb0c83817137c3b.diff
LOG: [mlir][NFC] Move SubTensorOp and SubTensorInsertOp to TensorDialect
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename ops: SubTensorOp --> ExtractTensorOp, SubTensorInsertOp --> InsertTensorOp
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Differential Revision: https://reviews.llvm.org/D104499
Added:
Modified:
mlir/include/mlir/Conversion/Passes.td
mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
mlir/include/mlir/Dialect/Linalg/Transforms/Hoisting.h
mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
mlir/include/mlir/Dialect/Linalg/Utils/Utils.h
mlir/include/mlir/Dialect/Shape/IR/Shape.h
mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
mlir/include/mlir/Dialect/StandardOps/IR/Ops.h
mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
mlir/include/mlir/Dialect/Tensor/IR/Tensor.h
mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
mlir/lib/Conversion/TosaToStandard/TosaToStandard.cpp
mlir/lib/Conversion/TosaToStandard/TosaToStandardPass.cpp
mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp
mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
mlir/lib/Dialect/Linalg/Transforms/Hoisting.cpp
mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
mlir/lib/Dialect/Linalg/Utils/Utils.cpp
mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
mlir/lib/Dialect/StandardOps/IR/Ops.cpp
mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
mlir/test/Conversion/TosaToStandard/tosa-to-standard.mlir
mlir/test/Dialect/Linalg/bufferize.mlir
mlir/test/Dialect/Linalg/canonicalize.mlir
mlir/test/Dialect/Linalg/comprehensive-func-bufferize-analysis.mlir
mlir/test/Dialect/Linalg/comprehensive-func-bufferize.mlir
mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
mlir/test/Dialect/Linalg/fusion-sequence.mlir
mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir
mlir/test/Dialect/Linalg/hoist-padding.mlir
mlir/test/Dialect/Linalg/hoisting.mlir
mlir/test/Dialect/Linalg/roundtrip.mlir
mlir/test/Dialect/Linalg/subtensor-of-padtensor.mlir
mlir/test/Dialect/Linalg/tile-and-distribute.mlir
mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
mlir/test/Dialect/Linalg/tile-and-pad-tensors.mlir
mlir/test/Dialect/Linalg/tile-tensors.mlir
mlir/test/Dialect/Linalg/vectorization.mlir
mlir/test/Dialect/MemRef/canonicalize.mlir
mlir/test/Dialect/SCF/canonicalize.mlir
mlir/test/Dialect/Standard/canonicalize.mlir
mlir/test/Dialect/Tensor/canonicalize.mlir
mlir/test/IR/core-ops.mlir
mlir/test/IR/invalid-ops.mlir
mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert-multiple-uses.mlir
mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert.mlir
mlir/test/Transforms/canonicalize.mlir
mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
Removed:
################################################################################
diff --git a/mlir/include/mlir/Conversion/Passes.td b/mlir/include/mlir/Conversion/Passes.td
index 47f328b6c1fb1..d5bc88e7903f8 100644
--- a/mlir/include/mlir/Conversion/Passes.td
+++ b/mlir/include/mlir/Conversion/Passes.td
@@ -367,7 +367,8 @@ def ConvertShapeToStandard : Pass<"convert-shape-to-std", "ModuleOp"> {
let dependentDialects = [
"memref::MemRefDialect",
"StandardOpsDialect",
- "scf::SCFDialect"
+ "scf::SCFDialect",
+ "tensor::TensorDialect"
];
}
@@ -504,7 +505,7 @@ def TosaToSCF : Pass<"tosa-to-scf"> {
def TosaToStandard : Pass<"tosa-to-standard"> {
let summary = "Lower TOSA to the Standard dialect";
- let dependentDialects = ["StandardOpsDialect"];
+ let dependentDialects = ["StandardOpsDialect", "tensor::TensorDialect"];
let description = [{
Pass that converts TOSA operations to the equivalent operations using the
operations in the Standard dialect.
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
index 1b0177642ee9c..df568d6795d43 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
@@ -579,12 +579,11 @@ def Linalg_TiledLoopOp : Linalg_Op<"tiled_loop", [
Tensor-based version:
- The body region of the loop contains `subtensor` operations applied to
+ The body region of the loop contains `extract_slice` operations applied to
every tensor argument of TiledLoopOp.
The body region must contain exactly one block that terminates with
- `linalg.yield` with the operands resulting from `subtensor_insert`
- operations.
+ `linalg.yield` with the operands resulting from `insert_slice` operations.
Example:
@@ -594,16 +593,16 @@ def Linalg_TiledLoopOp : Linalg_Op<"tiled_loop", [
outs(%out : tensor<24x64xi8>)
iterators("parallel")
distribution("block_x") {
- %lhs_sub = subtensor %lhs[%i, 0] [%c4, %c64] [1, 1]
+ %lhs_sub = tensor.extract_slice %lhs[%i, 0] [%c4, %c64] [1, 1]
: tensor<24x64xi8> to tensor<?x?xi8>
- %rhs_sub = subtensor %rhs[%i, 0] [%c4, %c64] [1, 1]
+ %rhs_sub = tensor.extract_slice %rhs[%i, 0] [%c4, %c64] [1, 1]
: tensor<24x64xi8> to tensor<?x?xi8>
- %out_sub = subtensor %out[%i, 0] [%c4, %c64] [1, 1]
+ %out_sub = tensor.extract_slice %out[%i, 0] [%c4, %c64] [1, 1]
: tensor<24x64xi8> to tensor<?x?xi8>
%result_sub = linalg.generic ...
- %result = subtensor_insert %result_sub into %out[%i, 0][%c4, %c64][1, 1]
+ %result = tensor.insert_slice %result_sub into %out[%i, 0][%c4, %c64][1, 1]
: tensor<?x?xi8> into tensor<24x64xi8>
linalg.yield %result : tensor<24x64xi8>
}
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Hoisting.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Hoisting.h
index fdbb8ca476060..e1ef2ebb89d76 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Hoisting.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Hoisting.h
@@ -47,7 +47,7 @@ void hoistRedundantVectorTransfersOnTensor(FuncOp func);
/// If hoistPaddingOnTensors is called with `nLoops` = 2 on the following IR.
/// ```
/// scf.for (%i, %j, %k)
-/// %st0 = subtensor f(%i, %k) : ... to tensor<?x?xf32>
+/// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
/// %0 = linalg.pad_tensor %st0 low[0, 0] high[...] {
/// ^bb0( ... ):
/// linalg.yield %pad
@@ -61,16 +61,17 @@ void hoistRedundantVectorTransfersOnTensor(FuncOp func);
/// scf.for (%i) {
/// %packed_init = linalg.init_tensor range(%j) : tensor<?x4x8xf32>
/// %packed = scf.for (%k) iter_args(%p : %packed_init) {
-/// %st0 = subtensor f(%i, %k) : ... to tensor<?x?xf32>
+/// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
/// %0 = linalg.pad_tensor %st0 low[0, 0] high[...] {
/// ^bb0( ... ):
/// linalg.yield %pad
/// } : tensor<?x?xf32> to tensor<4x8xf32>
-/// %1 = subtensor_insert %0 ... : tensor<4x8xf32> to tensor<?x4x8xf32>
+/// %1 = tensor.insert_slice %0 ...
+/// : tensor<4x8xf32> to tensor<?x4x8xf32>
/// scf.yield %1: tensor<?x4x8xf32>
/// } -> tensor<?x4x8xf32>
/// scf.for (%j, %k) {
-/// %st0 = subtensor %packed [%k, 0, 0][1, 4, 8][1, 1, 1] :
+/// %st0 = tensor.extract_slice %packed [%k, 0, 0][1, 4, 8][1, 1, 1] :
/// tensor<?x4x8xf32> to tensor<4x8xf32>
/// compute(%st0)
/// }
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
index 8a085d5573c64..f6b78ae385d04 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -12,6 +12,7 @@
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/Utils.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/PatternMatch.h"
@@ -1077,12 +1078,12 @@ LogicalResult applyStagedPatterns(
const FrozenRewritePatternSet &stage2Patterns,
function_ref<LogicalResult(Operation *)> stage3Lambda = nullptr);
-/// Rewrite subtensor(pad_tensor(x)) into pad_tensor(subtensor(x)).
-struct SubTensorOfPadTensorSwapPattern
- : public OpRewritePattern<SubTensorOp> {
- using OpRewritePattern<SubTensorOp>::OpRewritePattern;
+/// Rewrite extract_slice(pad_tensor(x)) into pad_tensor(extract_slice(x)).
+struct ExtractSliceOfPadTensorSwapPattern
+ : public OpRewritePattern<tensor::ExtractSliceOp> {
+ using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
- LogicalResult matchAndRewrite(SubTensorOp subTensorOp,
+ LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override;
};
diff --git a/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h b/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h
index 55da21d4c5b3e..dfbd4483e6dc2 100644
--- a/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h
+++ b/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h
@@ -78,7 +78,7 @@ bool isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
bool isFusableInto(const LinalgDependenceGraph &graph, LinalgOp consumer,
Value consumedView, LinalgOp producer);
-/// Creates subtensor/subview ops for all `tiledOperands` of the given
+/// Creates extract_slice/subview ops for all `tiledOperands` of the given
/// `linalgOp` with `builder`, assuming `linalgOp` is being fused into a loop
/// nest for tiling with the given induction variables `ivs` and tile sizes
/// `tileSizes`. `sizeBounds` are the iteration space bounds for *all* the
@@ -118,15 +118,17 @@ Optional<FusionInfo> fuseProducerOfBuffer(OpBuilder &b,
const LinalgDependenceGraph &graph);
/// Tensor counterpart of `fuseProducerOfBuffer`.
/// This implements the fusion part of the "tileAndFuse on tensors"
-/// transformation and thus requires the `consumerOpOperand` to be a `subtensor`
-/// op (generally obtained by applying the tiling transformation).
+/// transformation and thus requires the `consumerOpOperand` to be a
+/// `extract_slice` op (generally obtained by applying the tiling
+/// transformation).
Optional<FusionInfo> fuseProducerOfTensor(OpBuilder &b,
OpOperand &consumerOpOperand);
/// Tensor counterpart of `fuseProducerOfBuffer`.
/// This implements the fusion part of the "tileAndFuse on tensors"
-/// transformation and thus requires the `consumerOpOperand` to be a `subtensor`
-/// op (generally obtained by applying the tiling transformation).
-/// Assumes `producerOfTensor` is a Linalg op that produces `consumerOpOperand`.
+/// transformation and thus requires the `consumerOpOperand` to be a
+/// `extract_slice` op (generally obtained by applying the tiling
+/// transformation). Assumes `producerOfTensor` is a Linalg op that produces
+/// `consumerOpOperand`.
Optional<FusionInfo> fuseProducerOfTensor(OpBuilder &b,
OpResult producerOpResult,
OpOperand &consumerOpOperand);
diff --git a/mlir/include/mlir/Dialect/Shape/IR/Shape.h b/mlir/include/mlir/Dialect/Shape/IR/Shape.h
index 08c5d5ddbc82f..a8f606a8557be 100644
--- a/mlir/include/mlir/Dialect/Shape/IR/Shape.h
+++ b/mlir/include/mlir/Dialect/Shape/IR/Shape.h
@@ -14,6 +14,7 @@
#ifndef MLIR_SHAPE_IR_SHAPE_H
#define MLIR_SHAPE_IR_SHAPE_H
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/OpDefinition.h"
diff --git a/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td b/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
index d4b739eb0f032..47b03502f21b4 100644
--- a/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
+++ b/mlir/include/mlir/Dialect/Shape/IR/ShapeBase.td
@@ -35,6 +35,7 @@ def ShapeDialect : Dialect {
}];
let cppNamespace = "::mlir::shape";
+ let dependentDialects = ["tensor::TensorDialect"];
let hasConstantMaterializer = 1;
let hasOperationAttrVerify = 1;
diff --git a/mlir/include/mlir/Dialect/StandardOps/IR/Ops.h b/mlir/include/mlir/Dialect/StandardOps/IR/Ops.h
index a9aa9810d27f5..bff62c716dfe6 100644
--- a/mlir/include/mlir/Dialect/StandardOps/IR/Ops.h
+++ b/mlir/include/mlir/Dialect/StandardOps/IR/Ops.h
@@ -23,7 +23,6 @@
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Interfaces/VectorInterfaces.h"
-#include "mlir/Interfaces/ViewLikeInterface.h"
// Pull in all enum type definitions and utility function declarations.
#include "mlir/Dialect/StandardOps/IR/OpsEnums.h.inc"
@@ -34,12 +33,6 @@ class Builder;
class FuncOp;
class OpBuilder;
class PatternRewriter;
-
-/// Return the list of Range (i.e. offset, size, stride). Each Range
-/// entry contains either the dynamic value or a ConstantIndexOp constructed
-/// with `b` at location `loc`.
-SmallVector<Range, 8> getOrCreateRanges(OffsetSizeAndStrideOpInterface op,
- OpBuilder &b, Location loc);
} // namespace mlir
#define GET_OP_CLASSES
diff --git a/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td b/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
index e71d497b7ab66..48a539a387bd7 100644
--- a/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
+++ b/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
@@ -21,7 +21,6 @@ include "mlir/Interfaces/CastInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
include "mlir/Interfaces/VectorInterfaces.td"
-include "mlir/Interfaces/ViewLikeInterface.td"
def StandardOps_Dialect : Dialect {
let name = "std";
@@ -1754,245 +1753,6 @@ def SubIOp : IntBinaryOp<"subi"> {
let hasCanonicalizer = 1;
}
-//===----------------------------------------------------------------------===//
-// SubTensorOp
-//===----------------------------------------------------------------------===//
-
-def SubTensorOp : BaseOpWithOffsetSizesAndStrides<
- StandardOps_Dialect, "subtensor", [NoSideEffect, AttrSizedOperandSegments,
- OffsetSizeAndStrideOpInterface]> {
- let summary = "subtensor operation";
- let description = [{
- The "subtensor" operation extract a tensor from another tensor as
- specified by the operation's offsets, sizes and strides arguments.
-
- The subtensor operation supports the following arguments:
-
- * source: the "base" tensor from which to extract a subtensor.
- * offsets: tensor-rank number of offsets into the "base" tensor from which
- to extract the subtensor.
- * sizes: tensor-rank number of sizes which specify the sizes of the result
- tensor type.
- * strides: tensor-rank number of strides specifying subsampling in each
- dimension.
-
- The representation based on offsets, sizes and strides support a
- partially-static specification via attributes specified through the
- `static_offsets`, `static_sizes` and `static_strides` arguments. A special
- sentinel value ShapedType::kDynamicSize and
- ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
- a dynamic value.
-
- After buffer-allocation, the "subtensor" op is expected to lower into a
- "subview" op.
-
- A subtensor operation may additionally reduce the rank of the resulting
- tensor by removing dimensions that are statically known to be of size 1.
-
- Example:
-
- ```
- // Rank-reducing subtensor.
- %1 = subtensor %0[0, 0, 0][1, 16, 4][1, 1, 1] :
- tensor<8x16x4xf32> to tensor<16x4xf32>
- %3 = subtensor %2[3, 4, 2][1, 6, 3][1, 1, 1] :
- tensor<8x16x4xf32> to tensor<6x3xf32>
- ```
- }];
-
- let arguments = (ins
- AnyRankedTensor:$source,
- Variadic<Index>:$offsets,
- Variadic<Index>:$sizes,
- Variadic<Index>:$strides,
- I64ArrayAttr:$static_offsets,
- I64ArrayAttr:$static_sizes,
- I64ArrayAttr:$static_strides
- );
- let results = (outs AnyRankedTensor:$result);
-
- let assemblyFormat = [{
- $source ``
- custom<OperandsOrIntegersOffsetsOrStridesList>($offsets, $static_offsets)
- custom<OperandsOrIntegersSizesList>($sizes, $static_sizes)
- custom<OperandsOrIntegersOffsetsOrStridesList>($strides, $static_strides)
- attr-dict `:` type($source) `to` type($result)
- }];
-
- let builders = [
- // Build a SubTensorOp with mixed static and dynamic entries and inferred
- // result type.
- OpBuilder<(ins "Value":$source, "ArrayRef<OpFoldResult>":$offsets,
- "ArrayRef<OpFoldResult>":$sizes, "ArrayRef<OpFoldResult>":$strides,
- CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
- // Build a SubTensorOp with mixed static and dynamic entries and custom
- // result type. If the type passed is nullptr, it is inferred.
- OpBuilder<(ins "RankedTensorType":$resultType, "Value":$source,
- "ArrayRef<OpFoldResult>":$offsets, "ArrayRef<OpFoldResult>":$sizes,
- "ArrayRef<OpFoldResult>":$strides,
- CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
- // Build a SubTensorOp with dynamic entries and custom result type. If the
- // type passed is nullptr, it is inferred.
- OpBuilder<(ins "Value":$source, "ValueRange":$offsets,
- "ValueRange":$sizes, "ValueRange":$strides,
- CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
- // Build a SubTensorOp with dynamic entries and inferred result type.
- OpBuilder<(ins "RankedTensorType":$resultType, "Value":$source,
- "ValueRange":$offsets, "ValueRange":$sizes, "ValueRange":$strides,
- CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>
- ];
-
- let extraClassDeclaration = extraBaseClassDeclaration # [{
- /// Returns the type of the base tensor operand.
- RankedTensorType getSourceType() {
- return source().getType().cast<RankedTensorType>();
- }
-
- /// The result of a subtensor is always a tensor.
- RankedTensorType getType() {
- return getResult().getType().cast<RankedTensorType>();
- }
-
- /// A subtensor result type can be fully inferred from the source type and
- /// the static representation of offsets, sizes and strides. Special
- /// sentinels encode the dynamic case.
- static Type inferResultType(RankedTensorType sourceRankedTensorType,
- ArrayRef<int64_t> staticOffsets,
- ArrayRef<int64_t> staticSizes,
- ArrayRef<int64_t> staticStrides);
- static Type inferResultType(RankedTensorType sourceRankedTensorType,
- ArrayRef<OpFoldResult> staticOffsets,
- ArrayRef<OpFoldResult> staticSizes,
- ArrayRef<OpFoldResult> staticStrides);
- static Type inferRankReducedResultType(unsigned resultRank,
- RankedTensorType sourceRankedTensorType,
- ArrayRef<int64_t> staticOffsets,
- ArrayRef<int64_t> staticSizes,
- ArrayRef<int64_t> staticStrides);
- static Type inferRankReducedResultType(unsigned resultRank,
- RankedTensorType sourceRankedTensorType,
- ArrayRef<OpFoldResult> staticOffsets,
- ArrayRef<OpFoldResult> staticSizes,
- ArrayRef<OpFoldResult> staticStrides);
-
- /// Return the expected rank of each of the`static_offsets`, `static_sizes`
- /// and `static_strides` attributes.
- std::array<unsigned, 3> getArrayAttrMaxRanks() {
- unsigned rank = getSourceType().getRank();
- return {rank, rank, rank};
- }
-
- /// Return the number of leading operands before the `offsets`, `sizes` and
- /// and `strides` operands.
- static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 1; }
- }];
-
- let hasCanonicalizer = 1;
- let hasFolder = 1;
-}
-
-//===----------------------------------------------------------------------===//
-// SubTensorInsertOp
-//===----------------------------------------------------------------------===//
-
-def SubTensorInsertOp : BaseOpWithOffsetSizesAndStrides<
- StandardOps_Dialect, "subtensor_insert",
- [NoSideEffect, AttrSizedOperandSegments, OffsetSizeAndStrideOpInterface,
- TypesMatchWith<"expected result type to match dest type",
- "dest", "result", "$_self">]> {
- let summary = "subtensor_insert operation";
- let description = [{
- The "subtensor_insert" operation insert a tensor `source` into another
- tensor `dest` as specified by the operation's offsets, sizes and strides
- arguments.
-
- It returns a copy of `dest` with the proper subtensor updated with the value
- of `source`.
-
- The subtensor_insert operation has the encodes the following information:
-
- * source: the tensor that is inserted.
- * dest: the tensor into which the source tensor is inserted.
- * offsets: tensor-rank number of offsets into the "base" tensor from which
- to extract the subtensor.
- * sizes: tensor-rank number of sizes which specify the sizes of the result
- tensor type.
- * strides: tensor-rank number of strides that specify subsampling in each
- dimension.
-
- The representation based on offsets, sizes and strides support a
- partially-static specification via attributes specified through the
- `static_offsets`, `static_sizes` and `static_strides` arguments. A special
- sentinel value ShapedType::kDynamicSize and
- ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
- a dynamic value.
-
- After buffer-allocation, the "subtensor_insert" op is expected to become
- an in-place buffer update.
- }];
-
- let arguments = (ins
- AnyRankedTensor:$source,
- AnyRankedTensor:$dest,
- Variadic<Index>:$offsets,
- Variadic<Index>:$sizes,
- Variadic<Index>:$strides,
- I64ArrayAttr:$static_offsets,
- I64ArrayAttr:$static_sizes,
- I64ArrayAttr:$static_strides
- );
- let results = (outs AnyRankedTensor:$result);
-
- let assemblyFormat = [{
- $source `into` $dest ``
- custom<OperandsOrIntegersOffsetsOrStridesList>($offsets, $static_offsets)
- custom<OperandsOrIntegersSizesList>($sizes, $static_sizes)
- custom<OperandsOrIntegersOffsetsOrStridesList>($strides, $static_strides)
- attr-dict `:` type($source) `into` type($dest)
- }];
-
- let verifier = ?;
-
- let builders = [
- // Build a SubTensorInsertOp with mixed static and dynamic entries.
- OpBuilder<(ins "Value":$source, "Value":$dest,
- "ArrayRef<OpFoldResult>":$offsets, "ArrayRef<OpFoldResult>":$sizes,
- "ArrayRef<OpFoldResult>":$strides,
- CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
- // Build a SubTensorInsertOp with dynamic entries.
- OpBuilder<(ins "Value":$source, "Value":$dest,
- "ValueRange":$offsets, "ValueRange":$sizes, "ValueRange":$strides,
- CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>
- ];
-
- let extraClassDeclaration = extraBaseClassDeclaration # [{
- /// Returns the type of the base tensor operand.
- RankedTensorType getSourceType() {
- return source().getType().cast<RankedTensorType>();
- }
-
- /// The result of a subtensor_insert is always a tensor.
- RankedTensorType getType() {
- return getResult().getType().cast<RankedTensorType>();
- }
-
- /// Return the expected rank of each of the`static_offsets`, `static_sizes`
- /// and `static_strides` attributes.
- std::array<unsigned, 3> getArrayAttrMaxRanks() {
- unsigned rank = getType().getRank();
- return {rank, rank, rank};
- }
-
- /// Return the number of leading operands before the `offsets`, `sizes` and
- /// and `strides` operands.
- static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 2; }
- }];
-
- let hasCanonicalizer = 1;
- let hasFolder = 1;
-}
-
-
//===----------------------------------------------------------------------===//
// SwitchOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/Tensor/IR/Tensor.h b/mlir/include/mlir/Dialect/Tensor/IR/Tensor.h
index 830b682c602b6..1d6c89ca56b67 100644
--- a/mlir/include/mlir/Dialect/Tensor/IR/Tensor.h
+++ b/mlir/include/mlir/Dialect/Tensor/IR/Tensor.h
@@ -16,6 +16,21 @@
#include "mlir/Interfaces/CastInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
+#include "mlir/Interfaces/ViewLikeInterface.h"
+
+//===----------------------------------------------------------------------===//
+// Tensor Dialect Helpers
+//===----------------------------------------------------------------------===//
+
+namespace mlir {
+
+/// Return the list of Range (i.e. offset, size, stride). Each Range
+/// entry contains either the dynamic value or a ConstantIndexOp constructed
+/// with `b` at location `loc`.
+SmallVector<Range, 8> getOrCreateRanges(OffsetSizeAndStrideOpInterface op,
+ OpBuilder &b, Location loc);
+
+} // namespace mlir
//===----------------------------------------------------------------------===//
// Tensor Dialect
@@ -41,8 +56,8 @@ namespace tensor {
/// source tensor. This is useful to fold a tensor.cast into a consuming op and
/// implement canonicalization patterns for ops in
diff erent dialects that may
/// consume the results of tensor.cast operations. Such foldable tensor.cast
-/// operations are typically inserted as `subtensor` ops and are canonicalized,
-/// to preserve the type compatibility of their uses.
+/// operations are typically inserted as `extract_slice` ops and are
+/// canonicalized, to preserve the type compatibility of their uses.
///
/// Returns true when all conditions are met:
/// 1. source and result are ranked tensors with same element type and rank.
@@ -64,7 +79,6 @@ bool canFoldIntoConsumerOp(CastOp castOp);
/// Performs folding of any operand of `op` if it comes from a tensor::CastOp
/// that can be folded.
LogicalResult foldTensorCast(Operation *op);
-
} // namespace tensor
} // namespace mlir
diff --git a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
index 6b06099257d03..8b5b458c0890a 100644
--- a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
+++ b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
@@ -13,6 +13,7 @@ include "mlir/Dialect/Tensor/IR/TensorBase.td"
include "mlir/Interfaces/CastInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
+include "mlir/Interfaces/ViewLikeInterface.td"
class Tensor_Op<string mnemonic, list<OpTrait> traits = []>
: Op<Tensor_Dialect, mnemonic, traits> {
@@ -99,6 +100,144 @@ def Tensor_ExtractOp : Tensor_Op<"extract",
let hasFolder = 1;
}
+
+//===----------------------------------------------------------------------===//
+// ExtractSliceOp
+//===----------------------------------------------------------------------===//
+
+def Tensor_ExtractSliceOp : BaseOpWithOffsetSizesAndStrides<
+ Tensor_Dialect, "extract_slice", [NoSideEffect, AttrSizedOperandSegments,
+ OffsetSizeAndStrideOpInterface]> {
+ let summary = "extract slice operation";
+ let description = [{
+ The "extract_slice" operation extract a tensor from another tensor as
+ specified by the operation's offsets, sizes and strides arguments.
+
+ The extract_slice operation supports the following arguments:
+
+ * source: the "base" tensor from which to extract a slice.
+ * offsets: tensor-rank number of offsets into the "base" tensor from which
+ to extract the slice.
+ * sizes: tensor-rank number of sizes which specify the sizes of the result
+ tensor type.
+ * strides: tensor-rank number of strides specifying subsampling in each
+ dimension.
+
+ The representation based on offsets, sizes and strides support a
+ partially-static specification via attributes specified through the
+ `static_offsets`, `static_sizes` and `static_strides` arguments. A special
+ sentinel value ShapedType::kDynamicSize and
+ ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
+ a dynamic value.
+
+ After buffer-allocation, the "extract_slice" op is expected to lower into a
+ "subview" op.
+
+ An extract_slice operation may additionally reduce the rank of the resulting
+ tensor by removing dimensions that are statically known to be of size 1.
+
+ Example:
+
+ ```
+ // Rank-reducing extract_slice.
+ %1 = tensor.extract_slice %0[0, 0, 0][1, 16, 4][1, 1, 1] :
+ tensor<8x16x4xf32> to tensor<16x4xf32>
+ %3 = tensor.extract_slice %2[3, 4, 2][1, 6, 3][1, 1, 1] :
+ tensor<8x16x4xf32> to tensor<6x3xf32>
+ ```
+ }];
+
+ let arguments = (ins
+ AnyRankedTensor:$source,
+ Variadic<Index>:$offsets,
+ Variadic<Index>:$sizes,
+ Variadic<Index>:$strides,
+ I64ArrayAttr:$static_offsets,
+ I64ArrayAttr:$static_sizes,
+ I64ArrayAttr:$static_strides
+ );
+ let results = (outs AnyRankedTensor:$result);
+
+ let assemblyFormat = [{
+ $source ``
+ custom<OperandsOrIntegersOffsetsOrStridesList>($offsets, $static_offsets)
+ custom<OperandsOrIntegersSizesList>($sizes, $static_sizes)
+ custom<OperandsOrIntegersOffsetsOrStridesList>($strides, $static_strides)
+ attr-dict `:` type($source) `to` type($result)
+ }];
+
+ let builders = [
+ // Build an ExtractSliceOp with mixed static and dynamic entries and
+ // inferred result type.
+ OpBuilder<(ins "Value":$source, "ArrayRef<OpFoldResult>":$offsets,
+ "ArrayRef<OpFoldResult>":$sizes, "ArrayRef<OpFoldResult>":$strides,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
+ // Build an ExtractSliceOp with mixed static and dynamic entries and custom
+ // result type. If the type passed is nullptr, it is inferred.
+ OpBuilder<(ins "RankedTensorType":$resultType, "Value":$source,
+ "ArrayRef<OpFoldResult>":$offsets, "ArrayRef<OpFoldResult>":$sizes,
+ "ArrayRef<OpFoldResult>":$strides,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
+ // Build an ExtractSliceOp with dynamic entries and custom result type. If
+ // the type passed is nullptr, it is inferred.
+ OpBuilder<(ins "Value":$source, "ValueRange":$offsets,
+ "ValueRange":$sizes, "ValueRange":$strides,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
+ // Build an ExtractSliceOp with dynamic entries and inferred result type.
+ OpBuilder<(ins "RankedTensorType":$resultType, "Value":$source,
+ "ValueRange":$offsets, "ValueRange":$sizes, "ValueRange":$strides,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>
+ ];
+
+ let extraClassDeclaration = extraBaseClassDeclaration # [{
+ /// Returns the type of the base tensor operand.
+ RankedTensorType getSourceType() {
+ return source().getType().cast<RankedTensorType>();
+ }
+
+ /// The result of an extract_slice is always a tensor.
+ RankedTensorType getType() {
+ return getResult().getType().cast<RankedTensorType>();
+ }
+
+ /// An extract_slice result type can be fully inferred from the source type
+ /// and the static representation of offsets, sizes and strides. Special
+ /// sentinels encode the dynamic case.
+ static Type inferResultType(RankedTensorType sourceRankedTensorType,
+ ArrayRef<int64_t> staticOffsets,
+ ArrayRef<int64_t> staticSizes,
+ ArrayRef<int64_t> staticStrides);
+ static Type inferResultType(RankedTensorType sourceRankedTensorType,
+ ArrayRef<OpFoldResult> staticOffsets,
+ ArrayRef<OpFoldResult> staticSizes,
+ ArrayRef<OpFoldResult> staticStrides);
+ static Type inferRankReducedResultType(unsigned resultRank,
+ RankedTensorType sourceRankedTensorType,
+ ArrayRef<int64_t> staticOffsets,
+ ArrayRef<int64_t> staticSizes,
+ ArrayRef<int64_t> staticStrides);
+ static Type inferRankReducedResultType(unsigned resultRank,
+ RankedTensorType sourceRankedTensorType,
+ ArrayRef<OpFoldResult> staticOffsets,
+ ArrayRef<OpFoldResult> staticSizes,
+ ArrayRef<OpFoldResult> staticStrides);
+
+ /// Return the expected rank of each of the`static_offsets`, `static_sizes`
+ /// and `static_strides` attributes.
+ std::array<unsigned, 3> getArrayAttrMaxRanks() {
+ unsigned rank = getSourceType().getRank();
+ return {rank, rank, rank};
+ }
+
+ /// Return the number of leading operands before the `offsets`, `sizes` and
+ /// and `strides` operands.
+ static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 1; }
+ }];
+
+ let hasCanonicalizer = 1;
+ let hasFolder = 1;
+}
+
//===----------------------------------------------------------------------===//
// FromElementsOp
//===----------------------------------------------------------------------===//
@@ -200,7 +339,7 @@ def Tensor_InsertOp : Tensor_Op<"insert",
The `tensor.insert` op writes a tensor into a tensor `dest`as specified by
the operation's indices.
- It returns a copy of `dest` with the proper subtensor updated with the value
+ It returns a copy of `dest` with the proper slice updated with the value
of `scalar`.
The arity of indices must match the rank of the tensor `dest` (i.e., if a
@@ -234,6 +373,107 @@ def Tensor_InsertOp : Tensor_Op<"insert",
let hasFolder = 1;
}
+//===----------------------------------------------------------------------===//
+// InsertSliceOp
+//===----------------------------------------------------------------------===//
+
+def Tensor_InsertSliceOp : BaseOpWithOffsetSizesAndStrides<
+ Tensor_Dialect, "insert_slice",
+ [NoSideEffect, AttrSizedOperandSegments, OffsetSizeAndStrideOpInterface,
+ TypesMatchWith<"expected result type to match dest type",
+ "dest", "result", "$_self">]> {
+ let summary = "insert_slice operation";
+ let description = [{
+ The "insert_slice" operation insert a tensor `source` into another
+ tensor `dest` as specified by the operation's offsets, sizes and strides
+ arguments.
+
+ It returns a copy of `dest` with the proper slice updated with the value
+ of `source`.
+
+ The insert_slice operation supports the following arguments:
+
+ * source: the tensor that is inserted.
+ * dest: the tensor into which the source tensor is inserted.
+ * offsets: tensor-rank number of offsets into the `dest` tensor into which
+ the slice is inserted.
+ * sizes: tensor-rank number of sizes which specify the sizes of the result
+ tensor type.
+ * strides: tensor-rank number of strides that specify subsampling in each
+ dimension.
+
+ The representation based on offsets, sizes and strides support a
+ partially-static specification via attributes specified through the
+ `static_offsets`, `static_sizes` and `static_strides` arguments. A special
+ sentinel value ShapedType::kDynamicSize and
+ ShapedType::kDynamicStrideOrOffset encodes that the corresponding entry has
+ a dynamic value.
+
+ After buffer-allocation, the "insert_slice" op is expected to become an
+ in-place buffer update.
+ }];
+
+ let arguments = (ins
+ AnyRankedTensor:$source,
+ AnyRankedTensor:$dest,
+ Variadic<Index>:$offsets,
+ Variadic<Index>:$sizes,
+ Variadic<Index>:$strides,
+ I64ArrayAttr:$static_offsets,
+ I64ArrayAttr:$static_sizes,
+ I64ArrayAttr:$static_strides
+ );
+ let results = (outs AnyRankedTensor:$result);
+
+ let assemblyFormat = [{
+ $source `into` $dest ``
+ custom<OperandsOrIntegersOffsetsOrStridesList>($offsets, $static_offsets)
+ custom<OperandsOrIntegersSizesList>($sizes, $static_sizes)
+ custom<OperandsOrIntegersOffsetsOrStridesList>($strides, $static_strides)
+ attr-dict `:` type($source) `into` type($dest)
+ }];
+
+ let verifier = ?;
+
+ let builders = [
+ // Build a InsertSliceOp with mixed static and dynamic entries.
+ OpBuilder<(ins "Value":$source, "Value":$dest,
+ "ArrayRef<OpFoldResult>":$offsets, "ArrayRef<OpFoldResult>":$sizes,
+ "ArrayRef<OpFoldResult>":$strides,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
+ // Build a InsertSliceOp with dynamic entries.
+ OpBuilder<(ins "Value":$source, "Value":$dest,
+ "ValueRange":$offsets, "ValueRange":$sizes, "ValueRange":$strides,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>
+ ];
+
+ let extraClassDeclaration = extraBaseClassDeclaration # [{
+ /// Returns the type of the base tensor operand.
+ RankedTensorType getSourceType() {
+ return source().getType().cast<RankedTensorType>();
+ }
+
+ /// The result of a insert_slice is always a tensor.
+ RankedTensorType getType() {
+ return getResult().getType().cast<RankedTensorType>();
+ }
+
+ /// Return the expected rank of each of the`static_offsets`, `static_sizes`
+ /// and `static_strides` attributes.
+ std::array<unsigned, 3> getArrayAttrMaxRanks() {
+ unsigned rank = getType().getRank();
+ return {rank, rank, rank};
+ }
+
+ /// Return the number of leading operands before the `offsets`, `sizes` and
+ /// and `strides` operands.
+ static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 2; }
+ }];
+
+ let hasCanonicalizer = 1;
+ let hasFolder = 1;
+}
+
//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 2a5e2baa44e43..639934b1acb48 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -1384,7 +1384,7 @@ def Tosa_GatherOp : Tosa_Op<"gather", [NoSideEffect]> {
let summary = "Gather operation,";
let description = [{
- Generate a tensor for which each element in the output is a subtensor of the
+ Generate a tensor for which each element in the output is a slice of the
values tensor based on the value of indices.
}];
diff --git a/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp b/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
index 9e0020a8e859a..bcd9122612eba 100644
--- a/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
+++ b/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
@@ -627,10 +627,11 @@ LogicalResult SplitAtOpConversion::matchAndRewrite(
Value index = b.create<SelectOp>(indexIsNegative, add, originalIndex);
Value one = b.create<ConstantIndexOp>(1);
- Value head = b.create<SubTensorOp>(transformed.operand(), zero, index, one);
+ Value head =
+ b.create<tensor::ExtractSliceOp>(transformed.operand(), zero, index, one);
Value tailSize = b.create<SubIOp>(rank, index);
- Value tail =
- b.create<SubTensorOp>(transformed.operand(), index, tailSize, one);
+ Value tail = b.create<tensor::ExtractSliceOp>(transformed.operand(), index,
+ tailSize, one);
rewriter.replaceOp(op, {head, tail});
return success();
}
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 19e35928cb06c..4553292e86999 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -1741,8 +1741,8 @@ struct ConcatConverter : public OpConversionPattern<tosa::ConcatOp> {
for (auto arg : args) {
sizes[axis] = rewriter.create<memref::DimOp>(loc, arg, axisValue);
- result = rewriter.create<SubTensorInsertOp>(loc, arg, result, offsets,
- sizes, strides);
+ result = rewriter.create<tensor::InsertSliceOp>(loc, arg, result, offsets,
+ sizes, strides);
offsets[axis] = rewriter.create<AddIOp>(loc, offsets[axis], sizes[axis]);
}
rewriter.replaceOp(op, result);
diff --git a/mlir/lib/Conversion/TosaToStandard/TosaToStandard.cpp b/mlir/lib/Conversion/TosaToStandard/TosaToStandard.cpp
index 699926a948618..11f7d157b2f5e 100644
--- a/mlir/lib/Conversion/TosaToStandard/TosaToStandard.cpp
+++ b/mlir/lib/Conversion/TosaToStandard/TosaToStandard.cpp
@@ -12,6 +12,7 @@
#include "mlir/Conversion/TosaToStandard/TosaToStandard.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
@@ -42,7 +43,7 @@ class SliceOpConverter : public OpRewritePattern<tosa::SliceOp> {
SmallVector<int64_t> strides;
strides.resize(sliceOp.getType().template cast<ShapedType>().getRank(), 1);
- rewriter.replaceOpWithNewOp<SubTensorOp>(
+ rewriter.replaceOpWithNewOp<tensor::ExtractSliceOp>(
sliceOp, sliceOp.getType(), input, ValueRange({}), ValueRange({}),
ValueRange({}), sliceOp.start(), sliceOp.size(),
rewriter.getI64ArrayAttr(strides));
diff --git a/mlir/lib/Conversion/TosaToStandard/TosaToStandardPass.cpp b/mlir/lib/Conversion/TosaToStandard/TosaToStandardPass.cpp
index af639cb42e52e..5540de9de4f60 100644
--- a/mlir/lib/Conversion/TosaToStandard/TosaToStandardPass.cpp
+++ b/mlir/lib/Conversion/TosaToStandard/TosaToStandardPass.cpp
@@ -35,6 +35,7 @@ struct TosaToStandard : public TosaToStandardBase<TosaToStandard> {
target.addIllegalOp<tosa::SliceOp>();
target.addIllegalOp<tosa::ApplyScaleOp>();
target.addLegalDialect<StandardOpsDialect>();
+ target.addLegalDialect<tensor::TensorDialect>();
mlir::tosa::populateTosaToStandardConversionPatterns(&patterns);
if (failed(applyPartialConversion(getOperation(), target,
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index ac3c6776134da..24be63e3f361c 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -16,6 +16,7 @@
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
@@ -746,22 +747,23 @@ struct ReplaceStaticShapeDims : OpRewritePattern<InitTensorOp> {
namespace {
/// Since `init_tensor` operation creates a tensor needed only for its shape, a
-/// subtensor of this is also needed only for its shape. The result can be
-/// replaced by a new init_tensor operation of the same size as the subtensor
-/// op.
-struct FoldInitTensorWithSubTensorOp : public OpRewritePattern<SubTensorOp> {
- using OpRewritePattern<SubTensorOp>::OpRewritePattern;
-
- LogicalResult matchAndRewrite(SubTensorOp subtensorOp,
+/// slice of this is also needed only for its shape. The result can be
+/// replaced by a new init_tensor operation of the same size as the extract
+/// slice op.
+struct FoldInitTensorWithExtractSliceOp
+ : public OpRewritePattern<tensor::ExtractSliceOp> {
+ using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
- if (!subtensorOp.source().getDefiningOp<linalg::InitTensorOp>())
+ if (!sliceOp.source().getDefiningOp<linalg::InitTensorOp>())
return failure();
rewriter.replaceOpWithNewOp<linalg::InitTensorOp>(
- subtensorOp, subtensorOp.sizes(),
+ sliceOp, sliceOp.sizes(),
llvm::to_vector<4>(llvm::map_range(
- subtensorOp.static_sizes(),
+ sliceOp.static_sizes(),
[](Attribute attr) { return attr.cast<IntegerAttr>().getInt(); })),
- subtensorOp.getSourceType().getElementType());
+ sliceOp.getSourceType().getElementType());
return success();
}
};
@@ -797,7 +799,7 @@ struct FoldInitTensorWithTensorReshapeOp
void InitTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
- results.add<FoldInitTensorWithSubTensorOp,
+ results.add<FoldInitTensorWithExtractSliceOp,
FoldInitTensorWithTensorReshapeOp<TensorExpandShapeOp>,
FoldInitTensorWithTensorReshapeOp<TensorCollapseShapeOp>,
ReplaceStaticShapeDims>(context);
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
index 13a03f601336c..577a79b73cd0e 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
@@ -15,6 +15,7 @@
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Operation.h"
@@ -232,8 +233,8 @@ class BufferizeAnyLinalgOp : public OpInterfaceConversionPattern<LinalgOp> {
}
};
-/// Convert `subtensor %t [offsets][sizes][strides] -> %st` to an alloc + copy
-/// pattern.
+/// Convert `extract_slice %t [offsets][sizes][strides] -> %st` to an
+/// alloc + copy pattern.
/// ```
/// %a = alloc(sizes)
/// %sv = subview %source [offsets][sizes][strides]
@@ -242,21 +243,22 @@ class BufferizeAnyLinalgOp : public OpInterfaceConversionPattern<LinalgOp> {
///
/// This pattern is arguable a std pattern once linalg::CopyOp becomes
/// std::CopyOp.
-class SubTensorOpConverter : public OpConversionPattern<SubTensorOp> {
+class ExtractSliceOpConverter
+ : public OpConversionPattern<tensor::ExtractSliceOp> {
public:
- using OpConversionPattern<SubTensorOp>::OpConversionPattern;
+ using OpConversionPattern<tensor::ExtractSliceOp>::OpConversionPattern;
LogicalResult
- matchAndRewrite(SubTensorOp op, ArrayRef<Value> operands,
+ matchAndRewrite(tensor::ExtractSliceOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
- SubTensorOpAdaptor adaptor(operands, op->getAttrDictionary());
+ tensor::ExtractSliceOpAdaptor adaptor(operands, op->getAttrDictionary());
Value sourceMemref = adaptor.source();
assert(sourceMemref.getType().isa<MemRefType>());
MemRefType subviewMemRefType =
getTypeConverter()->convertType(op.getType()).cast<MemRefType>();
// op.sizes() capture exactly the dynamic alloc operands matching the
- // subviewMemRefType thanks to subview/subtensor canonicalization and
+ // subviewMemRefType thanks to subview/slice canonicalization and
// verification.
Value alloc = rewriter.create<memref::AllocOp>(
op.getLoc(), subviewMemRefType, op.sizes());
@@ -269,7 +271,7 @@ class SubTensorOpConverter : public OpConversionPattern<SubTensorOp> {
}
};
-/// Convert `subtensor_insert %source into %dest [offsets][sizes][strides] ->
+/// Convert `insert_slice %source into %dest [offsets][sizes][strides] ->
/// %t` to an buffer_cast + subview + copy + tensor_load pattern.
/// buffer_cast and tensor_load are inserted automatically by the
/// conversion infra:
@@ -281,15 +283,15 @@ class SubTensorOpConverter : public OpConversionPattern<SubTensorOp> {
///
/// This pattern is arguable a std pattern once linalg::CopyOp becomes
/// std::CopyOp.
-class SubTensorInsertOpConverter
- : public OpConversionPattern<SubTensorInsertOp> {
+class InsertSliceOpConverter
+ : public OpConversionPattern<tensor::InsertSliceOp> {
public:
- using OpConversionPattern<SubTensorInsertOp>::OpConversionPattern;
+ using OpConversionPattern<tensor::InsertSliceOp>::OpConversionPattern;
LogicalResult
- matchAndRewrite(SubTensorInsertOp op, ArrayRef<Value> operands,
+ matchAndRewrite(tensor::InsertSliceOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
- SubTensorInsertOpAdaptor adaptor(operands, op->getAttrDictionary());
+ tensor::InsertSliceOpAdaptor adaptor(operands, op->getAttrDictionary());
Value sourceMemRef = adaptor.source();
assert(sourceMemRef.getType().isa<MemRefType>());
@@ -323,7 +325,8 @@ struct LinalgBufferizePass : public LinalgBufferizeBase<LinalgBufferizePass> {
// Mark all Standard operations legal.
target.addLegalDialect<AffineDialect, math::MathDialect,
memref::MemRefDialect, StandardOpsDialect>();
- target.addIllegalOp<InitTensorOp, SubTensorOp, SubTensorInsertOp>();
+ target.addIllegalOp<InitTensorOp, tensor::ExtractSliceOp,
+ tensor::InsertSliceOp>();
// Mark all Linalg operations illegal as long as they work on tensors.
auto isLegalOperation = [&](Operation *op) {
@@ -355,8 +358,8 @@ void mlir::linalg::populateLinalgBufferizePatterns(
BufferizeInitTensorOp,
BufferizeTensorReshapeOp<TensorExpandShapeOp>,
BufferizeTensorReshapeOp<TensorCollapseShapeOp>,
- SubTensorOpConverter,
- SubTensorInsertOpConverter
+ ExtractSliceOpConverter,
+ InsertSliceOpConverter
>(typeConverter, patterns.getContext());
// clang-format on
}
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp
index dbbd4a7d54326..0fcae75624c34 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp
@@ -77,7 +77,7 @@
// out of the function at each call site.
//
// iii. as an optimization over ii., it may be possible to reuse an argument
-// and only want to return a subtensor.
+// and only want to return a slice.
// This may forego allocation by letting *all* callers decide whether to
// pass a new *aliasing* memref function argument (i.e. a subview).
// Without loss of generality, callers may agree to allocate a new buffer
@@ -284,7 +284,7 @@ LLVM_ATTRIBUTE_UNUSED static InPlaceSpec getInPlace(Value v) {
// 5. Wheher an op bufferizes to a memory read.
// 6. Wheher an op bufferizes to a memory write.
// These interfaces are necessary to distinguish between various cases and allow
-// special inplace behavior for (SubTensorOp, SubTensorInsertOp) pairs.
+// special inplace behavior for (ExtractSliceOp, InsertSliceOp) pairs.
//===----------------------------------------------------------------------===//
/// Return `true` if the op is explicitly supported by bufferization or if it
@@ -295,8 +295,8 @@ static bool hasKnownBufferizationAliasingBehavior(Operation *op) {
// clang-format off
isa<LinalgOp,
ReturnOp,
- SubTensorOp,
- SubTensorInsertOp,
+ ExtractSliceOp,
+ InsertSliceOp,
VectorTransferOpInterface>(op)
// clang-format on
|| (none_of(op->getResultTypes(),
@@ -339,8 +339,7 @@ static OpResult getInplaceableOpResult(VectorTransferOpInterface op,
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
-static OpResult getInplaceableOpResult(SubTensorInsertOp op,
- OpOperand &opOperand) {
+static OpResult getInplaceableOpResult(InsertSliceOp op, OpOperand &opOperand) {
if (opOperand.get() != op.dest())
return OpResult();
return op->getResult(0);
@@ -357,12 +356,12 @@ static OpResult getInplaceableOpResult(OpOperand &opOperand) {
// Ops that perform destructive updates on operand(s) to produce
// result(s).
.Case<LinalgOp,
- SubTensorInsertOp,
+ InsertSliceOp,
VectorTransferOpInterface>(
[&](auto op) { return getInplaceableOpResult(op, opOperand); })
- // SubTensorOp is special, when bufferized inplace it just returns an
+ // ExtractSliceOp is special, when bufferized inplace it just returns an
// alias to its operand. Its result is never inplaceable on its operand.
- .Case([&](SubTensorOp op) { return OpResult(); })
+ .Case([&](ExtractSliceOp op) { return OpResult(); })
// Other ops.
.Default([&](Operation *op) { return OpResult(); });
// clang-format on
@@ -380,10 +379,10 @@ static Optional<OpResult> getAliasingOpResult(OpOperand &opOperand) {
return TypeSwitch<Operation *, OpResult>(opOperand.getOwner())
// ReturnOp has no result.
.Case([&](ReturnOp op) { return OpResult(); })
- // SubTensorOp is
diff erent: its result is not inplaceable on op.source
+ // ExtractSliceOp is
diff erent: its result is not inplaceable on op.source
// but when bufferized inplace, the result is an aliasing subregion of
// op.source.
- .Case([&](SubTensorOp op) { return op->getResult(0); })
+ .Case([&](ExtractSliceOp op) { return op->getResult(0); })
.Default(
[&](Operation *op) { return getInplaceableOpResult(opOperand); });
}
@@ -395,8 +394,9 @@ static bool bufferizesToMemoryRead(OpOperand &opOperand) {
// it. Conservatively return true.
if (!maybeOpResult)
return true;
- // SubTensorOp alone doesn't bufferize to a memory read, one of its uses may.
- if (isa<SubTensorOp>(opOperand.getOwner()))
+ // ExtractSliceOp alone doesn't bufferize to a memory read, one of its uses
+ // may.
+ if (isa<ExtractSliceOp>(opOperand.getOwner()))
return false;
if (auto linalgOp = dyn_cast<LinalgOp>(opOperand.getOwner()))
return linalgOp.isInputTensor(&opOperand) ||
@@ -425,8 +425,9 @@ bufferizesToMemoryWrite(OpOperand &opOperand,
// A ReturnOp is not a write.
if (isa<ReturnOp>(opOperand.getOwner()))
return false;
- // SubTensorOp alone doesn't bufferize to a memory write, one of its uses may.
- if (maybeOpResult->getDefiningOp<SubTensorOp>())
+ // ExtractSliceOp alone doesn't bufferize to a memory write, one of its uses
+ // may.
+ if (maybeOpResult->getDefiningOp<ExtractSliceOp>())
return false;
// If we have a matching OpResult, this is a write.
// Additionally allow to restrict to only inPlace write, if so specified.
@@ -442,10 +443,10 @@ namespace {
/// The BufferizationAliasInfo class maintains a list of buffer aliases and
/// equivalence classes to support bufferization.
-/// SubTensorOps have special behavior, they act as a level of indirection for
-/// bufferization. They don't create reads or writes themselves and analysis
+/// ExtractSliceOps have special behavior, they act as a level of indirection
+/// for bufferization. They don't create reads or writes themselves and analysis
/// needs to look through their uses.
-/// SubTensorOp + SubTensorInsertOp have special joint behavior: they may
+/// ExtractSliceOp + InsertSliceOp have special joint behavior: they may
/// bufferize to the same buffer (i.e. subview), which is what introduces the
/// need for bufferization classes.
/// Some of these functionalities could be refactored in a Bufferizer class that
@@ -469,7 +470,7 @@ class BufferizationAliasInfo {
/// Return true if the buffer to which `operand` would bufferize is equivalent
/// to some use that would bufferize to a write to a buffer.
- bool aliasesInPlaceWrite(SubTensorOp subTensorOp) const;
+ bool aliasesInPlaceWrite(ExtractSliceOp extractSliceOp) const;
/// Merge result's and operand's aliasing sets and iterate to a fixed point.
void bufferizeInPlace(OpResult result, OpOperand &operand,
@@ -495,10 +496,10 @@ class BufferizationAliasInfo {
bool existsNonDominatingRead(OpOperand &opOperand,
const DominanceInfo &domInfo) const;
- /// Return true if the source of a `subTensorInsertOp` bufferizes to an
- /// equivalent SubTensorOp.
- bool isSourceEquivalentToAMatchingSubTensorOp(
- SubTensorInsertOp subTensorInsertOp) const;
+ /// Return true if the source of a `insertSliceOp` bufferizes to an
+ /// equivalent ExtractSliceOp.
+ bool isSourceEquivalentToAMatchingExtractSliceOp(
+ InsertSliceOp insertSliceOp) const;
/// Print to `os`.
void print(raw_ostream &os) const;
@@ -519,13 +520,13 @@ class BufferizationAliasInfo {
/// Iteratively merge alias sets until a fixed-point.
void mergeAliasesToFixedPoint();
- /// Return true if the (SubTensorOp, SubTensorInsertOp) pair match (i.e.
+ /// Return true if the (ExtractSliceOp, InsertSliceOp) pair match (i.e.
/// equivalent operand / result and same offset/sizes/strides specification).
///
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and
/// exposed as interfaces on the proper types.
- bool areEquivalentSubTensorOps(SubTensorOp st, SubTensorInsertOp sti) const;
+ bool areEquivalentExtractSliceOps(ExtractSliceOp st, InsertSliceOp sti) const;
/// Return true if there is a `candidateOp` that would write to memory after
/// bufferization and such that:
@@ -658,10 +659,10 @@ bool BufferizationAliasInfo::aliasesNonWriteableBuffer(
/// Return true if the buffer to which `operand` would bufferize is equivalent
/// to some use that would bufferize to a write to a buffer.
bool BufferizationAliasInfo::aliasesInPlaceWrite(
- SubTensorOp subTensorOp) const {
+ ExtractSliceOp extractSliceOp) const {
LDBG("----Start aliasesInPlaceWrite\n");
- LDBG("-------for op: " << *subTensorOp.getOperation() << '\n');
- for (Value v : getAliasInfoRef(subTensorOp.result())) {
+ LDBG("-------for op: " << *extractSliceOp.getOperation() << '\n');
+ for (Value v : getAliasInfoRef(extractSliceOp.result())) {
for (auto &use : v.getUses()) {
if (bufferizesToMemoryWrite(use, InPlaceSpec::True)) {
LDBG("-----------wants to bufferize to inPlace write: "
@@ -670,7 +671,7 @@ bool BufferizationAliasInfo::aliasesInPlaceWrite(
}
}
}
- LDBG("----------->subtensor does not alias an inplace write");
+ LDBG("----------->extract_slice does not alias an inplace write");
return false;
}
@@ -796,16 +797,16 @@ bool BufferizationAliasInfo::existsNonDominatingRead(
return false;
}
-/// Return true if the source of a `subTensorInsertOp` bufferizes to an
-/// equivalent SubTensorOp.
-bool BufferizationAliasInfo::isSourceEquivalentToAMatchingSubTensorOp(
- SubTensorInsertOp subTensorInsertOp) const {
- auto leaderIt = equivalentInfo.findLeader(subTensorInsertOp.source());
+/// Return true if the source of a `insertSliceOp` bufferizes to an
+/// equivalent ExtractSliceOp.
+bool BufferizationAliasInfo::isSourceEquivalentToAMatchingExtractSliceOp(
+ InsertSliceOp insertSliceOp) const {
+ auto leaderIt = equivalentInfo.findLeader(insertSliceOp.source());
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
- if (areEquivalentSubTensorOps(
- dyn_cast_or_null<SubTensorOp>(mit->v.getDefiningOp()),
- subTensorInsertOp))
+ if (areEquivalentExtractSliceOps(
+ dyn_cast_or_null<ExtractSliceOp>(mit->v.getDefiningOp()),
+ insertSliceOp))
return true;
}
return false;
@@ -874,8 +875,8 @@ void BufferizationAliasInfo::mergeAliasesToFixedPoint() {
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and exposed
/// as interfaces on the proper types.
-bool BufferizationAliasInfo::areEquivalentSubTensorOps(
- SubTensorOp st, SubTensorInsertOp sti) const {
+bool BufferizationAliasInfo::areEquivalentExtractSliceOps(
+ ExtractSliceOp st, InsertSliceOp sti) const {
if (!st || !sti)
return false;
if (!equivalentInfo.isEquivalent(st.source(), sti.dest()))
@@ -950,47 +951,47 @@ bool BufferizationAliasInfo::isClobberedWriteBeforeRead(
return false;
}
- // The case `opToBufferize` isa SubTensorOp is important enough that we look
- // for it specifically. The key information to discover is whether the
- // aliasing read or write come from a matching SubTensorInsertOp.
+ // The case `opToBufferize` isa ExtractSliceOp is important enough that we
+ // look for it specifically. The key information to discover is whether the
+ // aliasing read or write come from a matching InsertSliceOp.
// Such a pattern is introduced by tiling and is the key inplace condition
// not to miss.
- if (auto subTensorOp = dyn_cast<SubTensorOp>(opToBufferize)) {
- if (auto subTensorInsertOp = dyn_cast<SubTensorInsertOp>(aliasingReadOp)) {
- // %1 = subtensor %0[%offset_sizes_and_strides_1]
+ if (auto extractSliceOp = dyn_cast<ExtractSliceOp>(opToBufferize)) {
+ if (auto insertSliceOp = dyn_cast<InsertSliceOp>(aliasingReadOp)) {
+ // %1 = extract_slice %0[%offset_sizes_and_strides_1]
//
// ... // 0 or more of inplace compute that reduces to: %X is an
// // aliasingWrite equivalent to %1.
// %W = inplace_write(%1)
//
- // // aliasingRead %Y in subtensor_insert
- // ... = subtensor_insert %W into %R[%offset_sizes_and_strides_1]
- if (aliasingRead.get() == subTensorInsertOp.dest() &&
+ // // aliasingRead %Y in insert_slice
+ // ... = insert_slice %W into %R[%offset_sizes_and_strides_1]
+ if (aliasingRead.get() == insertSliceOp.dest() &&
// TODO: This is currently too restrictive and misses clobberings.
// When available, use container-containee analysis: the condition
// should be that the `aliasingWrite` is contained within
- // `subTensorInsertOp.source()`.
+ // `insertSliceOp.source()`.
equivalentInfo.isEquivalent(aliasingWrite.get(),
- subTensorInsertOp.source()) &&
- areEquivalentSubTensorOps(subTensorOp, subTensorInsertOp)) {
- LDBG("---->clobbering matching subtensor/subtensor_insert\n");
+ insertSliceOp.source()) &&
+ areEquivalentExtractSliceOps(extractSliceOp, insertSliceOp)) {
+ LDBG("---->clobbering matching extract_slice/insert_slice\n");
return true;
}
- // %1 = subtensor %0[%offset_sizes_and_strides_1]
+ // %1 = extract_slice %0[%offset_sizes_and_strides_1]
//
// ... // bunch of inplace ops that reduce to %X, equivalent to %1.
// %X = inplace_write(%1)
//
- // // aliasingRead %X in subtensor_insert
- // // aliasingWrite %Y in subtensor_insert
- // ... = subtensor_insert %X into %Y[%offset_sizes_and_strides_1]
+ // // aliasingRead %X in insert_slice
+ // // aliasingWrite %Y in insert_slice
+ // ... = insert_slice %X into %Y[%offset_sizes_and_strides_1]
if (aliasingReadOp == aliasingWriteOp) {
- assert(aliasingRead.get() == subTensorInsertOp.source() &&
- "expected read to source of subtensor_insert");
- assert(aliasingWrite.get() == subTensorInsertOp.dest() &&
- "expected write to dest of subtensor_insert");
- if (areEquivalentSubTensorOps(subTensorOp, subTensorInsertOp)) {
- LDBG("---->clobbering matching subtensor/subtensor_insert\n");
+ assert(aliasingRead.get() == insertSliceOp.source() &&
+ "expected read to source of insert_slice");
+ assert(aliasingWrite.get() == insertSliceOp.dest() &&
+ "expected write to dest of insert_slice");
+ if (areEquivalentExtractSliceOps(extractSliceOp, insertSliceOp)) {
+ LDBG("---->clobbering matching extract_slice/insert_slice\n");
return true;
}
}
@@ -1262,114 +1263,114 @@ static LogicalResult bufferize(OpBuilder &b, ReturnOp returnOp,
return success();
}
-/// Bufferize SubTensorOp to subview with optional alloc + copy depending on
+/// Bufferize ExtractSliceOp to subview with optional alloc + copy depending on
/// whether or not it is marked inplaceable.
-/// Note that `getInplaceableOpResult` on a SubTensorOp always returns null.
-/// As consequence a SubTensorOp always alloc + copy when taken in
+/// Note that `getInplaceableOpResult` on a ExtractSliceOp always returns null.
+/// As consequence a ExtractSliceOp always alloc + copy when taken in
/// isolation.
-static LogicalResult bufferize(OpBuilder &b, SubTensorOp subTensorOp,
+static LogicalResult bufferize(OpBuilder &b, ExtractSliceOp extractSliceOp,
BlockAndValueMapping &bvm,
const BufferizationAliasInfo &aliasInfo) {
- LDBG("bufferize: " << *subTensorOp << '\n');
+ LDBG("bufferize: " << *extractSliceOp << '\n');
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
- b.setInsertionPoint(subTensorOp);
+ b.setInsertionPoint(extractSliceOp);
- Location loc = subTensorOp.getLoc();
+ Location loc = extractSliceOp.getLoc();
// Bail if source was not bufferized.
- Value srcMemref = lookup(bvm, subTensorOp.source());
+ Value srcMemref = lookup(bvm, extractSliceOp.source());
if (!srcMemref)
return failure();
auto srcMemrefType = srcMemref.getType().cast<MemRefType>();
- auto dstTensorType = subTensorOp.result().getType().cast<RankedTensorType>();
+ auto dstTensorType =
+ extractSliceOp.result().getType().cast<RankedTensorType>();
// If not inplaceable, alloc.
Value alloc;
- auto inPlace = getInPlace(subTensorOp->getResult(0));
+ auto inPlace = getInPlace(extractSliceOp->getResult(0));
if (inPlace != InPlaceSpec::True) {
- alloc =
- createNewAllocDeallocPairForShapedValue(b, loc, subTensorOp.result());
+ alloc = createNewAllocDeallocPairForShapedValue(b, loc,
+ extractSliceOp.result());
b.setInsertionPointAfter(alloc.getDefiningOp());
}
// Bufferize to subview.
auto subviewMemRefType =
memref::SubViewOp::inferRankReducedResultType(
- dstTensorType.getRank(), srcMemrefType, subTensorOp.getMixedOffsets(),
- subTensorOp.getMixedSizes(), subTensorOp.getMixedStrides())
+ dstTensorType.getRank(), srcMemrefType,
+ extractSliceOp.getMixedOffsets(), extractSliceOp.getMixedSizes(),
+ extractSliceOp.getMixedStrides())
.cast<MemRefType>();
Value subView = b.create<memref::SubViewOp>(
- loc, subviewMemRefType, srcMemref, subTensorOp.getMixedOffsets(),
- subTensorOp.getMixedSizes(), subTensorOp.getMixedStrides());
+ loc, subviewMemRefType, srcMemref, extractSliceOp.getMixedOffsets(),
+ extractSliceOp.getMixedSizes(), extractSliceOp.getMixedStrides());
/// If not inplaceable, copy.
if (alloc) {
- b.create<CopyOp>(subTensorOp.getLoc(), subView, alloc);
+ b.create<CopyOp>(extractSliceOp.getLoc(), subView, alloc);
subView = alloc;
}
- map(bvm, subTensorOp.result(), subView);
+ map(bvm, extractSliceOp.result(), subView);
return success();
}
-static LogicalResult bufferize(OpBuilder &b,
- SubTensorInsertOp subTensorInsertOp,
+static LogicalResult bufferize(OpBuilder &b, InsertSliceOp insertSliceOp,
BlockAndValueMapping &bvm,
const BufferizationAliasInfo &aliasInfo) {
- LDBG("bufferize: " << *subTensorInsertOp << '\n');
+ LDBG("bufferize: " << *insertSliceOp << '\n');
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
- b.setInsertionPoint(subTensorInsertOp);
- Location loc = subTensorInsertOp.getLoc();
+ b.setInsertionPoint(insertSliceOp);
+ Location loc = insertSliceOp.getLoc();
- Value dstMemref = lookup(bvm, subTensorInsertOp.dest());
+ Value dstMemref = lookup(bvm, insertSliceOp.dest());
if (!dstMemref)
return failure();
- auto inPlace = getInPlace(subTensorInsertOp->getResult(0));
+ auto inPlace = getInPlace(insertSliceOp->getResult(0));
if (inPlace != InPlaceSpec::True) {
- // Since subtensor_insert arise from tiling and introducing loops, this
+ // Since insert_slice arise from tiling and introducing loops, this
// case is generally a deal breaker. When used with loops, this ends up
// cloning the whole tensor on every single iteration and is a symptom
// of a catastrophically bad scheduling decision.
// TODO: be very loud about it or even consider failing the pass.
- Value newDstMemref = createNewAllocDeallocPairForShapedValue(
- b, loc, subTensorInsertOp.result());
+ Value newDstMemref =
+ createNewAllocDeallocPairForShapedValue(b, loc, insertSliceOp.result());
b.setInsertionPointAfter(newDstMemref.getDefiningOp());
- b.create<CopyOp>(subTensorInsertOp.getLoc(), dstMemref, newDstMemref);
+ b.create<CopyOp>(insertSliceOp.getLoc(), dstMemref, newDstMemref);
dstMemref = newDstMemref;
}
auto dstMemrefType = dstMemref.getType().cast<MemRefType>();
- Value srcMemref = lookup(bvm, subTensorInsertOp.source());
+ Value srcMemref = lookup(bvm, insertSliceOp.source());
if (!srcMemref)
return failure();
auto subviewMemRefType =
memref::SubViewOp::inferRankReducedResultType(
- subTensorInsertOp.getSourceType().getRank(), dstMemrefType,
- subTensorInsertOp.getMixedOffsets(),
- subTensorInsertOp.getMixedSizes(),
- subTensorInsertOp.getMixedStrides())
+ insertSliceOp.getSourceType().getRank(), dstMemrefType,
+ insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
+ insertSliceOp.getMixedStrides())
.cast<MemRefType>();
// A copy of the source buffer is needed if either:
// - The producer of `source` is not inplace. This is the case where a
- // subtensor is computed out of place into the inplace full tensor.
+ // slice is computed out of place into the inplace full tensor.
// - The result is not inplace. This is the case where the whole tensor is
// cloned and the clone needs to be updated.
- if (!aliasInfo.isSourceEquivalentToAMatchingSubTensorOp(subTensorInsertOp) ||
+ if (!aliasInfo.isSourceEquivalentToAMatchingExtractSliceOp(insertSliceOp) ||
inPlace != InPlaceSpec::True) {
- LDBG("subtensor_insert needs extra source copy: "
- << subTensorInsertOp.source() << " -> copy\n");
+ LDBG("insert_slice needs extra source copy: " << insertSliceOp.source()
+ << " -> copy\n");
// Take a subview of the dst.
Value subView = b.create<memref::SubViewOp>(
- loc, subviewMemRefType, dstMemref, subTensorInsertOp.getMixedOffsets(),
- subTensorInsertOp.getMixedSizes(), subTensorInsertOp.getMixedStrides());
- b.create<CopyOp>(subTensorInsertOp.getLoc(), srcMemref, subView);
+ loc, subviewMemRefType, dstMemref, insertSliceOp.getMixedOffsets(),
+ insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides());
+ b.create<CopyOp>(insertSliceOp.getLoc(), srcMemref, subView);
}
- map(bvm, subTensorInsertOp.result(), dstMemref);
+ map(bvm, insertSliceOp.result(), dstMemref);
return success();
}
@@ -1433,54 +1434,54 @@ static LogicalResult bufferize(OpBuilder &b, VectorTransferOpInterface op,
//===----------------------------------------------------------------------===//
///
-/// Rationale for bufferizing `%1 = subtensor %0[...]` inplace.
+/// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace.
/// ===========================================================
///
-/// When bufferized out of place, a SubTensorOp lowers to alloc + copy. This
+/// When bufferized out of place, a ExtractSlice lowers to alloc + copy. This
/// cannot change the flow of information for either the source or the
/// result buffers.
///
-/// When bufferized inplace, a SubTensorOp does not by itself create any read or
-/// write from memory. Instead, it has the effect of merging the alias sets of
-/// the source and the result buffers.
+/// When bufferized inplace, a ExtractSliceOp does not by itself create any read
+/// or write from memory. Instead, it has the effect of merging the alias sets
+/// of the source and the result buffers.
///
/// An analysis is required to ensure inplace bufferization would not result in
/// RaW dependence violations.
-static void bufferizableInPlaceAnalysis(SubTensorOp subTensorOp,
+static void bufferizableInPlaceAnalysis(ExtractSliceOp extractSliceOp,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
LDBG('\n');
- LDBG("Try to bufferize subtensor inplace: " << *subTensorOp << '\n');
+ LDBG("Try to bufferize extract_slice inplace: " << *extractSliceOp << '\n');
- // If `subTensorOp` were to be bufferized inplace, it cannot end up
+ // If `extractSliceOp` were to be bufferized inplace, it cannot end up
// aliasing a write into a non-writeable buffer.
bool wouldCreateAliasingWriteToNonWriteableBuffer =
- aliasInfo.aliasesInPlaceWrite(subTensorOp) &&
- aliasInfo.aliasesNonWriteableBuffer(subTensorOp->getOpOperand(0));
+ aliasInfo.aliasesInPlaceWrite(extractSliceOp) &&
+ aliasInfo.aliasesNonWriteableBuffer(extractSliceOp->getOpOperand(0));
if (wouldCreateAliasingWriteToNonWriteableBuffer)
LDBG("->the corresponding buffer is not writeable\n");
LDBG("->bufferizes to writeable inplace buffer\n");
- // In any of subTensorOp.result's aliases, can we find 2 such that we hit
+ // In any of extractSliceOp.result's aliases, can we find 2 such that we hit
// an interfering write?
- Value s = subTensorOp.source(), r = subTensorOp.result();
+ Value s = extractSliceOp.source(), r = extractSliceOp.result();
bool foundInterference = wouldCreateAliasingWriteToNonWriteableBuffer ||
// Do not consider (s, s) and (r, r) as all the
// aliasings already exist by construction; we are
// interested in new interfering aliases only.
aliasInfo.wouldCreateReadAfterWriteInterference(
- s, r, subTensorOp, domInfo) ||
+ s, r, extractSliceOp, domInfo) ||
aliasInfo.wouldCreateReadAfterWriteInterference(
- r, s, subTensorOp, domInfo);
+ r, s, extractSliceOp, domInfo);
if (foundInterference) {
- setInPlaceOpResult(subTensorOp->getResult(0), InPlaceSpec::False);
+ setInPlaceOpResult(extractSliceOp->getResult(0), InPlaceSpec::False);
} else {
- setInPlaceOpResult(subTensorOp->getResult(0), InPlaceSpec::True);
- aliasInfo.bufferizeInPlace(subTensorOp->getResult(0),
- subTensorOp->getOpOperand(0));
+ setInPlaceOpResult(extractSliceOp->getResult(0), InPlaceSpec::True);
+ aliasInfo.bufferizeInPlace(extractSliceOp->getResult(0),
+ extractSliceOp->getOpOperand(0));
}
- LDBG("Done bufferizing subtensor\n");
+ LDBG("Done bufferizing extract_slice\n");
}
/// Analyze the (opOperand, result) pair to determine whether the result can
@@ -1490,8 +1491,8 @@ static void bufferizableInPlaceAnalysis(OpOperand &operand, OpResult result,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
Operation *op = result.getDefiningOp();
- assert(result && !isa<SubTensorOp>(op) &&
- "expected OpResult not coming from a SubTensorOp");
+ assert(result && !isa<ExtractSliceOp>(op) &&
+ "expected OpResult not coming from a ExtractSliceOp");
int64_t resultNumber = result.getResultNumber();
(void)resultNumber;
@@ -1541,48 +1542,47 @@ static void inPlaceAnalysisFuncOpInternals(FuncOp funcOp,
"expected a funcOp definition with a body");
// Collect ops so we can build our own traversal.
- SmallVector<SubTensorOp> subTensorOps;
- SmallVector<SubTensorInsertOp> subTensorInsertOps;
- SmallVector<Operation *> nonSubTensorOps;
+ SmallVector<ExtractSliceOp> extractSliceOps;
+ SmallVector<InsertSliceOp> insertSliceOps;
+ SmallVector<Operation *> nonSliceOps;
funcOp.walk([&](Operation *op) {
- if (auto subTensorOp = dyn_cast<SubTensorOp>(op))
- return subTensorOps.push_back(subTensorOp);
- if (auto subTensorInsertOp = dyn_cast<SubTensorInsertOp>(op))
- return subTensorInsertOps.push_back(subTensorInsertOp);
+ if (auto extractSliceOp = dyn_cast<ExtractSliceOp>(op))
+ return extractSliceOps.push_back(extractSliceOp);
+ if (auto insertSliceOp = dyn_cast<InsertSliceOp>(op))
+ return insertSliceOps.push_back(insertSliceOp);
auto isaTensor = [](Type t) { return t.isa<TensorType>(); };
// No tensors => no buffers.
if (none_of(op->getOperandTypes(), isaTensor) &&
none_of(op->getResultTypes(), isaTensor))
return;
- nonSubTensorOps.push_back(op);
+ nonSliceOps.push_back(op);
});
- // Bufferize SubTensorInsertOp greedily: we almost never want to bufferize
+ // Bufferize InsertSliceOp greedily: we almost never want to bufferize
// the tensor "inserted into" to become out-of-place. This implementation
- // does not distinguish between
diff erent SubTensorInsertOps. If we want
- // finer-grained behavior, we could order the SubTensorInsertOps with some
- // metric.
- // Walk SubTensorInsertOps in reverse for better interference behavior.
- for (SubTensorInsertOp subTensorInsertOp : reverse(subTensorInsertOps)) {
- OpOperand &destOpOperand = subTensorInsertOp->getOpOperand(1);
+ // does not distinguish between
diff erent InsertSliceOp. If we want
+ // finer-grained behavior, we could order the InsertSliceOp with some metric.
+ // Walk InsertSliceOp in reverse for better interference behavior.
+ for (InsertSliceOp insertSliceOp : reverse(insertSliceOps)) {
+ OpOperand &destOpOperand = insertSliceOp->getOpOperand(1);
bufferizableInPlaceAnalysis(destOpOperand,
getInplaceableOpResult(destOpOperand),
aliasInfo, domInfo);
}
- // Bufferize all ops except SubTensorOp and SubTensorInsertOp which are
- // handled separately.
+ // Bufferize all ops except ExtractSliceOp and InsertSliceOp which are handled
+ // separately.
// Walk other ops in reverse for better interference behavior.
- for (Operation *op : reverse(nonSubTensorOps))
+ for (Operation *op : reverse(nonSliceOps))
for (OpOperand &opOperand : op->getOpOperands())
if (OpResult result = getInplaceableOpResult(opOperand))
bufferizableInPlaceAnalysis(opOperand, result, aliasInfo, domInfo);
- // Finally, bufferize SubTensorOp.
- // Walk SubTensorOps in reverse for better clobbering behavior: it is easier
- // to detect clobbers of smaller subtensors before larger ones.
- for (SubTensorOp subTensorOp : reverse(subTensorOps))
- bufferizableInPlaceAnalysis(subTensorOp, aliasInfo, domInfo);
+ // Finally, bufferize ExtractSliceOp.
+ // Walk ExtractSliceOps in reverse for better clobbering behavior: it is
+ // easier to detect clobbers of smaller slices before larger ones.
+ for (ExtractSliceOp extractSliceOp : reverse(extractSliceOps))
+ bufferizableInPlaceAnalysis(extractSliceOp, aliasInfo, domInfo);
LDBG("End InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
}
@@ -1611,8 +1611,8 @@ bufferizeFuncOpInternals(FuncOp funcOp, BlockAndValueMapping &bvm,
.Case<memref::DimOp,
LinalgOp,
ReturnOp,
- SubTensorOp,
- SubTensorInsertOp,
+ ExtractSliceOp,
+ InsertSliceOp,
VectorTransferOpInterface>(
[&](auto op) { return bufferize(b, op, bvm, aliasInfo); })
// clang-format on
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index 68102cb0f4807..865d4bf9227ce 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -18,6 +18,7 @@
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
@@ -457,8 +458,8 @@ struct ReplaceUnitExtents : public OpRewritePattern<GenericOp> {
};
} // namespace
-/// Get the reassociation maps to fold the result of a subtensor (or source of a
-/// subtensor_insert) operation with given offsets, and sizes to its
+/// Get the reassociation maps to fold the result of a extract_slice (or source
+/// of a insert_slice) operation with given offsets, and sizes to its
/// rank-reduced version. This is only done for the cases where the size is 1
/// and offset is 0. Strictly speaking the offset 0 is not required in general,
/// but non-zero offsets are not handled by SPIR-V backend at this point (and
@@ -486,41 +487,41 @@ getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) {
}
namespace {
-/// Convert `subtensor` operations to rank-reduced versions.
-struct UseRankReducedSubTensorOp : public OpRewritePattern<SubTensorOp> {
- using OpRewritePattern<SubTensorOp>::OpRewritePattern;
+/// Convert `extract_slice` operations to rank-reduced versions.
+struct UseRankReducedExtractSliceOp
+ : public OpRewritePattern<tensor::ExtractSliceOp> {
+ using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
- LogicalResult matchAndRewrite(SubTensorOp subTensorOp,
+ LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
- RankedTensorType resultType = subTensorOp.getType();
- SmallVector<OpFoldResult> offsets = subTensorOp.getMixedOffsets();
- SmallVector<OpFoldResult> sizes = subTensorOp.getMixedSizes();
- SmallVector<OpFoldResult> strides = subTensorOp.getMixedStrides();
+ RankedTensorType resultType = sliceOp.getType();
+ SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
+ SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
+ SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(resultType.getRank()))
return failure();
- auto rankReducedType =
- SubTensorOp::inferRankReducedResultType(reassociation->size(),
- subTensorOp.getSourceType(),
- offsets, sizes, strides)
- .cast<RankedTensorType>();
-
- Location loc = subTensorOp.getLoc();
- Value newSubTensor = rewriter.create<SubTensorOp>(
- loc, rankReducedType, subTensorOp.source(), offsets, sizes, strides);
- rewriter.replaceOpWithNewOp<TensorExpandShapeOp>(
- subTensorOp, resultType, newSubTensor, *reassociation);
+ auto rankReducedType = tensor::ExtractSliceOp::inferRankReducedResultType(
+ reassociation->size(), sliceOp.getSourceType(),
+ offsets, sizes, strides)
+ .cast<RankedTensorType>();
+
+ Location loc = sliceOp.getLoc();
+ Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
+ loc, rankReducedType, sliceOp.source(), offsets, sizes, strides);
+ rewriter.replaceOpWithNewOp<TensorExpandShapeOp>(sliceOp, resultType,
+ newSlice, *reassociation);
return success();
}
};
-/// Convert `subtensor_insert` operations to rank-reduced versions.
-struct UseRankReducedSubTensorInsertOp
- : public OpRewritePattern<SubTensorInsertOp> {
- using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern;
+/// Convert `insert_slice` operations to rank-reduced versions.
+struct UseRankReducedInsertSliceOp
+ : public OpRewritePattern<tensor::InsertSliceOp> {
+ using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
- LogicalResult matchAndRewrite(SubTensorInsertOp insertOp,
+ LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
PatternRewriter &rewriter) const override {
RankedTensorType sourceType = insertOp.getSourceType();
SmallVector<OpFoldResult> offsets = insertOp.getMixedOffsets();
@@ -533,7 +534,7 @@ struct UseRankReducedSubTensorInsertOp
Location loc = insertOp.getLoc();
auto reshapedSource = rewriter.create<TensorCollapseShapeOp>(
loc, insertOp.source(), *reassociation);
- rewriter.replaceOpWithNewOp<SubTensorInsertOp>(
+ rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
insertOp, reshapedSource, insertOp.dest(), insertOp.getMixedOffsets(),
insertOp.getMixedSizes(), insertOp.getMixedStrides());
return success();
@@ -546,8 +547,9 @@ struct UseRankReducedSubTensorInsertOp
void mlir::linalg::populateFoldUnitExtentDimsPatterns(
RewritePatternSet &patterns) {
auto *context = patterns.getContext();
- patterns.add<FoldUnitDimLoops, ReplaceUnitExtents, UseRankReducedSubTensorOp,
- UseRankReducedSubTensorInsertOp>(context);
+ patterns.add<FoldUnitDimLoops, ReplaceUnitExtents,
+ UseRankReducedExtractSliceOp, UseRankReducedInsertSliceOp>(
+ context);
TensorCollapseShapeOp::getCanonicalizationPatterns(patterns, context);
TensorExpandShapeOp::getCanonicalizationPatterns(patterns, context);
}
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
index 1a9767a556d15..1dbb3348770d0 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
@@ -48,8 +48,8 @@ using llvm::dbgs;
/// are 2 cases:
/// a) buffer case: use the SSA value of the views and a simple alias
/// analysis on subview ops to determine producer-consumer dependences;
-/// b) tensor case: use SSA use-def chains on subtensor ops;
-/// 2. greedily fuse the linalg ops that produce the subview/subtensor.
+/// b) tensor case: use SSA use-def chains on extract_slice ops;
+/// 2. greedily fuse the linalg ops that produce the subview/extract_slice.
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
@@ -73,13 +73,14 @@ getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
// Extract the subranges from the linearized ranges.
for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
// The method `getRangeFromOperandShape` requires using SubViewOp or
- // SubTensorOps. If the value isnt defined from there continue.
+ // ExtractSliceOps. If the value isn't defined from there continue.
// todo: The method should be adapted to get the values from
// `ViewInterface`. The interface needs a `getOrCreateRanges` method which
// currently returns a `linalg.range`. The fix here is to move this op to
// `std` dialect and add the method to `ViewInterface`.
- if (fromSubViewOpOnly && !isa_and_nonnull<memref::SubViewOp, SubTensorOp>(
- opOperand->get().getDefiningOp()))
+ if (fromSubViewOpOnly &&
+ !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
+ opOperand->get().getDefiningOp()))
continue;
AffineMap map = op.getTiedIndexingMap(opOperand);
@@ -221,7 +222,7 @@ static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
SmallVector<int64_t, 4> staticStridesVector(
rank, ShapedType::kDynamicStrideOrOffset);
- resultTypes.push_back(SubTensorOp::inferResultType(
+ resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
staticStridesVector));
}
@@ -252,15 +253,15 @@ static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
}
/// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
-/// expected to be defined by a subview op or a subtensor op.
+/// expected to be defined by a subview op or an extract_slice op.
static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
Value shapedOperand, unsigned dim) {
Operation *shapeProducingOp = shapedOperand.getDefiningOp();
if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
return subViewOp.getOrCreateRanges(b, loc)[dim];
- if (auto subTensorOp = dyn_cast<SubTensorOp>(shapeProducingOp))
- return subTensorOp.getOrCreateRanges(b, loc)[dim];
- llvm_unreachable("SubviewOp or SubTensorOp expected");
+ if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
+ return sliceOp.getOrCreateRanges(b, loc)[dim];
+ llvm_unreachable("SubviewOp or ExtractSliceOp expected");
}
/// Fuses the producer into the loop immediately enclosing the consumer.
@@ -439,8 +440,8 @@ mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
if (!producerMap)
return llvm::None;
- // Must be a subview or a slice to guarantee there are loops we can fuse
- // into.
+ // Must be a subview or an extract_slice to guarantee there are loops we can
+ // fuse into.
auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
if (!subView) {
LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
@@ -473,8 +474,8 @@ static void getProducerOfTensor(Value tensor, OpResult &opResult) {
opResult = tensor.cast<OpResult>();
return;
}
- if (auto subTensorOp = tensor.getDefiningOp<SubTensorOp>()) {
- tensor = subTensorOp.source();
+ if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
+ tensor = sliceOp.source();
continue;
}
if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
@@ -512,11 +513,11 @@ mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
Value inputTensor = consumerOpOperand.get();
- // Must be a subtensor to guarantee there are loops we can fuse into.
- auto subTensor = inputTensor.getDefiningOp<SubTensorOp>();
- if (!subTensor) {
+ // Must be an extract_slice op to guarantee there are loops we can fuse into.
+ auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
+ if (!sliceOp) {
LLVM_DEBUG(llvm::dbgs()
- << "\nNot fusable, not a subtensor: " << inputTensor);
+ << "\nNot fusable, not an extract_slice op: " << inputTensor);
return {};
}
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Hoisting.cpp b/mlir/lib/Dialect/Linalg/Transforms/Hoisting.cpp
index 5962a98cb6093..07a5fc5c75029 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Hoisting.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Hoisting.cpp
@@ -19,6 +19,7 @@
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SCF/Utils.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
@@ -42,13 +43,13 @@ namespace {
/// instructions that need to be hoisted too.
struct HoistableWrite {
vector::TransferWriteOp transferWriteOp;
- SubTensorInsertOp subTensorInsertOp;
+ tensor::InsertSliceOp insertSliceOp;
};
/// Represents a unit of hoistable TransferReadOp. This may comprise other
/// instructions that need to be hoisted too.
struct HoistableRead {
vector::TransferReadOp transferReadOp;
- SubTensorOp subTensorOp;
+ tensor::ExtractSliceOp extractSliceOp;
};
} // namespace
@@ -71,7 +72,8 @@ static bool isEqualOffsetSizeOrStride(OpFoldResult op1, OpFoldResult op2) {
}
/// Return true is all offsets, sizes and strides are equal.
-static bool sameOffsetsSizesAndStrides(SubTensorOp s, SubTensorInsertOp si) {
+static bool sameOffsetsSizesAndStrides(tensor::ExtractSliceOp s,
+ tensor::InsertSliceOp si) {
if (s.static_offsets().size() != si.static_offsets().size())
return false;
if (s.static_sizes().size() != si.static_sizes().size())
@@ -99,38 +101,37 @@ static HoistableRead findMatchingTransferRead(HoistableWrite write,
LLVM_DEBUG(DBGS() << "findMatchingTransferRead for: "
<< *write.transferWriteOp.getOperation() << "\n");
- if (write.subTensorInsertOp)
- LLVM_DEBUG(DBGS() << "findMatchingTransferRead subTensorInsertOp: "
- << *write.subTensorInsertOp.getOperation() << "\n");
+ if (write.insertSliceOp)
+ LLVM_DEBUG(DBGS() << "findMatchingTransferRead inserSliceOp: "
+ << *write.insertSliceOp.getOperation() << "\n");
for (Operation *user : srcTensor.getUsers()) {
LLVM_DEBUG(DBGS() << "findMatchingTransferRead inspect user: " << *user
<< "\n");
- // If HoistableWrite involves a SubTensorInsertOp, we need to find a
- // matching SubTensorOp.
- SubTensorOp subTensorOp;
+ // If HoistableWrite involves a InsertSliceOp, we need to find a
+ // matching ExtractSliceOp.
+ tensor::ExtractSliceOp sliceOp;
Operation *maybeTransferReadUser = user;
- if (write.subTensorInsertOp) {
- subTensorOp = dyn_cast<SubTensorOp>(user);
- if (!subTensorOp || subTensorOp.getResult().getType() !=
- write.subTensorInsertOp.source().getType())
+ if (write.insertSliceOp) {
+ sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
+ if (!sliceOp || sliceOp.getResult().getType() !=
+ write.insertSliceOp.source().getType())
continue;
LLVM_DEBUG(DBGS() << "check whether sameOffsetsSizesAndStrides: "
- << *subTensorOp << " vs " << *write.subTensorInsertOp
- << "\n");
- if (!sameOffsetsSizesAndStrides(subTensorOp, write.subTensorInsertOp))
+ << *sliceOp << " vs " << *write.insertSliceOp << "\n");
+ if (!sameOffsetsSizesAndStrides(sliceOp, write.insertSliceOp))
continue;
LLVM_DEBUG(DBGS() << "sameOffsetsSizesAndStrides: SUCCESS\n");
- // If we got here, subTensorOp is hoistable iff it has exactly 2 uses:
+ // If we got here, sliceOp is hoistable iff it has exactly 2 uses:
// 1. the transfer_write we want to hoist.
// 2. a matching transfer_read.
// Anything else, we skip.
bool skip = false;
Operation *otherUser = nullptr;
- for (Operation *u : subTensorOp->getUsers()) {
+ for (Operation *u : sliceOp->getUsers()) {
if (u == write.transferWriteOp)
continue;
if (otherUser) {
@@ -149,7 +150,7 @@ static HoistableRead findMatchingTransferRead(HoistableWrite write,
auto read = dyn_cast<vector::TransferReadOp>(maybeTransferReadUser);
if (read && read.indices() == write.transferWriteOp.indices() &&
read.getVectorType() == write.transferWriteOp.getVectorType())
- return HoistableRead{read, subTensorOp};
+ return HoistableRead{read, sliceOp};
}
return HoistableRead();
}
@@ -168,13 +169,13 @@ static bool tensorChunkAccessedByUnknownOp(HoistableWrite write,
Operation *user = use.getOwner();
// Skip the candidate use, only inspect the "other" uses.
if (user == candidateRead.transferReadOp ||
- user == candidateRead.subTensorOp || user == write.transferWriteOp ||
- user == write.subTensorInsertOp)
+ user == candidateRead.extractSliceOp ||
+ user == write.transferWriteOp || user == write.insertSliceOp)
continue;
- // Consider all transitive uses through a subtensor / subtensor_insert.
+ // Consider all transitive uses through a extract_slice / insert_slice.
// TODO: atm we just bail because a stronger analysis is needed for these
// cases.
- if (isa<SubTensorOp, SubTensorInsertOp>(user))
+ if (isa<tensor::ExtractSliceOp, tensor::InsertSliceOp>(user))
return true;
// Consider all transitive uses through a vector.transfer_write.
if (auto writeUser = dyn_cast<vector::TransferWriteOp>(user)) {
@@ -214,7 +215,7 @@ static bool tensorChunkAccessedByUnknownOp(HoistableWrite write,
/// Return the `forOp`-invariant HoistableWrite that produces `yieldOperand`.
/// Return the null HoistableWrite() if it is not comprised of a
-/// vector.transfer_write + optional subtensor_insert or if any of the indexings
+/// vector.transfer_write + optional insert_slice or if any of the indexings
/// is `forOp`-dependent.
static HoistableWrite
getLoopInvariantTransferWriteOpDefining(scf::ForOp forOp,
@@ -229,26 +230,26 @@ getLoopInvariantTransferWriteOpDefining(scf::ForOp forOp,
return HoistableWrite{write, nullptr};
}
- if (auto subTensorInsertOp = v.getDefiningOp<SubTensorInsertOp>()) {
- // Inserted subTensor must come from vector.transfer_write.
+ if (auto insertSliceOp = v.getDefiningOp<tensor::InsertSliceOp>()) {
+ // Inserted slice must come from vector.transfer_write.
auto write =
- subTensorInsertOp.source().getDefiningOp<vector::TransferWriteOp>();
+ insertSliceOp.source().getDefiningOp<vector::TransferWriteOp>();
if (!write)
return HoistableWrite();
// Tensor inserted into must be a BBArg at position matching yieldOperand's.
- auto bbArg = subTensorInsertOp.dest().dyn_cast<BlockArgument>();
+ auto bbArg = insertSliceOp.dest().dyn_cast<BlockArgument>();
if (!bbArg || bbArg.getOwner()->getParentOp() != forOp ||
bbArg.getArgNumber() != /*num iv=*/1 + yieldOperand.getOperandNumber())
return HoistableWrite();
// Indexing inserted into must not depend on `forOp`.
- for (Value operand : subTensorInsertOp->getOperands().drop_front(
- SubTensorInsertOp::getOffsetSizeAndStrideStartOperandIndex()))
+ for (Value operand : insertSliceOp->getOperands().drop_front(
+ tensor::InsertSliceOp::getOffsetSizeAndStrideStartOperandIndex()))
if (!forOp.isDefinedOutsideOfLoop(operand))
return HoistableWrite();
- return HoistableWrite{write, subTensorInsertOp};
+ return HoistableWrite{write, insertSliceOp};
}
return HoistableWrite();
@@ -260,18 +261,18 @@ static void hoistReadWrite(HoistableRead read, HoistableWrite write,
scf::ForOp forOp = cast<scf::ForOp>(tensorBBArg.getOwner()->getParentOp());
assert(read.transferReadOp && write.transferWriteOp &&
"expected transfer_read and transfer_write ops to be set");
- assert(((read.subTensorOp && write.subTensorInsertOp) ||
- (!read.subTensorOp && !write.subTensorInsertOp)) &&
- "expected matching subtensor / subtensor_insert");
+ assert(((read.extractSliceOp && write.insertSliceOp) ||
+ (!read.extractSliceOp && !write.insertSliceOp)) &&
+ "expected matching extract_slice / insert_slice");
LLVM_DEBUG(DBGS() << "In forOp:\n"
<< *forOp.getOperation()
<< "\nHoist: " << *read.transferReadOp.getOperation()
<< "\nHoist: " << *write.transferWriteOp.getOperation()
<< "\nInvolving: " << tensorBBArg << "\n");
- // If a read subtensor is present, hoist it.
- if (read.subTensorOp && failed(forOp.moveOutOfLoop({read.subTensorOp})))
- llvm_unreachable("Unexpected failure moving subtensor out of loop");
+ // If a read slice is present, hoist it.
+ if (read.extractSliceOp && failed(forOp.moveOutOfLoop({read.extractSliceOp})))
+ llvm_unreachable("Unexpected failure moving extract_slice out of loop");
// Hoist the transfer_read op.
if (failed(forOp.moveOutOfLoop({read.transferReadOp})))
@@ -282,20 +283,20 @@ static void hoistReadWrite(HoistableRead read, HoistableWrite write,
unsigned initArgNumber = tensorBBArg.getArgNumber() - /*numIvs=*/1;
// Update the source tensor.
- if (read.subTensorOp)
- read.subTensorOp.sourceMutable().assign(forOp.initArgs()[initArgNumber]);
+ if (read.extractSliceOp)
+ read.extractSliceOp.sourceMutable().assign(forOp.initArgs()[initArgNumber]);
else
read.transferReadOp.sourceMutable().assign(forOp.initArgs()[initArgNumber]);
// Hoist write after.
- if (write.subTensorInsertOp)
- write.subTensorInsertOp->moveAfter(forOp);
+ if (write.insertSliceOp)
+ write.insertSliceOp->moveAfter(forOp);
write.transferWriteOp->moveAfter(forOp);
// Update the yield.
auto yieldOp = cast<scf::YieldOp>(forOp.region().front().getTerminator());
- if (write.subTensorInsertOp)
- yieldOp->setOperand(initArgNumber, write.subTensorInsertOp.dest());
+ if (write.insertSliceOp)
+ yieldOp->setOperand(initArgNumber, write.insertSliceOp.dest());
else
yieldOp->setOperand(initArgNumber, write.transferWriteOp.source());
@@ -306,13 +307,13 @@ static void hoistReadWrite(HoistableRead read, HoistableWrite write,
// Transfer write has been hoisted, need to update the vector and tensor
// source. Replace the result of the loop to use the new tensor created
// outside the loop.
- // Depending on whether a subtensor_insert is present or not, it carries the
+ // Depending on whether a insert_slice is present or not, it carries the
// update on the tensor operands.
- if (write.subTensorInsertOp) {
+ if (write.insertSliceOp) {
newForOp.getResult(initArgNumber)
- .replaceAllUsesWith(write.subTensorInsertOp.getResult());
- write.transferWriteOp.sourceMutable().assign(read.subTensorOp.result());
- write.subTensorInsertOp.destMutable().assign(read.subTensorOp.source());
+ .replaceAllUsesWith(write.insertSliceOp.getResult());
+ write.transferWriteOp.sourceMutable().assign(read.extractSliceOp.result());
+ write.insertSliceOp.destMutable().assign(read.extractSliceOp.source());
} else {
newForOp.getResult(initArgNumber)
.replaceAllUsesWith(write.transferWriteOp.getResult(0));
@@ -350,9 +351,9 @@ void mlir::linalg::hoistRedundantVectorTransfersOnTensor(FuncOp func) {
LLVM_DEBUG(dbgs() << "\n";
DBGS() << "Candidate write for hoisting: "
<< *write.transferWriteOp.getOperation() << "\n");
- if (write.subTensorInsertOp)
- LLVM_DEBUG(DBGS() << "Candidate subtensor_insert for hoisting: "
- << *write.subTensorInsertOp.getOperation() << "\n");
+ if (write.insertSliceOp)
+ LLVM_DEBUG(DBGS() << "Candidate insert_slice for hoisting: "
+ << *write.insertSliceOp.getOperation() << "\n");
if (llvm::any_of(write.transferWriteOp.indices(),
[&forOp](Value index) {
return !forOp.isDefinedOutsideOfLoop(index);
@@ -788,8 +789,8 @@ LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
// The implementation proceeds in a stack-like fashion:
// 1. Iteratively clone and step into the loops, pushing the `packedTensor`
// deeper in the stack.
- // 2. Create a SubTensorInsert at the top of the stack.
- // 3. Iteratively pop and yield the result of the SubTensorInsertOp across
+ // 2. Create a InsertSliceOp at the top of the stack.
+ // 3. Iteratively pop and yield the result of the InsertSliceOp across
// the cloned loops.
SmallVector<Value> clonedLoopIvs, leadingPackedTensorIndexings;
clonedLoopIvs.reserve(nLoops);
@@ -799,10 +800,10 @@ LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
backwardSlice.insert(padTensorOp);
// Stack step 1. iteratively clone loops and push `packedTensor`.
for (Operation *op : backwardSlice) {
- // Specifically sit out in the subtenso(packedTensor) case: this is the
+ // Specifically sit out in the extract_slice(packedTensor) case: this is the
// piece we seek to replace.
- if (auto subTensor = dyn_cast<SubTensorOp>(op))
- if (bvm.lookupOrDefault(subTensor.source()) == packedTensor)
+ if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op))
+ if (bvm.lookupOrDefault(sliceOp.source()) == packedTensor)
continue;
auto effects = dyn_cast<MemoryEffectOpInterface>(op);
bool hasNoEffects = !effects || effects.hasNoEffect();
@@ -839,7 +840,7 @@ LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
packedTensor = clonedForOp.getRegionIterArgs().front();
}
- // Stack step 2. create SubTensorInsertOp at the top of the stack.
+ // Stack step 2. create InsertSliceOp at the top of the stack.
// offsets = [clonedLoopIvs, 0 .. 0].
SmallVector<OpFoldResult> offsets(leadingPackedTensorIndexings.begin(),
leadingPackedTensorIndexings.end());
@@ -856,8 +857,8 @@ LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
SmallVector<OpFoldResult> strides(nLoops + paddedRank, b.getIndexAttr(1));
Value inserted =
- b.create<SubTensorInsertOp>(loc, bvm.lookup(padTensorOp.result()),
- packedTensor, offsets, sizes, strides);
+ b.create<tensor::InsertSliceOp>(loc, bvm.lookup(padTensorOp.result()),
+ packedTensor, offsets, sizes, strides);
// Stack step 3. iteratively pop the stack and propagate the yield.
Value valueToYield = inserted;
@@ -869,7 +870,7 @@ LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
}
// Now the packed tensor is ready, replace the original padding op by a
- // 1x..x1 SubTensor [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
+ // 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
b.setInsertionPoint(padTensorOp);
SmallVector<Value> loopIterationCounts =
llvm::to_vector<4>(llvm::map_range(packingLoops, [&](Operation *loop) {
@@ -888,8 +889,8 @@ LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
packedTensor =
scf::getForInductionVarOwner(clonedLoopIvs.front())->getResult(0);
padTensorOp.replaceAllUsesWith(
- b.create<SubTensorOp>(loc, padTensorOp.getResultType(), packedTensor,
- offsets, sizes, strides)
+ b.create<tensor::ExtractSliceOp>(loc, padTensorOp.getResultType(),
+ packedTensor, offsets, sizes, strides)
->getResult(0));
Operation *toErase = padTensorOp;
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
index 98c1454858d1d..a9366d1a271d3 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
@@ -254,18 +254,18 @@ tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
res = op.clone(b, loc, resultTensorTypes, tiledOperands);
- // Insert a subtensor_insert for each output tensor.
+ // Insert a insert_slice for each output tensor.
unsigned resultIdx = 0;
for (OpOperand *opOperand : op.getOutputTensorOperands()) {
// TODO: use an interface/adaptor to avoid leaking position in
// `tiledOperands`.
Value outputTensor = tiledOperands[opOperand->getOperandNumber()];
- if (auto subtensor = outputTensor.getDefiningOp<SubTensorOp>()) {
- tensorResults.push_back(b.create<SubTensorInsertOp>(
- loc, subtensor.source().getType(), res->getResult(resultIdx),
- subtensor.source(), subtensor.offsets(), subtensor.sizes(),
- subtensor.strides(), subtensor.static_offsets(),
- subtensor.static_sizes(), subtensor.static_strides()));
+ if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) {
+ tensorResults.push_back(b.create<tensor::InsertSliceOp>(
+ loc, sliceOp.source().getType(), res->getResult(resultIdx),
+ sliceOp.source(), sliceOp.offsets(), sliceOp.sizes(),
+ sliceOp.strides(), sliceOp.static_offsets(), sliceOp.static_sizes(),
+ sliceOp.static_strides()));
} else {
tensorResults.push_back(res->getResult(resultIdx));
}
@@ -406,7 +406,7 @@ void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
- SubTensorOp::getCanonicalizationPatterns(patterns, ctx);
+ tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
index 45c91c02168c8..da1afb685a26e 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
@@ -16,6 +16,7 @@
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
@@ -128,14 +129,13 @@ static LogicalResult padOperandToSmallestStaticBoundingBox(
// Already static shape, no need to pad.
if (llvm::none_of(opToPad.getShape(opOperand), ShapedType::isDynamic))
return success();
- auto subtensor = opOperand->get().getDefiningOp<SubTensorOp>();
- // Not a subtensor, cannot construct a static bounding box.
- if (!subtensor)
+ auto sliceOp = opOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
+ // Not a slice op, cannot construct a static bounding box.
+ if (!sliceOp)
return failure();
SmallVector<int64_t> staticSizes;
staticSizes.reserve(opToPad.getRank(opOperand));
- auto shapedOp =
- cast<OffsetSizeAndStrideOpInterface>(subtensor.getOperation());
+ auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation());
for (auto size : shapedOp.getMixedSizes()) {
auto indexAttr = size.is<Attribute>()
? size.get<Attribute>().dyn_cast<IntegerAttr>()
@@ -195,8 +195,8 @@ static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter,
linalg::LinalgOp paddedOp =
opToPad.clone(rewriter, loc, resultTensorTypes, newOperands);
- // Recover the subtensor out of the new static results. This keeps the
- // original linalg op around because it uses the dims of the original results.
+ // Recover the slice out of the new static results. This keeps the original
+ // linalg op around because it uses the dims of the original results.
// This later folds away.
SmallVector<Value> paddedSubviewResults;
paddedSubviewResults.reserve(opToPad->getNumResults());
@@ -211,7 +211,7 @@ static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter,
return dimOp.getResult();
}));
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
- paddedSubviewResults.push_back(rewriter.create<SubTensorOp>(
+ paddedSubviewResults.push_back(rewriter.create<tensor::ExtractSliceOp>(
loc, std::get<1>(it), offsets, sizes, strides));
}
// Replace the transient `opToPad` locally, except for uses that we just
@@ -679,7 +679,7 @@ LogicalResult PadTensorOpTransformationPattern::matchAndRewrite(
rewriter.create<linalg::FillOp>(loc, initTensor, padValue).result();
// Copy original contents into new tensor
- // Uses linalg.generic, but could be done with std.subtensor_insert
+ // Uses linalg.generic, but could be done with tensor.insert_slice
SmallVector<AffineExpr, 4> outputExprs;
for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
@@ -719,13 +719,13 @@ static OpFoldResult asOpFoldResult(OpBuilder &builder, Value val) {
return val;
}
-LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
- SubTensorOp subTensorOp, PatternRewriter &rewriter) const {
- auto padOp = subTensorOp.source().getDefiningOp<PadTensorOp>();
+LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
+ tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
+ auto padOp = sliceOp.source().getDefiningOp<PadTensorOp>();
if (!padOp)
return failure();
// Only unit stride supported.
- if (!subTensorOp.hasUnitStride())
+ if (!sliceOp.hasUnitStride())
return failure();
// Only constant padding value supported.
Value padValue = padOp.getConstantPaddingValue();
@@ -734,7 +734,7 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
// Helper variables and functions for various arithmetic operations. These are
// used extensively for computing new offset/length and padding values.
- Location loc = subTensorOp.getLoc();
+ Location loc = sliceOp.getLoc();
AffineExpr dim0, dim1;
bindDims(rewriter.getContext(), dim0, dim1);
// Add two integers.
@@ -786,8 +786,8 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
int64_t rank = padOp.getSourceType().getRank();
for (unsigned dim = 0; dim < rank; ++dim) {
auto low = asValue(rewriter, loc, padOp.getMixedLowPad()[dim]);
- auto offset = asValue(rewriter, loc, subTensorOp.getMixedOffsets()[dim]);
- auto length = asValue(rewriter, loc, subTensorOp.getMixedSizes()[dim]);
+ auto offset = asValue(rewriter, loc, sliceOp.getMixedOffsets()[dim]);
+ auto length = asValue(rewriter, loc, sliceOp.getMixedSizes()[dim]);
auto srcSize = rewriter.createOrFold<memref::DimOp>(
loc, padOp.source(), dim);
@@ -805,19 +805,19 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
//
// The original read could also have started in the high padding zone.
// In that case, set the offset to the end of source tensor. The new
- // SubTensorOp length will be zero in that case. (Effectively reading no
+ // ExtractSliceOp length will be zero in that case. (Effectively reading no
// data from the source.)
Value newOffset = min(max(sub(offset, low), zero), srcSize);
newOffsets.push_back(asOpFoldResult(rewriter, newOffset));
- // The original SubTensorOp was reading until position `offset + length`.
+ // The original ExtractSliceOp was reading until position `offset + length`.
// Therefore, the corresponding position within the source tensor is:
//
// offset + length - low
//
- // In case the original SubTensorOp stopped reading within the low padding
- // zone, this value can be negative. In that case, the end position of the
- // read should be zero. (Similar to newOffset.)
+ // In case the original ExtractSliceOp stopped reading within the low
+ // padding zone, this value can be negative. In that case, the end position
+ // of the read should be zero. (Similar to newOffset.)
//
// The original read could also have stopped in the high padding zone.
// In that case, set the end positition of the read should be the end of the
@@ -825,7 +825,7 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
//
// endLoc = min(max(offset - low + length, 0), srcSize)
//
- // The new SubTensorOp length is `endLoc - newOffset`.
+ // The new ExtractSliceOp length is `endLoc - newOffset`.
Value endLoc = min(max(add(sub(offset, low), length), zero), srcSize);
Value newLength = sub(endLoc, newOffset);
newLengths.push_back(asOpFoldResult(rewriter, newLength));
@@ -842,7 +842,7 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
}
// The amount of high padding is simply the number of elements remaining,
- // so that the result has the same length as the original SubTensorOp.
+ // so that the result has the same length as the original ExtractSliceOp.
Value newHigh = sub(sub(length, newLength), newLow);
appendIndex(newHigh, newHighs, staticNewHighs);
@@ -852,22 +852,20 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
// Insert cast to ensure that types match. (May be folded away.)
auto castResult = [&](Value val) -> Value {
- auto castOp = rewriter.create<tensor::CastOp>(
- loc, subTensorOp.getType(), val);
+ auto castOp = rewriter.create<tensor::CastOp>(loc, sliceOp.getType(), val);
return castOp;
};
// In cases where the original data source is unused: Emit a GenerateOp and
- // do not generate a SubTensorOp. (The result shape of the SubTensorOp would
+ // do not generate a SliceOp. (The result shape of the SliceOp would
// have a dimension of size 0, the semantics of which is unclear.)
auto createGenerateOp = [&]() {
- // The shape of the GenerateOp is the same as the existing SubTensorOp.
- RankedTensorType type = subTensorOp.getType();
+ // The shape of the GenerateOp is the same as the existing SliceOp.
+ RankedTensorType type = sliceOp.getType();
SmallVector<Value> dynDims;
for (unsigned i = 0; i < type.getRank(); ++i) {
if (type.isDynamicDim(i))
- dynDims.push_back(
- asValue(rewriter, loc, subTensorOp.getMixedOffsets()[i]));
+ dynDims.push_back(asValue(rewriter, loc, sliceOp.getMixedOffsets()[i]));
}
// Create GenerateOp.
@@ -891,14 +889,14 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
return castResult(generateOp);
};
- // Emit a SubTensorOp and a PadTensorOp. Should not be used in cases where
- // the result shape of the new SubTensorOp has a zero dimension.
+ // Emit a SliceOp and a PadTensorOp. Should not be used in cases where
+ // the result shape of the new SliceOp has a zero dimension.
auto createPadTensorOfSubTensor = [&]() {
// Create pad_tensor(subtensor(x)).
- auto newSubTensorOp = rewriter.create<SubTensorOp>(
+ auto newSliceOp = rewriter.create<tensor::ExtractSliceOp>(
loc, padOp.source(), newOffsets, newLengths, newStrides);
auto newPadTensorOp = rewriter.create<PadTensorOp>(
- loc, newSubTensorOp, staticNewLows, staticNewHighs, newLows, newHighs);
+ loc, newSliceOp, staticNewLows, staticNewHighs, newLows, newHighs);
// Copy region to new PadTensorOp.
BlockAndValueMapping bvm;
@@ -911,27 +909,29 @@ LogicalResult SubTensorOfPadTensorSwapPattern::matchAndRewrite(
// Rewrite subtensor(pad_tensor(x)) into a GenerateOp it is statically known
// that the original data source x is not used.
if (hasZeroLen) {
- rewriter.replaceOp(subTensorOp, createGenerateOp());
+ rewriter.replaceOp(sliceOp, createGenerateOp());
return success();
}
// If there are dynamic dimensions: Generate an scf.if check to avoid creating
- // SubTensorOps with result dimensions of size 0 at runtime.
+ // SliceOps with result dimensions of size 0 at runtime.
if (dynHasZeroLenCond) {
auto result = rewriter.create<scf::IfOp>(
- loc, subTensorOp.getType(), dynHasZeroLenCond,
- /*thenBuilder=*/[&](OpBuilder &b, Location loc) {
+ loc, sliceOp.getType(), dynHasZeroLenCond,
+ /*thenBuilder=*/
+ [&](OpBuilder &b, Location loc) {
b.create<scf::YieldOp>(loc, createGenerateOp());
},
- /*elseBuilder=*/[&](OpBuilder &b, Location loc) {
+ /*elseBuilder=*/
+ [&](OpBuilder &b, Location loc) {
b.create<scf::YieldOp>(loc, createPadTensorOfSubTensor());
});
- rewriter.replaceOp(subTensorOp, result.getResult(0));
+ rewriter.replaceOp(sliceOp, result.getResult(0));
return success();
}
// All shapes are static and the data source is actually used. Rewrite into
// pad_tensor(subtensor(x)).
- rewriter.replaceOp(subTensorOp, createPadTensorOfSubTensor());
+ rewriter.replaceOp(sliceOp, createPadTensorOfSubTensor());
return success();
}
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index f7d219231972d..38fcf7d9c6ec8 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -15,6 +15,7 @@
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
@@ -677,9 +678,9 @@ static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
}
/// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and
-/// SubTensorInsertOp. For now, only constant padding values are supported.
+/// InsertSliceOp. For now, only constant padding values are supported.
/// If there is enough static type information, TransferReadOps and
-/// TransferWriteOps may be generated instead of SubTensorInsertOps.
+/// TransferWriteOps may be generated instead of InsertSliceOps.
struct GenericPadTensorOpVectorizationPattern
: public OpRewritePattern<PadTensorOp> {
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
@@ -723,7 +724,7 @@ struct GenericPadTensorOpVectorizationPattern
return success();
// Neither source type nor PadTensorOp result type have static shape. Such
- // PadTensorOps cannot be vectorized. Generate a SubTensorInsertOp instead
+ // PadTensorOps cannot be vectorized. Generate a InsertSliceOp instead
// for copying the PadOp source.
auto sourceType = padOp.getSourceType();
@@ -737,10 +738,10 @@ struct GenericPadTensorOpVectorizationPattern
srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
}
}
- // Strides of SubTensorInsertOp are all 1.
+ // Strides of InsertSliceOp are all 1.
SmallVector<OpFoldResult> strides(sourceType.getRank(),
rewriter.getIndexAttr(1));
- rewriter.replaceOpWithNewOp<SubTensorInsertOp>(
+ rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides);
return success();
@@ -913,27 +914,29 @@ struct PadTensorOpVectorizationWithTransferReadPattern
/// write. In such cases, the TransferWriteOp can write to the non-padded tensor
/// value and apply out-of-bounds masking. E.g.:
/// ```
-/// %0 = subtensor ...[...] [%s0, %s1] [1, 1] : tensor<...> to tensor<?x?xf32>
+/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
+/// : tensor<...> to tensor<?x?xf32>
/// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %2 = vector.transfer_write %vec, %1[...]
/// : vector<17x5xf32>, tensor<17x5xf32>
-/// %r = subtensor %2[0, 0] [%s0, %s1] [1, 1]
+/// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
/// : tensor<17x5xf32> to tensor<?x?xf32>
/// ```
/// is rewritten to:
/// ```
-/// %0 = subtensor ...[...] [%s0, %s1] [1, 1] : tensor<...> to tensor<?x?xf32>
+/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
+/// : tensor<...> to tensor<?x?xf32>
/// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32>
/// ```
-/// Note: It is important that the SubTensorOp %r resizes the result of the
+/// Note: It is important that the ExtractSliceOp %r resizes the result of the
/// TransferWriteOp to the same size as the input of the TensorPadOp (or an even
/// smaller size). Otherwise, %r's new (dynamic) dimensions would
diff er from
/// %r's old dimensions.
///
/// This rewrite is possible if:
/// - Low padding is static 0.
-/// - `xferOp` has exactly one use, which is a SubTensorOp. This SubTensorOp
-/// trims the same amount of padding that was added beforehand.
+/// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
+/// ExtractSliceOp trims the same amount of padding that was added beforehand.
/// - Single, scalar padding value.
struct PadTensorOpVectorizationWithTransferWritePattern
: public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> {
@@ -947,9 +950,9 @@ struct PadTensorOpVectorizationWithTransferWritePattern
// Pad value must be a constant.
auto padValue = padOp.getConstantPaddingValue();
if (!padValue) return failure();
- // TransferWriteOp result must be directly consumed by a SubTensorOp.
+ // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
if (!xferOp->hasOneUse()) return failure();
- auto trimPadding = dyn_cast<SubTensorOp>(*xferOp->user_begin());
+ auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
if (!trimPadding) return failure();
// Only static zero offsets supported when trimming padding.
if (!trimPadding.hasZeroOffset()) return failure();
@@ -976,7 +979,8 @@ struct PadTensorOpVectorizationWithTransferWritePattern
/// This is a conservative analysis. In case equal tensor sizes cannot be
/// proven statically, this analysis returns `false` even though the tensor
/// sizes may turn out to be equal at runtime.
- bool hasSameTensorSize(Value beforePadding, SubTensorOp afterTrimming) const {
+ bool hasSameTensorSize(Value beforePadding,
+ tensor::ExtractSliceOp afterTrimming) const {
// If the input to PadTensorOp is a CastOp, try with with both CastOp result
// and CastOp operand.
if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
@@ -1002,21 +1006,22 @@ struct PadTensorOpVectorizationWithTransferWritePattern
if (t1.getNumDynamicDims() == 0) return true;
// All dynamic sizes must be the same. The only supported case at the moment
- // is when `beforePadding` is a SubTensorOp (or a cast thereof).
+ // is when `beforePadding` is an ExtractSliceOp (or a cast thereof).
- // Apart from CastOp, only SubTensorOp is supported.
- auto beforeSubtensor = beforePadding.getDefiningOp<SubTensorOp>();
- if (!beforeSubtensor) return false;
+ // Apart from CastOp, only ExtractSliceOp is supported.
+ auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
+ if (!beforeSlice)
+ return false;
- assert(static_cast<size_t>(t1.getRank())
- == beforeSubtensor.getMixedSizes().size());
+ assert(static_cast<size_t>(t1.getRank()) ==
+ beforeSlice.getMixedSizes().size());
assert(static_cast<size_t>(t2.getRank())
== afterTrimming.getMixedSizes().size());
for (unsigned i = 0; i < t1.getRank(); ++i) {
// Skip static dimensions.
if (!t1.isDynamicDim(i)) continue;
- auto size1 = beforeSubtensor.getMixedSizes()[i];
+ auto size1 = beforeSlice.getMixedSizes()[i];
auto size2 = afterTrimming.getMixedSizes()[i];
// Case 1: Same value or same constant int.
@@ -1042,10 +1047,11 @@ struct PadTensorOpVectorizationWithTransferWritePattern
}
};
-/// Rewrite use of PadTensorOp result in SubtensorInsertOp. E.g.:
+/// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.:
/// ```
/// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
-/// %r = subtensor_insert %0 into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
+/// %r = tensor.insert_slice %0
+/// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
/// : tensor<17x5xf32> into tensor<?x?x17x5xf32>
/// ```
/// is rewritten to:
@@ -1063,13 +1069,13 @@ struct PadTensorOpVectorizationWithTransferWritePattern
/// (Implies that sizes of `insertOp` are all static.)
/// - Only unit strides in `insertOp`.
/// - Single, scalar padding value.
-struct PadTensorOpVectorizationWithSubTensorInsertPattern
- : public VectorizePadTensorOpUserPattern<SubTensorInsertOp> {
- using VectorizePadTensorOpUserPattern<SubTensorInsertOp>
- ::VectorizePadTensorOpUserPattern;
+struct PadTensorOpVectorizationWithInsertSlicePattern
+ : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> {
+ using VectorizePadTensorOpUserPattern<
+ tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern;
LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
- SubTensorInsertOp insertOp) const override {
+ tensor::InsertSliceOp insertOp) const override {
// Low padding must be static 0.
if (!padOp.hasZeroLowPad()) return failure();
// Only unit stride supported.
@@ -1103,8 +1109,8 @@ struct PadTensorOpVectorizationWithSubTensorInsertPattern
auto read = rewriter.create<vector::TransferReadOp>(
padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
- // Generate TransferWriteOp: Write to SubTensorInsertOp's dest tensor at
- // specified offsets. Write is fully in-bounds because a SubTensorInsertOp's
+ // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
+ // specified offsets. Write is fully in-bounds because a InsertSliceOp's
// source must fit into the destination at the specified offsets.
auto writeIndices =
ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
@@ -1123,7 +1129,7 @@ void mlir::linalg::populatePadTensorOpVectorizationPatterns(
// Try these specialized patterns first before resorting to the generic one.
patterns.add<PadTensorOpVectorizationWithTransferReadPattern,
PadTensorOpVectorizationWithTransferWritePattern,
- PadTensorOpVectorizationWithSubTensorInsertPattern>(
+ PadTensorOpVectorizationWithInsertSlicePattern>(
patterns.getContext(), baseBenefit.getBenefit() + 1);
}
diff --git a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
index 8323dbe23342d..9d7286c08dedf 100644
--- a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
+++ b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
@@ -19,6 +19,7 @@
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
@@ -556,7 +557,7 @@ SmallVector<Value, 4> makeTiledShapes(OpBuilder &b, Location loc,
}
LLVM_DEBUG(llvm::dbgs() << ": tiled: figure out subshape...\n");
- // Construct a new subview / subtensor for the tile.
+ // Construct a new subview / extract_slice for the tile.
SmallVector<OpFoldResult, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
@@ -585,7 +586,7 @@ SmallVector<Value, 4> makeTiledShapes(OpBuilder &b, Location loc,
Value size = makeComposedAffineApply(b, loc, s0 + 1, closedIntSize);
LLVM_DEBUG(llvm::dbgs() << "makeTiledShapes: raw size: " << size << "\n");
- // The size of the subview / subtensor should be trimmed to avoid
+ // The size of the subview / extract_slice should be trimmed to avoid
// out-of-bounds accesses, unless we statically know the subshape size
// divides the shape size evenly.
int64_t shapeSize = shape[r];
@@ -619,8 +620,8 @@ SmallVector<Value, 4> makeTiledShapes(OpBuilder &b, Location loc,
tiledShapes.push_back(
b.create<memref::SubViewOp>(loc, shapedOp, offsets, sizes, strides));
else
- tiledShapes.push_back(
- b.create<SubTensorOp>(loc, shapedOp, offsets, sizes, strides));
+ tiledShapes.push_back(b.create<tensor::ExtractSliceOp>(
+ loc, shapedOp, offsets, sizes, strides));
}
return tiledShapes;
diff --git a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
index 9f597382fdc5d..1443296f40ccb 100644
--- a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
+++ b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
@@ -717,10 +717,10 @@ OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
// The size at the given index is now known to be a dynamic size.
unsigned unsignedIndex = index.getValue().getZExtValue();
- if (auto subtensor = dyn_cast_or_null<mlir::SubTensorOp>(definingOp)) {
- assert(subtensor.isDynamicSize(unsignedIndex) &&
- "Expected dynamic subtensor size");
- return subtensor.getDynamicSize(unsignedIndex);
+ if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
+ assert(sliceOp.isDynamicSize(unsignedIndex) &&
+ "Expected dynamic slice size");
+ return sliceOp.getDynamicSize(unsignedIndex);
}
// Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`.
@@ -1314,7 +1314,7 @@ void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
}
// TODO: ponder whether we want to allow missing trailing sizes/strides that are
-// completed automatically, like we have for subview and subtensor.
+// completed automatically, like we have for subview and extract_slice.
static LogicalResult verify(ReinterpretCastOp op) {
// The source and result memrefs should be in the same memory space.
auto srcType = op.source().getType().cast<BaseMemRefType>();
diff --git a/mlir/lib/Dialect/StandardOps/IR/Ops.cpp b/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
index 7118afbb397aa..73c0c4a607b63 100644
--- a/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
+++ b/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
@@ -10,7 +10,6 @@
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
@@ -34,32 +33,6 @@
using namespace mlir;
-/// Helper function to dispatch an OpFoldResult into either the `dynamicVec` if
-/// it is a Value or into `staticVec` if it is an IntegerAttr.
-/// In the case of a Value, a copy of the `sentinel` value is also pushed to
-/// `staticVec`. This is useful to extract mixed static and dynamic entries that
-/// come from an AttrSizedOperandSegments trait.
-static void dispatchIndexOpFoldResult(OpFoldResult ofr,
- SmallVectorImpl<Value> &dynamicVec,
- SmallVectorImpl<int64_t> &staticVec,
- int64_t sentinel) {
- if (auto v = ofr.dyn_cast<Value>()) {
- dynamicVec.push_back(v);
- staticVec.push_back(sentinel);
- return;
- }
- APInt apInt = ofr.dyn_cast<Attribute>().cast<IntegerAttr>().getValue();
- staticVec.push_back(apInt.getSExtValue());
-}
-
-static void dispatchIndexOpFoldResults(ArrayRef<OpFoldResult> ofrs,
- SmallVectorImpl<Value> &dynamicVec,
- SmallVectorImpl<int64_t> &staticVec,
- int64_t sentinel) {
- for (auto ofr : ofrs)
- dispatchIndexOpFoldResult(ofr, dynamicVec, staticVec, sentinel);
-}
-
/// If ofr is a constant integer, i.e., an IntegerAttr or a ConstantOp with an
/// IntegerAttr, return the integer.
llvm::Optional<int64_t> mlir::getConstantIntValue(OpFoldResult ofr) {
@@ -227,7 +200,6 @@ static void printStandardCastOp(Operation *op, OpAsmPrinter &p) {
}
void StandardOpsDialect::initialize() {
- getContext()->loadDialect<tensor::TensorDialect>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"
@@ -286,14 +258,6 @@ OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) {
[](APInt a, APInt b) { return a + b; });
}
-/// Extract int64_t values from the assumed ArrayAttr of IntegerAttr.
-static SmallVector<int64_t, 4> extractFromI64ArrayAttr(Attribute attr) {
- return llvm::to_vector<4>(
- llvm::map_range(attr.cast<ArrayAttr>(), [](Attribute a) -> int64_t {
- return a.cast<IntegerAttr>().getInt();
- }));
-}
-
/// Canonicalize a sum of a constant and (constant - something) to simply be
/// a sum of constants minus something. This transformation does similar
/// transformations for additions of a constant with a subtract/add of
@@ -2082,499 +2046,6 @@ bool UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
-//===----------------------------------------------------------------------===//
-// SubTensorOp
-//===----------------------------------------------------------------------===//
-
-/// A subtensor result type can be fully inferred from the source type and the
-/// static representation of offsets, sizes and strides. Special sentinels
-/// encode the dynamic case.
-Type SubTensorOp::inferResultType(RankedTensorType sourceRankedTensorType,
- ArrayRef<int64_t> leadingStaticOffsets,
- ArrayRef<int64_t> leadingStaticSizes,
- ArrayRef<int64_t> leadingStaticStrides) {
- // A subtensor may specify only a leading subset of offset/sizes/strides in
- // which case we complete with offset=0, sizes from memref type and strides=1.
- unsigned rank = sourceRankedTensorType.getRank();
- assert(leadingStaticSizes.size() <= rank &&
- "unexpected leadingStaticSizes overflow");
- auto staticSizes = llvm::to_vector<4>(leadingStaticSizes);
- unsigned numTrailingSizes = rank - staticSizes.size();
- llvm::append_range(staticSizes, sourceRankedTensorType.getShape().take_back(
- numTrailingSizes));
- return RankedTensorType::get(staticSizes,
- sourceRankedTensorType.getElementType());
-}
-
-Type SubTensorOp::inferResultType(RankedTensorType sourceRankedTensorType,
- ArrayRef<OpFoldResult> leadingStaticOffsets,
- ArrayRef<OpFoldResult> leadingStaticSizes,
- ArrayRef<OpFoldResult> leadingStaticStrides) {
- SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
- SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
- dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
- staticOffsets, ShapedType::kDynamicStrideOrOffset);
- dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
- ShapedType::kDynamicSize);
- dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
- staticStrides, ShapedType::kDynamicStrideOrOffset);
- return SubTensorOp::inferResultType(sourceRankedTensorType, staticOffsets,
- staticSizes, staticStrides);
-}
-
-/// A subtensor result type can be fully inferred from the source type and the
-/// static representation of offsets, sizes and strides. Special sentinels
-/// encode the dynamic case.
-Type SubTensorOp::inferRankReducedResultType(
- unsigned resultRank, RankedTensorType sourceRankedTensorType,
- ArrayRef<int64_t> leadingStaticOffsets,
- ArrayRef<int64_t> leadingStaticSizes,
- ArrayRef<int64_t> leadingStaticStrides) {
- auto inferredType =
- inferResultType(sourceRankedTensorType, leadingStaticOffsets,
- leadingStaticSizes, leadingStaticStrides)
- .cast<RankedTensorType>();
- int rankDiff = inferredType.getRank() - resultRank;
- if (rankDiff > 0) {
- auto shape = inferredType.getShape();
- llvm::SmallDenseSet<unsigned> dimsToProject;
- mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
- SmallVector<int64_t> projectedShape;
- for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
- if (!dimsToProject.contains(pos))
- projectedShape.push_back(shape[pos]);
- inferredType =
- RankedTensorType::get(projectedShape, inferredType.getElementType());
- }
- return inferredType;
-}
-
-Type SubTensorOp::inferRankReducedResultType(
- unsigned resultRank, RankedTensorType sourceRankedTensorType,
- ArrayRef<OpFoldResult> leadingStaticOffsets,
- ArrayRef<OpFoldResult> leadingStaticSizes,
- ArrayRef<OpFoldResult> leadingStaticStrides) {
- SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
- SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
- dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
- staticOffsets, ShapedType::kDynamicStrideOrOffset);
- dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
- ShapedType::kDynamicSize);
- dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
- staticStrides, ShapedType::kDynamicStrideOrOffset);
- return SubTensorOp::inferRankReducedResultType(
- resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
- staticStrides);
-}
-
-// Build a SubTensorOp with mixed static and dynamic entries and custom result
-// type. If the type passed is nullptr, it is inferred.
-void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
- RankedTensorType resultType, Value source,
- ArrayRef<OpFoldResult> offsets,
- ArrayRef<OpFoldResult> sizes,
- ArrayRef<OpFoldResult> strides,
- ArrayRef<NamedAttribute> attrs) {
- SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
- SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
- dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
- ShapedType::kDynamicStrideOrOffset);
- dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
- ShapedType::kDynamicSize);
- dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
- ShapedType::kDynamicStrideOrOffset);
- auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
- // Structuring implementation this way avoids duplication between builders.
- if (!resultType) {
- resultType =
- SubTensorOp::inferResultType(sourceRankedTensorType, staticOffsets,
- staticSizes, staticStrides)
- .cast<RankedTensorType>();
- }
- build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
- dynamicStrides, b.getI64ArrayAttr(staticOffsets),
- b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
- result.addAttributes(attrs);
-}
-
-// Build a SubTensorOp with mixed static and dynamic entries and inferred result
-// type.
-void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
- Value source, ArrayRef<OpFoldResult> offsets,
- ArrayRef<OpFoldResult> sizes,
- ArrayRef<OpFoldResult> strides,
- ArrayRef<NamedAttribute> attrs) {
- build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
-}
-
-// Build a SubTensorOp with dynamic entries and custom result type. If the type
-// passed is nullptr, it is inferred.
-void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
- RankedTensorType resultType, Value source,
- ValueRange offsets, ValueRange sizes,
- ValueRange strides,
- ArrayRef<NamedAttribute> attrs) {
- SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
- llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
- SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
- llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
- SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
- llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
- build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
-}
-
-// Build a SubTensorOp with dynamic entries and inferred result type.
-void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
- Value source, ValueRange offsets,
- ValueRange sizes, ValueRange strides,
- ArrayRef<NamedAttribute> attrs) {
- build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
-}
-
-enum SubTensorVerificationResult {
- Success,
- RankTooLarge,
- SizeMismatch,
- ElemTypeMismatch,
-};
-
-/// Checks if `original` Type type can be rank reduced to `reduced` type.
-/// This function is slight variant of `is subsequence` algorithm where
-/// not matching dimension must be 1.
-static SubTensorVerificationResult
-isRankReducedType(Type originalType, Type candidateReducedType,
- std::string *errMsg = nullptr) {
- if (originalType == candidateReducedType)
- return SubTensorVerificationResult::Success;
- if (!originalType.isa<RankedTensorType>())
- return SubTensorVerificationResult::Success;
- if (originalType.isa<RankedTensorType>() &&
- !candidateReducedType.isa<RankedTensorType>())
- return SubTensorVerificationResult::Success;
-
- ShapedType originalShapedType = originalType.cast<ShapedType>();
- ShapedType candidateReducedShapedType =
- candidateReducedType.cast<ShapedType>();
-
- // Rank and size logic is valid for all ShapedTypes.
- ArrayRef<int64_t> originalShape = originalShapedType.getShape();
- ArrayRef<int64_t> candidateReducedShape =
- candidateReducedShapedType.getShape();
- unsigned originalRank = originalShape.size(),
- candidateReducedRank = candidateReducedShape.size();
- if (candidateReducedRank > originalRank)
- return SubTensorVerificationResult::RankTooLarge;
-
- auto optionalUnusedDimsMask =
- computeRankReductionMask(originalShape, candidateReducedShape);
-
- // Sizes cannot be matched in case empty vector is returned.
- if (!optionalUnusedDimsMask.hasValue())
- return SubTensorVerificationResult::SizeMismatch;
-
- if (originalShapedType.getElementType() !=
- candidateReducedShapedType.getElementType())
- return SubTensorVerificationResult::ElemTypeMismatch;
-
- // We are done for the tensor case.
- if (originalType.isa<RankedTensorType>())
- return SubTensorVerificationResult::Success;
-
- return SubTensorVerificationResult::Success;
-}
-
-template <typename OpTy>
-static LogicalResult
-produceSubTensorErrorMsg(SubTensorVerificationResult result, OpTy op,
- Type expectedType, StringRef errMsg = "") {
- auto memrefType = expectedType.cast<ShapedType>();
- switch (result) {
- case SubTensorVerificationResult::Success:
- return success();
- case SubTensorVerificationResult::RankTooLarge:
- return op.emitError("expected result rank to be smaller or equal to ")
- << "the source rank. " << errMsg;
- case SubTensorVerificationResult::SizeMismatch:
- return op.emitError("expected result type to be ")
- << expectedType
- << " or a rank-reduced version. (mismatch of result sizes) "
- << errMsg;
- case SubTensorVerificationResult::ElemTypeMismatch:
- return op.emitError("expected result element type to be ")
- << memrefType.getElementType() << errMsg;
- }
- llvm_unreachable("unexpected subtensor verification result");
-}
-/// Verifier for SubTensorOp.
-static LogicalResult verify(SubTensorOp op) {
- // Verify result type against inferred type.
- auto expectedType = SubTensorOp::inferResultType(
- op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()),
- extractFromI64ArrayAttr(op.static_sizes()),
- extractFromI64ArrayAttr(op.static_strides()));
- auto result = isRankReducedType(expectedType, op.getType());
- return produceSubTensorErrorMsg(result, op, expectedType);
-}
-
-/// Infer the canonical type of the result of a subtensor operation. Returns a
-/// type with rank `resultRank` that is either the rank of the rank-reduced
-/// type, or the non-rank-reduced type.
-static RankedTensorType getCanonicalSubTensorResultType(
- unsigned resultRank, RankedTensorType sourceType,
- ArrayRef<OpFoldResult> mixedOffsets, ArrayRef<OpFoldResult> mixedSizes,
- ArrayRef<OpFoldResult> mixedStrides) {
- auto resultType =
- SubTensorOp::inferRankReducedResultType(
- resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
- .cast<RankedTensorType>();
- if (resultType.getRank() != resultRank) {
- resultType = SubTensorOp::inferResultType(sourceType, mixedOffsets,
- mixedSizes, mixedStrides)
- .cast<RankedTensorType>();
- }
- return resultType;
-}
-
-namespace {
-/// Pattern to rewrite a subtensor op with tensor::Cast arguments.
-/// This essentially pushes memref_cast past its consuming subtensor when
-/// `canFoldIntoConsumerOp` is true.
-///
-/// Example:
-/// ```
-/// %0 = tensorcast %V : tensor<16x16xf32> to tensor<?x?xf32>
-/// %1 = subtensor %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to tensor<3x4xf32>
-/// ```
-/// is rewritten into:
-/// ```
-/// %0 = subtensor %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to tensor<3x4xf32>
-/// %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
-/// ```
-class SubTensorOpCastFolder final : public OpRewritePattern<SubTensorOp> {
-public:
- using OpRewritePattern<SubTensorOp>::OpRewritePattern;
-
- LogicalResult matchAndRewrite(SubTensorOp subTensorOp,
- PatternRewriter &rewriter) const override {
- // Any constant operand, just return to let SubViewOpConstantFolder kick in.
- if (llvm::any_of(subTensorOp.getOperands(), [](Value operand) {
- return matchPattern(operand, matchConstantIndex());
- }))
- return failure();
-
- auto castOp = subTensorOp.source().getDefiningOp<tensor::CastOp>();
- if (!castOp)
- return failure();
-
- if (!canFoldIntoConsumerOp(castOp))
- return failure();
-
- /// Deduce the type of the result to use for the canonicalized operation.
- RankedTensorType resultType = getCanonicalSubTensorResultType(
- subTensorOp.getType().getRank(), subTensorOp.getSourceType(),
- subTensorOp.getMixedOffsets(), subTensorOp.getMixedSizes(),
- subTensorOp.getMixedStrides());
- Value newSubTensor = rewriter.create<SubTensorOp>(
- subTensorOp.getLoc(), resultType, castOp.source(),
- subTensorOp.offsets(), subTensorOp.sizes(), subTensorOp.strides(),
- subTensorOp.static_offsets(), subTensorOp.static_sizes(),
- subTensorOp.static_strides());
- rewriter.replaceOpWithNewOp<tensor::CastOp>(
- subTensorOp, subTensorOp.getType(), newSubTensor);
- return success();
- }
-};
-} // namespace
-
-/// Return the canonical type of the result of a subtensor.
-struct SubTensorReturnTypeCanonicalizer {
- RankedTensorType operator()(SubTensorOp op,
- ArrayRef<OpFoldResult> mixedOffsets,
- ArrayRef<OpFoldResult> mixedSizes,
- ArrayRef<OpFoldResult> mixedStrides) {
- return getCanonicalSubTensorResultType(op.getType().getRank(),
- op.getSourceType(), mixedOffsets,
- mixedSizes, mixedStrides);
- }
-};
-
-/// A canonicalizer wrapper to replace SubTensorOps.
-struct SubTensorCanonicalizer {
- void operator()(PatternRewriter &rewriter, SubTensorOp op,
- SubTensorOp newOp) {
- Value replacement = newOp.getResult();
- if (replacement.getType() != op.getType())
- replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
- replacement);
- rewriter.replaceOp(op, replacement);
- }
-};
-
-void SubTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
- MLIRContext *context) {
- results.add<OpWithOffsetSizesAndStridesConstantArgumentFolder<
- SubTensorOp, SubTensorReturnTypeCanonicalizer,
- SubTensorCanonicalizer>,
- SubTensorOpCastFolder>(context);
-}
-
-//
-static LogicalResult
-foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
- ShapedType shapedType) {
- OpBuilder b(op.getContext());
- for (OpFoldResult ofr : op.getMixedOffsets())
- if (!isEqualConstantIntOrValue(ofr, b.getIndexAttr(0)))
- return failure();
- // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
- // is appropriate.
- auto shape = shapedType.getShape();
- for (auto it : llvm::zip(op.getMixedSizes(), shape))
- if (!isEqualConstantIntOrValue(std::get<0>(it),
- b.getIndexAttr(std::get<1>(it))))
- return failure();
- for (OpFoldResult ofr : op.getMixedStrides())
- if (!isEqualConstantIntOrValue(ofr, b.getIndexAttr(1)))
- return failure();
- return success();
-}
-
-OpFoldResult SubTensorOp::fold(ArrayRef<Attribute>) {
- if (getSourceType() == getType() &&
- succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
- return this->source();
- return OpFoldResult();
-}
-
-//===----------------------------------------------------------------------===//
-// SubTensorInsertOp
-//===----------------------------------------------------------------------===//
-
-// Build a SubTensorInsertOp with mixed static and dynamic entries.
-void mlir::SubTensorInsertOp::build(OpBuilder &b, OperationState &result,
- Value source, Value dest,
- ArrayRef<OpFoldResult> offsets,
- ArrayRef<OpFoldResult> sizes,
- ArrayRef<OpFoldResult> strides,
- ArrayRef<NamedAttribute> attrs) {
- SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
- SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
- dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
- ShapedType::kDynamicStrideOrOffset);
- dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
- ShapedType::kDynamicSize);
- dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
- ShapedType::kDynamicStrideOrOffset);
- build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
- dynamicStrides, b.getI64ArrayAttr(staticOffsets),
- b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
- result.addAttributes(attrs);
-}
-
-// Build a SubTensorInsertOp with dynamic entries.
-void mlir::SubTensorInsertOp::build(OpBuilder &b, OperationState &result,
- Value source, Value dest,
- ValueRange offsets, ValueRange sizes,
- ValueRange strides,
- ArrayRef<NamedAttribute> attrs) {
- SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
- llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
- SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
- llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
- SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
- llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
- build(b, result, source, dest, offsetValues, sizeValues, strideValues);
-}
-
-OpFoldResult SubTensorInsertOp::fold(ArrayRef<Attribute>) {
- if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
- getSourceType() == getType() &&
- succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
- return this->source();
- return OpFoldResult();
-}
-
-namespace {
-/// Pattern to rewrite a subtensor_insert op with constant arguments.
-class SubTensorInsertOpConstantArgumentFolder final
- : public OpRewritePattern<SubTensorInsertOp> {
-public:
- using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern;
-
- LogicalResult matchAndRewrite(SubTensorInsertOp subTensorInsertOp,
- PatternRewriter &rewriter) const override {
- // No constant operand, just return.
- if (llvm::none_of(subTensorInsertOp.getOperands(), [](Value operand) {
- return matchPattern(operand, matchConstantIndex());
- }))
- return failure();
-
- // At least one of offsets/sizes/strides is a new constant.
- // Form the new list of operands and constant attributes from the
- // existing.
- SmallVector<OpFoldResult> mixedOffsets(subTensorInsertOp.getMixedOffsets());
- SmallVector<OpFoldResult> mixedSizes(subTensorInsertOp.getMixedSizes());
- SmallVector<OpFoldResult> mixedStrides(subTensorInsertOp.getMixedStrides());
- canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
- canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
- canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
-
- // Create the new op in canonical form.
- rewriter.replaceOpWithNewOp<SubTensorInsertOp>(
- subTensorInsertOp, subTensorInsertOp.source(), subTensorInsertOp.dest(),
- mixedOffsets, mixedSizes, mixedStrides);
- return success();
- }
-};
-
-/// Fold tensor_casts with subtensor_insert operations.
-struct SubTensorInsertOpCastFolder final
- : public OpRewritePattern<SubTensorInsertOp> {
- using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern;
-
- LogicalResult matchAndRewrite(SubTensorInsertOp subTensorInsertOp,
- PatternRewriter &rewriter) const override {
- if (llvm::any_of(subTensorInsertOp.getOperands(), [](Value operand) {
- return matchPattern(operand, matchConstantIndex());
- }))
- return failure();
-
- auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
- auto castOp = v.getDefiningOp<tensor::CastOp>();
- if (!castOp || !canFoldIntoConsumerOp(castOp))
- return llvm::None;
- return castOp.source();
- };
- Optional<Value> sourceCastSource =
- getSourceOfCastOp(subTensorInsertOp.source());
- Optional<Value> destCastSource =
- getSourceOfCastOp(subTensorInsertOp.dest());
- if (!sourceCastSource && !destCastSource)
- return failure();
-
- Value replacement = rewriter.create<SubTensorInsertOp>(
- subTensorInsertOp.getLoc(),
- (sourceCastSource ? *sourceCastSource : subTensorInsertOp.source()),
- (destCastSource ? *destCastSource : subTensorInsertOp.dest()),
- subTensorInsertOp.getMixedOffsets(), subTensorInsertOp.getMixedSizes(),
- subTensorInsertOp.getMixedStrides());
-
- if (replacement.getType() != subTensorInsertOp.getType()) {
- replacement = rewriter.create<tensor::CastOp>(
- subTensorInsertOp.getLoc(), subTensorInsertOp.getType(), replacement);
- }
- rewriter.replaceOp(subTensorInsertOp, replacement);
- return success();
- }
-};
-} // namespace
-
-void SubTensorInsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
- MLIRContext *context) {
- results.add<SubTensorInsertOpConstantArgumentFolder,
- SubTensorInsertOpCastFolder>(context);
-}
-
//===----------------------------------------------------------------------===//
// SwitchOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
index 9b1592e9dffbd..8a4b212db0329 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
@@ -6,6 +6,7 @@
//
//===----------------------------------------------------------------------===//
+#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
@@ -25,7 +26,7 @@ using namespace mlir::tensor;
/// source tensor. This is useful to fold a tensor.cast into a consuming op and
/// implement canonicalization patterns for ops in
diff erent dialects that may
/// consume the results of tensor.cast operations. Such foldable tensor.cast
-/// operations are typically inserted as `subtensor` ops and are canonicalized,
+/// operations are typically inserted as `slice` ops and are canonicalized,
/// to preserve the type compatibility of their uses.
///
/// Returns true when all conditions are met:
@@ -511,6 +512,530 @@ static LogicalResult verify(ReshapeOp op) {
return success();
}
+//===----------------------------------------------------------------------===//
+// ExtractSliceOp
+//===----------------------------------------------------------------------===//
+
+/// Helper function to dispatch an OpFoldResult into either the `dynamicVec` if
+/// it is a Value or into `staticVec` if it is an IntegerAttr.
+/// In the case of a Value, a copy of the `sentinel` value is also pushed to
+/// `staticVec`. This is useful to extract mixed static and dynamic entries that
+/// come from an AttrSizedOperandSegments trait.
+static void dispatchIndexOpFoldResult(OpFoldResult ofr,
+ SmallVectorImpl<Value> &dynamicVec,
+ SmallVectorImpl<int64_t> &staticVec,
+ int64_t sentinel) {
+ if (auto v = ofr.dyn_cast<Value>()) {
+ dynamicVec.push_back(v);
+ staticVec.push_back(sentinel);
+ return;
+ }
+ APInt apInt = ofr.dyn_cast<Attribute>().cast<IntegerAttr>().getValue();
+ staticVec.push_back(apInt.getSExtValue());
+}
+
+static void dispatchIndexOpFoldResults(ArrayRef<OpFoldResult> ofrs,
+ SmallVectorImpl<Value> &dynamicVec,
+ SmallVectorImpl<int64_t> &staticVec,
+ int64_t sentinel) {
+ for (auto ofr : ofrs)
+ dispatchIndexOpFoldResult(ofr, dynamicVec, staticVec, sentinel);
+}
+
+/// An extract_slice op result type can be fully inferred from the source type
+/// and the static representation of offsets, sizes and strides. Special
+/// sentinels encode the dynamic case.
+Type ExtractSliceOp::inferResultType(RankedTensorType sourceRankedTensorType,
+ ArrayRef<int64_t> leadingStaticOffsets,
+ ArrayRef<int64_t> leadingStaticSizes,
+ ArrayRef<int64_t> leadingStaticStrides) {
+ // An extract_slice op may specify only a leading subset of offset/sizes/
+ // strides in which case we complete with offset=0, sizes from memref type and
+ // strides=1.
+ unsigned rank = sourceRankedTensorType.getRank();
+ assert(leadingStaticSizes.size() <= rank &&
+ "unexpected leadingStaticSizes overflow");
+ auto staticSizes = llvm::to_vector<4>(leadingStaticSizes);
+ unsigned numTrailingSizes = rank - staticSizes.size();
+ llvm::append_range(staticSizes, sourceRankedTensorType.getShape().take_back(
+ numTrailingSizes));
+ return RankedTensorType::get(staticSizes,
+ sourceRankedTensorType.getElementType());
+}
+
+/// Extract int64_t values from the assumed ArrayAttr of IntegerAttr.
+static SmallVector<int64_t, 4> extractFromI64ArrayAttr(Attribute attr) {
+ return llvm::to_vector<4>(
+ llvm::map_range(attr.cast<ArrayAttr>(), [](Attribute a) -> int64_t {
+ return a.cast<IntegerAttr>().getInt();
+ }));
+}
+
+Type ExtractSliceOp::inferResultType(
+ RankedTensorType sourceRankedTensorType,
+ ArrayRef<OpFoldResult> leadingStaticOffsets,
+ ArrayRef<OpFoldResult> leadingStaticSizes,
+ ArrayRef<OpFoldResult> leadingStaticStrides) {
+ SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
+ SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
+ dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
+ staticOffsets, ShapedType::kDynamicStrideOrOffset);
+ dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
+ ShapedType::kDynamicSize);
+ dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
+ staticStrides, ShapedType::kDynamicStrideOrOffset);
+ return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
+ staticSizes, staticStrides);
+}
+
+/// An extract_slice op result type can be fully inferred from the source type
+/// and the static representation of offsets, sizes and strides. Special
+/// sentinels encode the dynamic case.
+Type ExtractSliceOp::inferRankReducedResultType(
+ unsigned resultRank, RankedTensorType sourceRankedTensorType,
+ ArrayRef<int64_t> leadingStaticOffsets,
+ ArrayRef<int64_t> leadingStaticSizes,
+ ArrayRef<int64_t> leadingStaticStrides) {
+ auto inferredType =
+ inferResultType(sourceRankedTensorType, leadingStaticOffsets,
+ leadingStaticSizes, leadingStaticStrides)
+ .cast<RankedTensorType>();
+ int rankDiff = inferredType.getRank() - resultRank;
+ if (rankDiff > 0) {
+ auto shape = inferredType.getShape();
+ llvm::SmallDenseSet<unsigned> dimsToProject;
+ mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
+ SmallVector<int64_t> projectedShape;
+ for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
+ if (!dimsToProject.contains(pos))
+ projectedShape.push_back(shape[pos]);
+ inferredType =
+ RankedTensorType::get(projectedShape, inferredType.getElementType());
+ }
+ return inferredType;
+}
+
+Type ExtractSliceOp::inferRankReducedResultType(
+ unsigned resultRank, RankedTensorType sourceRankedTensorType,
+ ArrayRef<OpFoldResult> leadingStaticOffsets,
+ ArrayRef<OpFoldResult> leadingStaticSizes,
+ ArrayRef<OpFoldResult> leadingStaticStrides) {
+ SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
+ SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
+ dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
+ staticOffsets, ShapedType::kDynamicStrideOrOffset);
+ dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
+ ShapedType::kDynamicSize);
+ dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
+ staticStrides, ShapedType::kDynamicStrideOrOffset);
+ return ExtractSliceOp::inferRankReducedResultType(
+ resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
+ staticStrides);
+}
+
+/// Build an ExtractSliceOp with mixed static and dynamic entries and custom
+/// result type. If the type passed is nullptr, it is inferred.
+void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
+ RankedTensorType resultType, Value source,
+ ArrayRef<OpFoldResult> offsets,
+ ArrayRef<OpFoldResult> sizes,
+ ArrayRef<OpFoldResult> strides,
+ ArrayRef<NamedAttribute> attrs) {
+ SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
+ SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
+ dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
+ ShapedType::kDynamicStrideOrOffset);
+ dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
+ ShapedType::kDynamicSize);
+ dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
+ ShapedType::kDynamicStrideOrOffset);
+ auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
+ // Structuring implementation this way avoids duplication between builders.
+ if (!resultType) {
+ resultType =
+ ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
+ staticSizes, staticStrides)
+ .cast<RankedTensorType>();
+ }
+ build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
+ dynamicStrides, b.getI64ArrayAttr(staticOffsets),
+ b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
+ result.addAttributes(attrs);
+}
+
+/// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
+/// result type.
+void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
+ ArrayRef<OpFoldResult> offsets,
+ ArrayRef<OpFoldResult> sizes,
+ ArrayRef<OpFoldResult> strides,
+ ArrayRef<NamedAttribute> attrs) {
+ build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
+}
+
+/// Build an ExtractSliceOp with dynamic entries and custom result type. If the
+/// type passed is nullptr, it is inferred.
+void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
+ RankedTensorType resultType, Value source,
+ ValueRange offsets, ValueRange sizes,
+ ValueRange strides, ArrayRef<NamedAttribute> attrs) {
+ SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
+ llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
+ SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
+ llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
+ SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
+ llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
+ build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
+}
+
+/// Build an ExtractSliceOp with dynamic entries and inferred result type.
+void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
+ ValueRange offsets, ValueRange sizes,
+ ValueRange strides, ArrayRef<NamedAttribute> attrs) {
+ build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
+}
+
+enum SliceVerificationResult {
+ Success,
+ RankTooLarge,
+ SizeMismatch,
+ ElemTypeMismatch,
+};
+
+/// Checks if `original` Type type can be rank reduced to `reduced` type.
+/// This function is slight variant of `is subsequence` algorithm where
+/// not matching dimension must be 1.
+static SliceVerificationResult
+isRankReducedType(Type originalType, Type candidateReducedType,
+ std::string *errMsg = nullptr) {
+ if (originalType == candidateReducedType)
+ return SliceVerificationResult::Success;
+ if (!originalType.isa<RankedTensorType>())
+ return SliceVerificationResult::Success;
+ if (originalType.isa<RankedTensorType>() &&
+ !candidateReducedType.isa<RankedTensorType>())
+ return SliceVerificationResult::Success;
+
+ ShapedType originalShapedType = originalType.cast<ShapedType>();
+ ShapedType candidateReducedShapedType =
+ candidateReducedType.cast<ShapedType>();
+
+ // Rank and size logic is valid for all ShapedTypes.
+ ArrayRef<int64_t> originalShape = originalShapedType.getShape();
+ ArrayRef<int64_t> candidateReducedShape =
+ candidateReducedShapedType.getShape();
+ unsigned originalRank = originalShape.size(),
+ candidateReducedRank = candidateReducedShape.size();
+ if (candidateReducedRank > originalRank)
+ return SliceVerificationResult::RankTooLarge;
+
+ auto optionalUnusedDimsMask =
+ computeRankReductionMask(originalShape, candidateReducedShape);
+
+ // Sizes cannot be matched in case empty vector is returned.
+ if (!optionalUnusedDimsMask.hasValue())
+ return SliceVerificationResult::SizeMismatch;
+
+ if (originalShapedType.getElementType() !=
+ candidateReducedShapedType.getElementType())
+ return SliceVerificationResult::ElemTypeMismatch;
+
+ // We are done for the tensor case.
+ if (originalType.isa<RankedTensorType>())
+ return SliceVerificationResult::Success;
+
+ return SliceVerificationResult::Success;
+}
+
+template <typename OpTy>
+static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
+ OpTy op, Type expectedType,
+ StringRef errMsg = "") {
+ auto memrefType = expectedType.cast<ShapedType>();
+ switch (result) {
+ case SliceVerificationResult::Success:
+ return success();
+ case SliceVerificationResult::RankTooLarge:
+ return op.emitError("expected result rank to be smaller or equal to ")
+ << "the source rank. " << errMsg;
+ case SliceVerificationResult::SizeMismatch:
+ return op.emitError("expected result type to be ")
+ << expectedType
+ << " or a rank-reduced version. (mismatch of result sizes) "
+ << errMsg;
+ case SliceVerificationResult::ElemTypeMismatch:
+ return op.emitError("expected result element type to be ")
+ << memrefType.getElementType() << errMsg;
+ }
+ llvm_unreachable("unexpected extract_slice op verification result");
+}
+
+/// Verifier for ExtractSliceOp.
+static LogicalResult verify(ExtractSliceOp op) {
+ // Verify result type against inferred type.
+ auto expectedType = ExtractSliceOp::inferResultType(
+ op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()),
+ extractFromI64ArrayAttr(op.static_sizes()),
+ extractFromI64ArrayAttr(op.static_strides()));
+ auto result = isRankReducedType(expectedType, op.getType());
+ return produceSliceErrorMsg(result, op, expectedType);
+}
+
+/// Infer the canonical type of the result of an extract_slice op. Returns a
+/// type with rank `resultRank` that is either the rank of the rank-reduced
+/// type, or the non-rank-reduced type.
+static RankedTensorType
+getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType,
+ ArrayRef<OpFoldResult> mixedOffsets,
+ ArrayRef<OpFoldResult> mixedSizes,
+ ArrayRef<OpFoldResult> mixedStrides) {
+ auto resultType =
+ ExtractSliceOp::inferRankReducedResultType(
+ resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
+ .cast<RankedTensorType>();
+ if (resultType.getRank() != resultRank) {
+ resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets,
+ mixedSizes, mixedStrides)
+ .cast<RankedTensorType>();
+ }
+ return resultType;
+}
+
+namespace {
+/// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
+/// This essentially pushes memref_cast past its consuming slice when
+/// `canFoldIntoConsumerOp` is true.
+///
+/// Example:
+/// ```
+/// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
+/// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
+/// tensor<3x4xf32>
+/// ```
+/// is rewritten into:
+/// ```
+/// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
+/// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
+/// ```
+class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
+public:
+ using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
+ PatternRewriter &rewriter) const override {
+ // Any constant operand, just return to let SubViewOpConstantFolder kick in.
+ if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
+ return matchPattern(operand, matchConstantIndex());
+ }))
+ return failure();
+
+ auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>();
+ if (!castOp)
+ return failure();
+
+ if (!canFoldIntoConsumerOp(castOp))
+ return failure();
+
+ /// Deduce the type of the result to use for the canonicalized operation.
+ RankedTensorType resultType = getCanonicalSliceResultType(
+ sliceOp.getType().getRank(), sliceOp.getSourceType(),
+ sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(),
+ sliceOp.getMixedStrides());
+ Value newSlice = rewriter.create<ExtractSliceOp>(
+ sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(),
+ sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
+ sliceOp.static_sizes(), sliceOp.static_strides());
+ rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(),
+ newSlice);
+ return success();
+ }
+};
+} // namespace
+
+/// Return the canonical type of the result of an extract_slice op.
+struct SliceReturnTypeCanonicalizer {
+ RankedTensorType operator()(ExtractSliceOp op,
+ ArrayRef<OpFoldResult> mixedOffsets,
+ ArrayRef<OpFoldResult> mixedSizes,
+ ArrayRef<OpFoldResult> mixedStrides) {
+ return getCanonicalSliceResultType(op.getType().getRank(),
+ op.getSourceType(), mixedOffsets,
+ mixedSizes, mixedStrides);
+ }
+};
+
+/// A canonicalizer wrapper to replace ExtractSliceOps.
+struct SliceCanonicalizer {
+ void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
+ ExtractSliceOp newOp) {
+ Value replacement = newOp.getResult();
+ if (replacement.getType() != op.getType())
+ replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
+ replacement);
+ rewriter.replaceOp(op, replacement);
+ }
+};
+
+void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
+ MLIRContext *context) {
+ results.add<
+ OpWithOffsetSizesAndStridesConstantArgumentFolder<
+ ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
+ ExtractSliceOpCastFolder>(context);
+}
+
+//
+static LogicalResult
+foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
+ ShapedType shapedType) {
+ OpBuilder b(op.getContext());
+ for (OpFoldResult ofr : op.getMixedOffsets())
+ if (!isEqualConstantIntOrValue(ofr, b.getIndexAttr(0)))
+ return failure();
+ // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
+ // is appropriate.
+ auto shape = shapedType.getShape();
+ for (auto it : llvm::zip(op.getMixedSizes(), shape))
+ if (!isEqualConstantIntOrValue(std::get<0>(it),
+ b.getIndexAttr(std::get<1>(it))))
+ return failure();
+ for (OpFoldResult ofr : op.getMixedStrides())
+ if (!isEqualConstantIntOrValue(ofr, b.getIndexAttr(1)))
+ return failure();
+ return success();
+}
+
+OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) {
+ if (getSourceType() == getType() &&
+ succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
+ return this->source();
+ return OpFoldResult();
+}
+
+//===----------------------------------------------------------------------===//
+// InsertSliceOp
+//===----------------------------------------------------------------------===//
+
+// Build a InsertSliceOp with mixed static and dynamic entries.
+void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
+ Value dest, ArrayRef<OpFoldResult> offsets,
+ ArrayRef<OpFoldResult> sizes,
+ ArrayRef<OpFoldResult> strides,
+ ArrayRef<NamedAttribute> attrs) {
+ SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
+ SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
+ dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
+ ShapedType::kDynamicStrideOrOffset);
+ dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
+ ShapedType::kDynamicSize);
+ dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
+ ShapedType::kDynamicStrideOrOffset);
+ build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
+ dynamicStrides, b.getI64ArrayAttr(staticOffsets),
+ b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
+ result.addAttributes(attrs);
+}
+
+// Build a InsertSliceOp with dynamic entries.
+void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
+ Value dest, ValueRange offsets, ValueRange sizes,
+ ValueRange strides, ArrayRef<NamedAttribute> attrs) {
+ SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
+ llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
+ SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
+ llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
+ SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
+ llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
+ build(b, result, source, dest, offsetValues, sizeValues, strideValues);
+}
+
+OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) {
+ if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
+ getSourceType() == getType() &&
+ succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
+ return this->source();
+ return OpFoldResult();
+}
+
+namespace {
+/// Pattern to rewrite a insert_slice op with constant arguments.
+class InsertSliceOpConstantArgumentFolder final
+ : public OpRewritePattern<InsertSliceOp> {
+public:
+ using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
+ PatternRewriter &rewriter) const override {
+ // No constant operand, just return.
+ if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) {
+ return matchPattern(operand, matchConstantIndex());
+ }))
+ return failure();
+
+ // At least one of offsets/sizes/strides is a new constant.
+ // Form the new list of operands and constant attributes from the
+ // existing.
+ SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
+ SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
+ SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
+ canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
+ canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
+ canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
+
+ // Create the new op in canonical form.
+ rewriter.replaceOpWithNewOp<InsertSliceOp>(
+ insertSliceOp, insertSliceOp.source(), insertSliceOp.dest(),
+ mixedOffsets, mixedSizes, mixedStrides);
+ return success();
+ }
+};
+
+/// Fold tensor_casts with insert_slice operations.
+struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> {
+ using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
+ PatternRewriter &rewriter) const override {
+ if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
+ return matchPattern(operand, matchConstantIndex());
+ }))
+ return failure();
+
+ auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
+ auto castOp = v.getDefiningOp<tensor::CastOp>();
+ if (!castOp || !canFoldIntoConsumerOp(castOp))
+ return llvm::None;
+ return castOp.source();
+ };
+ Optional<Value> sourceCastSource =
+ getSourceOfCastOp(insertSliceOp.source());
+ Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest());
+ if (!sourceCastSource && !destCastSource)
+ return failure();
+
+ Value replacement = rewriter.create<InsertSliceOp>(
+ insertSliceOp.getLoc(),
+ (sourceCastSource ? *sourceCastSource : insertSliceOp.source()),
+ (destCastSource ? *destCastSource : insertSliceOp.dest()),
+ insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
+ insertSliceOp.getMixedStrides());
+
+ if (replacement.getType() != insertSliceOp.getType()) {
+ replacement = rewriter.create<tensor::CastOp>(
+ insertSliceOp.getLoc(), insertSliceOp.getType(), replacement);
+ }
+ rewriter.replaceOp(insertSliceOp, replacement);
+ return success();
+ }
+};
+} // namespace
+
+void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
+ MLIRContext *context) {
+ results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder>(
+ context);
+}
+
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
diff --git a/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir b/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
index 98000445443c5..0ce0c6692456e 100644
--- a/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
+++ b/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
@@ -616,9 +616,9 @@ func @split_at(%shape: tensor<?xindex>, %index: index) -> (tensor<?xindex>, tens
// CHECK-NEXT: %[[ISNEG:.*]] = cmpi slt, %[[INDEX]], %[[C0]] : index
// CHECK-NEXT: %[[SELECT:.*]] = select %[[ISNEG]], %[[POSINDEX]], %[[INDEX]] : index
// CHECK-NEXT: %[[C1:.*]] = constant 1 : index
- // CHECK-NEXT: %[[HEAD:.*]] = subtensor %[[SHAPE]][%[[C0]]] [%[[SELECT]]] [%[[C1]]] : tensor<?xindex> to tensor<?xindex>
+ // CHECK-NEXT: %[[HEAD:.*]] = tensor.extract_slice %[[SHAPE]][%[[C0]]] [%[[SELECT]]] [%[[C1]]] : tensor<?xindex> to tensor<?xindex>
// CHECK-NEXT: %[[TAIL_SIZE:.*]] = subi %[[RANK]], %[[SELECT]] : index
- // CHECK-NEXT: %[[TAIL:.*]] = subtensor %[[SHAPE]][%[[SELECT]]] [%[[TAIL_SIZE]]] [%[[C1]]] : tensor<?xindex> to tensor<?xindex>
+ // CHECK-NEXT: %[[TAIL:.*]] = tensor.extract_slice %[[SHAPE]][%[[SELECT]]] [%[[TAIL_SIZE]]] [%[[C1]]] : tensor<?xindex> to tensor<?xindex>
// CHECK-NEXT: return %[[HEAD]], %[[TAIL]] : tensor<?xindex>, tensor<?xindex>
%head, %tail = "shape.split_at"(%shape, %index) : (tensor<?xindex>, index) -> (tensor<?xindex>, tensor<?xindex>)
return %head, %tail : tensor<?xindex>, tensor<?xindex>
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
index 3aec680ec9d0e..23eb1905eb021 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
@@ -679,10 +679,10 @@ func @concat(%arg0: tensor<5x1xf32>, %arg1: tensor<6x1xf32>) -> () {
// CHECK: [[CST:%.+]] = constant 0.0
// CHECK: [[FILL:%.+]] = linalg.fill([[INIT]], [[CST]])
// CHECK: [[ARG0_DIM0:%.+]] = memref.dim %arg0, [[AXIS]]
- // CHECK: [[INSERT0:%.+]] = subtensor_insert %arg0 into [[FILL]]{{\[}}[[OFFSET]], [[OFFSET]]] {{\[}}[[ARG0_DIM0]], [[ARG0_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
+ // CHECK: [[INSERT0:%.+]] = tensor.insert_slice %arg0 into [[FILL]]{{\[}}[[OFFSET]], [[OFFSET]]] {{\[}}[[ARG0_DIM0]], [[ARG0_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
// CHECK: [[NEW_OFFSET:%.+]] = addi [[OFFSET]], [[ARG0_DIM0]]
// CHECK: [[ARG1_DIM0:%.+]] = memref.dim %arg1, [[AXIS]]
- // CHECK: [[INSERT1:%.+]] = subtensor_insert %arg1 into [[INSERT0]]{{\[}}[[NEW_OFFSET]], [[OFFSET]]] {{\[}}[[ARG1_DIM0]], [[ARG0_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
+ // CHECK: [[INSERT1:%.+]] = tensor.insert_slice %arg1 into [[INSERT0]]{{\[}}[[NEW_OFFSET]], [[OFFSET]]] {{\[}}[[ARG1_DIM0]], [[ARG0_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
%0 = "tosa.concat"(%arg0, %arg1) { axis = 0 : i64} : (tensor<5x1xf32>, tensor<6x1xf32>) -> (tensor<11x1xf32>)
// CHECK: [[AXIS:%.+]] = constant 1
@@ -698,10 +698,10 @@ func @concat(%arg0: tensor<5x1xf32>, %arg1: tensor<6x1xf32>) -> () {
// CHECK: [[CST:%.+]] = constant 0.0
// CHECK: [[FILL:%.+]] = linalg.fill([[INIT]], [[CST]])
// CHECK: [[ARG0_DIM1:%.+]] = memref.dim %arg0, [[AXIS]]
- // CHECK: [[INSERT0:%.+]] = subtensor_insert %arg0 into [[FILL]]{{\[}}[[OFFSET]], [[OFFSET]]] {{\[}}[[ARG0_DIM0]], [[ARG0_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
+ // CHECK: [[INSERT0:%.+]] = tensor.insert_slice %arg0 into [[FILL]]{{\[}}[[OFFSET]], [[OFFSET]]] {{\[}}[[ARG0_DIM0]], [[ARG0_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
// CHECK: [[NEW_OFFSET:%.+]] = addi [[OFFSET]], [[ARG0_DIM1]]
// CHECK: [[ARG1_DIM1:%.+]] = memref.dim %arg0, [[AXIS]]
- // CHECK: [[INSERT1:%.+]] = subtensor_insert %arg0 into [[INSERT0]]{{\[}}[[OFFSET]], [[NEW_OFFSET]]] {{\[}}[[ARG0_DIM0]], [[ARG1_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
+ // CHECK: [[INSERT1:%.+]] = tensor.insert_slice %arg0 into [[INSERT0]]{{\[}}[[OFFSET]], [[NEW_OFFSET]]] {{\[}}[[ARG0_DIM0]], [[ARG1_DIM1]]] {{\[}}[[STRIDE]], [[STRIDE]]]
%1 = "tosa.concat"(%arg0, %arg0) { axis = 1 : i64} : (tensor<5x1xf32>, tensor<5x1xf32>) -> (tensor<5x2xf32>)
return
}
diff --git a/mlir/test/Conversion/TosaToStandard/tosa-to-standard.mlir b/mlir/test/Conversion/TosaToStandard/tosa-to-standard.mlir
index 9ffc854b8cd74..e94e3d6acc656 100644
--- a/mlir/test/Conversion/TosaToStandard/tosa-to-standard.mlir
+++ b/mlir/test/Conversion/TosaToStandard/tosa-to-standard.mlir
@@ -12,7 +12,7 @@ func @const_test() -> (tensor<i32>) {
// -----
func @slice(%arg0: tensor<6xf32>) ->() {
- // CHECK: [[SLICE:%.+]] = subtensor %arg0[2] [1] [1]
+ // CHECK: [[SLICE:%.+]] = tensor.extract_slice %arg0[2] [1] [1]
%0 = "tosa.slice"(%arg0) {start = [2], size = [1]} : (tensor<6xf32>) -> (tensor<1xf32>)
return
}
diff --git a/mlir/test/Dialect/Linalg/bufferize.mlir b/mlir/test/Dialect/Linalg/bufferize.mlir
index 7410adf9f5f35..f0361bc6ab199 100644
--- a/mlir/test/Dialect/Linalg/bufferize.mlir
+++ b/mlir/test/Dialect/Linalg/bufferize.mlir
@@ -166,9 +166,9 @@ func @generic_with_init_tensor(%arg0: tensor<2x3x4xvector<3x4xi4>>,
func private @make_index() -> index
-// CHECK-LABEL: func @bufferize_subtensor(
+// CHECK-LABEL: func @bufferize_slice(
// CHECK-SAME: %[[T:[0-9a-z]*]]: tensor<?x?xf32>
-func @bufferize_subtensor(%t : tensor<?x?xf32>) -> (tensor<2x3xf32>, tensor<2x?xf32>) {
+func @bufferize_slice(%t : tensor<?x?xf32>) -> (tensor<2x3xf32>, tensor<2x?xf32>) {
// CHECK: %[[IDX:.*]] = call @make_index() : () -> index
%i0 = call @make_index() : () -> index
@@ -178,14 +178,14 @@ func @bufferize_subtensor(%t : tensor<?x?xf32>) -> (tensor<2x3xf32>, tensor<2x?x
// CHECK-SAME: memref<?x?xf32> to memref<2x3xf32, #[[$MAP0]]>
// CHECK-NEXT: linalg.copy(%[[SM0]], %[[A0]]) : memref<2x3xf32, #[[$MAP0]]>, memref<2x3xf32>
// CHECK-NEXT: %[[RT0:.*]] = memref.tensor_load %[[A0]] : memref<2x3xf32>
- %st0 = subtensor %t[0, 0][2, 3][1, 1] : tensor<?x?xf32> to tensor<2x3xf32>
+ %st0 = tensor.extract_slice %t[0, 0][2, 3][1, 1] : tensor<?x?xf32> to tensor<2x3xf32>
// CHECK-NEXT: %[[A1:.*]] = memref.alloc(%[[IDX]]) : memref<2x?xf32>
// CHECK-NEXT: %[[SM1:.*]] = memref.subview %[[M]][0, %[[IDX]]] [2, %[[IDX]]] [1, 2]
// CHECK-SAME: memref<?x?xf32> to memref<2x?xf32, #[[$MAP1]]>
// CHECK-NEXT: linalg.copy(%[[SM1]], %[[A1]]) : memref<2x?xf32, #[[$MAP1]]>, memref<2x?xf32>
// CHECK-NEXT: %[[RT1:.*]] = memref.tensor_load %[[A1]] : memref<2x?xf32>
- %st1 = subtensor %t[0, %i0][2, %i0][1, 2] : tensor<?x?xf32> to tensor<2x?xf32>
+ %st1 = tensor.extract_slice %t[0, %i0][2, %i0][1, 2] : tensor<?x?xf32> to tensor<2x?xf32>
// CHECK-NEXT: return %[[RT0]], %[[RT1]]
return %st0, %st1 : tensor<2x3xf32>, tensor<2x?xf32>
@@ -198,11 +198,11 @@ func @bufferize_subtensor(%t : tensor<?x?xf32>) -> (tensor<2x3xf32>, tensor<2x?x
func private @make_index() -> index
-// CHECK-LABEL: func @bufferize_subtensor_insert(
+// CHECK-LABEL: func @bufferize_insert_slice(
// CHECK-SAME: %[[T:[0-9a-z]*]]: tensor<?x?xf32>
// CHECK-SAME: %[[ST0:[0-9a-z]*]]: tensor<2x3xf32>
// CHECK-SAME: %[[ST1:[0-9a-z]*]]: tensor<2x?xf32>
-func @bufferize_subtensor_insert(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %st1 : tensor<2x?xf32>) ->
+func @bufferize_insert_slice(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %st1 : tensor<2x?xf32>) ->
(tensor<?x?xf32>, tensor<?x?xf32>) {
%c0 = constant 0 : index
%c1 = constant 1 : index
@@ -222,7 +222,7 @@ func @bufferize_subtensor_insert(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %
// CHECK-SAME: memref<?x?xf32> to memref<2x3xf32, #[[$MAP0]]>
// CHECK-NEXT: linalg.copy(%[[SM0]], %[[SUBVIEW0]]) : memref<2x3xf32>, memref<2x3xf32, #[[$MAP0]]>
// CHECK-NEXT: %[[RT0:.*]] = memref.tensor_load %[[M_COPY0]] : memref<?x?xf32>
- %t0 = subtensor_insert %st0 into %t[0, 0][2, 3][1, 1] : tensor<2x3xf32> into tensor<?x?xf32>
+ %t0 = tensor.insert_slice %st0 into %t[0, 0][2, 3][1, 1] : tensor<2x3xf32> into tensor<?x?xf32>
// CHECK-DAG: %[[SM1:.*]] = memref.buffer_cast %[[ST1]] : memref<2x?xf32>
// CHECK-NEXT: %[[M_COPY1:.*]] = memref.alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
@@ -231,7 +231,7 @@ func @bufferize_subtensor_insert(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %
// CHECK-SAME: memref<?x?xf32> to memref<2x?xf32, #[[$MAP1]]>
// CHECK-NEXT: linalg.copy(%[[SM1]], %[[SUBVIEW1]]) : memref<2x?xf32>, memref<2x?xf32, #[[$MAP1]]>
// CHECK-NEXT: %[[RT1:.*]] = memref.tensor_load %[[M_COPY1]] : memref<?x?xf32>
- %t1 = subtensor_insert %st1 into %t[0, %i0][2, %i0][1, 2] : tensor<2x?xf32> into tensor<?x?xf32>
+ %t1 = tensor.insert_slice %st1 into %t[0, %i0][2, %i0][1, 2] : tensor<2x?xf32> into tensor<?x?xf32>
// CHECK: return %[[RT0]], %[[RT1]]
return %t0, %t1: tensor<?x?xf32>, tensor<?x?xf32>
diff --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir
index a3796c15ff21c..9697b13f26e4c 100644
--- a/mlir/test/Dialect/Linalg/canonicalize.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize.mlir
@@ -648,15 +648,15 @@ func @keep_not_noop(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>)
// -----
-func @fold_init_tensor_with_subtensor
+func @fold_init_tensor_with_slice
(%arg0 : index, %arg1 : index) -> tensor<5x?x20xf32>
{
%0 = linalg.init_tensor[%arg0, 10, 40] : tensor<?x10x40xf32>
- %1 = subtensor %0[0, 0, 0] [5, %arg1, 20] [1, 1, 1]
+ %1 = tensor.extract_slice %0[0, 0, 0] [5, %arg1, 20] [1, 1, 1]
: tensor<?x10x40xf32> to tensor<5x?x20xf32>
return %1 : tensor<5x?x20xf32>
}
-// CHECK: func @fold_init_tensor_with_subtensor
+// CHECK: func @fold_init_tensor_with_slice
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: index
// CHECK: %[[T0:.+]] = linalg.init_tensor [5, %[[ARG1]], 20]
@@ -723,13 +723,13 @@ func @propogate_casts(%arg0 : tensor<?x?xf32>, %arg1 : f32, %arg2 : index,
%1 = linalg.fill(%0, %arg1) : tensor<?x?xf32>, f32 -> tensor<?x?xf32>
%2 = memref.dim %arg0, %c0 : tensor<?x?xf32>
%3 = memref.dim %arg0, %c1 : tensor<?x?xf32>
- %4 = subtensor_insert %arg0 into %1[%arg2, %arg3] [%2, %3] [1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %4 = tensor.insert_slice %arg0 into %1[%arg2, %arg3] [%2, %3] [1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
return %4 : tensor<?x?xf32>
}
// CHECK-LABEL: func @propogate_casts
// CHECK: %[[INIT:.+]] = linalg.init_tensor [21, 42]
// CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %{{.+}})
-// CHECK: %[[INSERTED:.+]] = subtensor_insert %{{.+}} into %[[FILL]]
+// CHECK: %[[INSERTED:.+]] = tensor.insert_slice %{{.+}} into %[[FILL]]
// CHECK: %[[RESULT:.+]] = tensor.cast %[[INSERTED]]
// CHECK: return %[[RESULT]]
diff --git a/mlir/test/Dialect/Linalg/comprehensive-func-bufferize-analysis.mlir b/mlir/test/Dialect/Linalg/comprehensive-func-bufferize-analysis.mlir
index f6696b9743050..913c49c05904f 100644
--- a/mlir/test/Dialect/Linalg/comprehensive-func-bufferize-analysis.mlir
+++ b/mlir/test/Dialect/Linalg/comprehensive-func-bufferize-analysis.mlir
@@ -6,43 +6,43 @@
// -----
-// CHECK-LABEL: func @subtensor_fun
-func @subtensor_fun(%A : tensor<?xf32>, %B : tensor<?xf32> {linalg.inplaceable = true})
+// CHECK-LABEL: func @extract_slice_fun
+func @extract_slice_fun(%A : tensor<?xf32>, %B : tensor<?xf32> {linalg.inplaceable = true})
-> (tensor<4xf32>, tensor<8xf32>)
{
- // subtensor is not used in a write, it is not compelled to bufferize out of
- // place. Let callers decide whether they want to create aliasing subviews at
- // all call sites or whether they allocate.
+ // tensor.extract_slice is not used in a write, it is not compelled to
+ // bufferize out of place. Let callers decide whether they want to create
+ // aliasing subviews at all call sites or whether they allocate.
// This is true irrespective of whether the function argument is inplaceable.
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r0 = subtensor %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r1 = subtensor %B[0][8][1] : tensor<?xf32> to tensor<8xf32>
+ %r1 = tensor.extract_slice %B[0][8][1] : tensor<?xf32> to tensor<8xf32>
return %r0, %r1: tensor<4xf32>, tensor<8xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_insert_fun
-func @subtensor_insert_fun(
+// CHECK-LABEL: func @insert_slice_fun
+func @insert_slice_fun(
%A : tensor<?xf32>,
%B : tensor<?xf32> {linalg.inplaceable = true},
%C : tensor<4xf32>)
-> (tensor<?xf32>, tensor<?xf32>)
{
// must bufferize out of place.
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- %r0 = subtensor_insert %C into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r0 = tensor.insert_slice %C into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
// bufferizes inplace.
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r1 = subtensor_insert %C into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r1 = tensor.insert_slice %C into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
return %r0, %r1: tensor<?xf32>, tensor<?xf32>
}
@@ -85,34 +85,34 @@ func @conflict_on_B(
// -----
-// CHECK-LABEL: func @subtensor_subtensor
-func @subtensor_subtensor(
+// CHECK-LABEL: func @extract_slice_extract_slice
+func @extract_slice_extract_slice(
%A : tensor<?xf32> {linalg.inplaceable = true}, %B : tensor<?xf32>)
-> (tensor<2xf32>, tensor<2xf32>)
{
- // subtensor is not used in a write, it is not compelled to bufferize out of
- // place. Let callers decide whether they want to create aliasing subviews at
- // all call sites or whether they allocate.
+ // tensor.extract_slice is not used in a write, it is not compelled to
+ // bufferize out of place. Let callers decide whether they want to create
+ // aliasing subviews at all call sites or whether they allocate.
// This is true irrespective of whether the function argument is inplaceable.
// CHECK: {__inplace_results_attr__ = ["true"]}
- %r0 = subtensor %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
// CHECK: {__inplace_results_attr__ = ["true"]}
- %r1 = subtensor %r0[0][2][1] : tensor<4xf32> to tensor<2xf32>
+ %r1 = tensor.extract_slice %r0[0][2][1] : tensor<4xf32> to tensor<2xf32>
// CHECK: {__inplace_results_attr__ = ["true"]}
- %r2 = subtensor %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
// CHECK: {__inplace_results_attr__ = ["true"]}
- %r3 = subtensor %r2[0][2][1] : tensor<4xf32> to tensor<2xf32>
+ %r3 = tensor.extract_slice %r2[0][2][1] : tensor<4xf32> to tensor<2xf32>
return %r1, %r3: tensor<2xf32>, tensor<2xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_insert_subtensor_insert
-func @subtensor_insert_subtensor_insert(
+// CHECK-LABEL: func @insert_slice_insert_slice
+func @insert_slice_insert_slice(
%A : tensor<?xf32> {linalg.inplaceable = true},
%A2 : tensor<4xf32> {linalg.inplaceable = true},
%A3 : tensor<2xf32> {linalg.inplaceable = true},
@@ -120,102 +120,106 @@ func @subtensor_insert_subtensor_insert(
-> (tensor<?xf32>, tensor<?xf32>)
{
// CHECK: {__inplace_results_attr__ = ["true"]}
- %r0 = subtensor_insert %A3 into %A2[0][2][1] : tensor<2xf32> into tensor<4xf32>
+ %r0 = tensor.insert_slice %A3 into %A2[0][2][1] : tensor<2xf32> into tensor<4xf32>
// CHECK: {__inplace_results_attr__ = ["true"]}
- %r1 = subtensor_insert %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r1 = tensor.insert_slice %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
// CHECK: {__inplace_results_attr__ = ["false"]}
- %r2 = subtensor_insert %B3 into %B2[0][2][1] : tensor<2xf32> into tensor<4xf32>
+ %r2 = tensor.insert_slice %B3 into %B2[0][2][1] : tensor<2xf32> into tensor<4xf32>
// CHECK: {__inplace_results_attr__ = ["false"]}
- %r3 = subtensor_insert %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r3 = tensor.insert_slice %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
return %r1, %r3: tensor<?xf32>, tensor<?xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_nonmatching_subtensor_insert
-func @subtensor_nonmatching_subtensor_insert(
+// CHECK-LABEL: func @extract_slice_nonmatching_insert_slice
+func @extract_slice_nonmatching_insert_slice(
%A : tensor<?xf32> {linalg.inplaceable = true},
%B : tensor<?xf32>, %idx: index)
-> (tensor<?xf32>, tensor<?xf32>)
{
// %r1 bufferizes inplace because %A is inplaceable.
- // %r0 is an overlapping subtensor that does not match, it must be out of place.
- // CHECK: subtensor
+ // %r0 is an overlapping tensor.extract_slice that does not match, it must be
+ // out of place.
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- %r0 = subtensor %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
// %r1 can bufferize inplace fine.
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r1 = subtensor_insert %r0 into %A[%idx][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r1 = tensor.insert_slice %r0 into %A[%idx][4][1] : tensor<4xf32> into tensor<?xf32>
// %r3 does bufferizes inplace because %B is not inplaceable.
- // %r0 is an overlapping subtensor that does not match, but does not alias with
- // the buffer coming from %r3 so it can actually bufferize inplace.
- // CHECK: subtensor
+ // %r0 is an overlapping tensor.extract_slice that does not match, but does
+ // not alias with the buffer coming from %r3 so it can actually bufferize
+ // inplace.
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r2 = subtensor %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
// %r3 cannot bufferize inplace since %B is not inplaceable.
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- %r3 = subtensor_insert %r2 into %B[%idx][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r3 = tensor.insert_slice %r2 into %B[%idx][4][1] : tensor<4xf32> into tensor<?xf32>
return %r1, %r3: tensor<?xf32>, tensor<?xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_matching_subtensor_insert
-func @subtensor_matching_subtensor_insert(
+// CHECK-LABEL: func @extract_slice_matching_insert_slice
+func @extract_slice_matching_insert_slice(
%A : tensor<?xf32> {linalg.inplaceable = true},
%B : tensor<?xf32>)
-> (tensor<?xf32>, tensor<?xf32>)
{
// %r1 bufferizes inplace because %A is inplaceable.
- // %r0 is a subtensor that matches, it can also be bufferized inplace.
- // CHECK: subtensor
+ // %r0 is a tensor.extract_slice that matches, it can also be bufferized
+ // inplace.
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r0 = subtensor %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r1 = subtensor_insert %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r1 = tensor.insert_slice %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
- // %r2 is a subtensor that matches %r3, it can be bufferized inplace.
- // CHECK: subtensor
+ // %r2 is a tensor.extract_slice that matches %r3, it can be bufferized
+ // inplace.
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %r2 = subtensor %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
- // subtensor_insert cannot bufferize inplace.
+ // tensor.insert_slice cannot bufferize inplace.
// This should have been captured by a canonicalization pattern and it would
// be unproductive to have special logic in bufferization to encode matching
- // subtensor_insert(subtensor(A), A).
- // CHECK: subtensor_insert
+ // insert_slice(extract_slice(A), A).
+ // CHECK: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- %r3 = subtensor_insert %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r3 = tensor.insert_slice %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
return %r1, %r3: tensor<?xf32>, tensor<?xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_linalg_readonly_use
-func @subtensor_linalg_readonly_use(
+// CHECK-LABEL: func @extract_slice_linalg_readonly_use
+func @extract_slice_linalg_readonly_use(
%A : tensor<?x?xf32>,
%B : tensor<4x4xf32>,
%C : tensor<4x4xf32> {linalg.inplaceable = true})
-> (tensor<4x4xf32>, tensor<4x4xf32>)
{
- // subtensor is only used as a read, no interference irrespective of user's
- // inplace status.
- // CHECK: subtensor
+ // tensor.extract_slice is only used as a read, no interference irrespective
+ // of user's inplace status.
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %sA = subtensor %A[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
+ %sA = tensor.extract_slice %A[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
// matmul output operand is not inplaceable at the function boundary.
// CHECK: linalg.matmul
@@ -236,8 +240,8 @@ func @subtensor_linalg_readonly_use(
// -----
-// CHECK-LABEL: func @subtensor_to_linalg_write_use
-func @subtensor_to_linalg_write_use(
+// CHECK-LABEL: func @extract_slice_to_linalg_write_use
+func @extract_slice_to_linalg_write_use(
%A : tensor<4x4xf32>,
%B : tensor<?x?xf32>,
%C : tensor<?x?xf32> {linalg.inplaceable = true})
@@ -245,9 +249,9 @@ func @subtensor_to_linalg_write_use(
{
// Step 3. %sB forward propagates to a write in %D but it is not inplace.
// So this is only ever read and can bufferize inplace.
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %sB = subtensor %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
+ %sB = tensor.extract_slice %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
// Step 2. %sB has a read interference in %E, it does not bufferize inplace.
// CHECK: linalg.matmul
@@ -259,12 +263,12 @@ func @subtensor_to_linalg_write_use(
// Step 4. %sC forward propagates to an inplace write in %E.
// %sC backward propagates to %C which is inplaceable.
// As a consequence this is bufferized inplace.
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %sC = subtensor %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
+ %sC = tensor.extract_slice %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
- // Step 1. %sC backprops to the subtensor producer which is not considered an
- // interference. This bufferizes inplace.
+ // Step 1. %sC backprops to the tensor.extract_slice producer which is not
+ // considered an interference. This bufferizes inplace.
// CHECK: linalg.matmul
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
%E = linalg.matmul ins(%A, %sB: tensor<4x4xf32>, tensor<4x4xf32>)
@@ -280,8 +284,8 @@ func @subtensor_to_linalg_write_use(
// -----
-// CHECK-LABEL: func @subtensor_to_linalg_write_use
-func @subtensor_to_linalg_write_use(
+// CHECK-LABEL: func @extract_slice_to_linalg_write_use
+func @extract_slice_to_linalg_write_use(
%A : tensor<4x4xf32>,
%B : tensor<?x?xf32>,
%C : tensor<?x?xf32> {linalg.inplaceable = true})
@@ -290,12 +294,12 @@ func @subtensor_to_linalg_write_use(
// Step 4. %sB forward propagates to an inplace write in %D.
// %sB backward propagates to %B which is not inplaceable.
// As a consequence this is bufferized out of place.
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- %sB = subtensor %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
+ %sB = tensor.extract_slice %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
- // Step 1. %sB backprops to the subtensor producer which is not considered an
- // interference. This bufferizes inplace.
+ // Step 1. %sB backprops to the tensor.extract_slice producer which is not
+ // considered an interference. This bufferizes inplace.
// CHECK: linalg.matmul
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
%D = linalg.matmul ins(%B, %C: tensor<?x?xf32>, tensor<?x?xf32>)
@@ -305,12 +309,12 @@ func @subtensor_to_linalg_write_use(
// Step 3. %sC forward propagates to an inplace write in %E.
// %sC backward propagates to %C which is inplaceable.
// As a consequence this is bufferized inplace.
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %sC = subtensor %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
+ %sC = tensor.extract_slice %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
- // Step 1. %sC backprops to the subtensor producer which is not considered an
- // interference. This bufferizes inplace.
+ // Step 1. %sC backprops to the tensor.extract_slice producer which is not
+ // considered an interference. This bufferizes inplace.
// CHECK: linalg.matmul
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
%E = linalg.matmul ins(%A, %A: tensor<4x4xf32>, tensor<4x4xf32>)
@@ -322,8 +326,8 @@ func @subtensor_to_linalg_write_use(
// -----
-// CHECK-LABEL: func @nested_subtensor_and_insert
-func @nested_subtensor_and_insert(
+// CHECK-LABEL: func @nested_extract_slice_and_insert
+func @nested_extract_slice_and_insert(
%A : tensor<?x?xf32>,
%B : tensor<?x?xf32> {linalg.inplaceable = true},
%C : tensor<?x?xf32> {linalg.inplaceable = true},
@@ -332,75 +336,78 @@ func @nested_subtensor_and_insert(
{
%f0 = constant 0.0 : f32
- // 2-level matching subtensor / subtensor_insert into non inplaceable %A.
+ // 2-level matching tensor.extract_slice / tensor.insert_slice into non
+ // inplaceable %A.
// - %rA is not inplaceable because %A is not inplaceable at function boundary.
// - once %rA is deemed not inplaceable, nothing prevent %rsA to be inplaceable
// - this propagates to %FA and %ssA being inplaceable.
// - %sA would then bufferize to an inplace write (i.e. %FA) but %A is not
// inplaceable and so %sA is not inplaceable.
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- // CHECK-NEXT: subtensor
+ // CHECK-NEXT: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
// CHECK-NEXT: fill
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor_insert
+ // CHECK-NEXT: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor_insert
+ // CHECK-NEXT: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- %sA = subtensor %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
- %ssA = subtensor %sA[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
+ %sA = tensor.extract_slice %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %ssA = tensor.extract_slice %sA[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
%FA = linalg.fill(%ssA, %f0) : tensor<4x4xf32>, f32 -> tensor<4x4xf32>
- %rsA = subtensor_insert %FA into %sA[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<?x?xf32>
- %rA = subtensor_insert %rsA into %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %rsA = tensor.insert_slice %FA into %sA[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<?x?xf32>
+ %rA = tensor.insert_slice %rsA into %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
- // 3-level matching subtensor / subtensor_insert into inplaceable %B.
- // CHECK-NEXT: subtensor
+ // 3-level matching tensor.extract_slice / tensor.insert_slice into
+ // inplaceable %B.
+ // CHECK-NEXT: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor
- // Atm, this 2nd subtensor fails to bufferize inplace because clobbering
- // analysis conservatively test for equivalent buffers.
+ // CHECK-NEXT: tensor.extract_slice
+ // Atm, this 2nd tensor.extract_slice fails to bufferize inplace because
+ // clobbering analysis conservatively test for equivalent buffers.
// TODO: This is currently too restrictive and misses clobberings.
// When available, use container-containee analysis.
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
- // CHECK-NEXT: subtensor
+ // CHECK-NEXT: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
// CHECK-NEXT: fill
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor_insert
+ // CHECK-NEXT: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor_insert
+ // CHECK-NEXT: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor_insert
+ // CHECK-NEXT: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %sB = subtensor %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
- %ssB = subtensor %sB[0, 0][4, %idx][1, 1] : tensor<?x?xf32> to tensor<4x?xf32>
- %sssB = subtensor %ssB[0, 0][4, 4][1, 1] : tensor<4x?xf32> to tensor<4x4xf32>
+ %sB = tensor.extract_slice %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %ssB = tensor.extract_slice %sB[0, 0][4, %idx][1, 1] : tensor<?x?xf32> to tensor<4x?xf32>
+ %sssB = tensor.extract_slice %ssB[0, 0][4, 4][1, 1] : tensor<4x?xf32> to tensor<4x4xf32>
%FB = linalg.fill(%sssB, %f0) : tensor<4x4xf32>, f32 -> tensor<4x4xf32>
- %rssB = subtensor_insert %FB into %ssB[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<4x?xf32>
- %rsB = subtensor_insert %rssB into %sB[0, 0][4, %idx][1, 1] : tensor<4x?xf32> into tensor<?x?xf32>
- %rB = subtensor_insert %rsB into %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %rssB = tensor.insert_slice %FB into %ssB[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<4x?xf32>
+ %rsB = tensor.insert_slice %rssB into %sB[0, 0][4, %idx][1, 1] : tensor<4x?xf32> into tensor<?x?xf32>
+ %rB = tensor.insert_slice %rsB into %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
- // 2-level matching subtensor / subtensor_insert into inplaceable %C with a twist.
+ // 2-level matching tensor.extract_slice / tensor.insert_slice into
+ // inplaceable %C with a twist.
// Throw a wrench in the system: %rsC production sizes do not match %ssC.
- // CHECK-NEXT: subtensor
+ // CHECK-NEXT: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // The subtensor_insert that would be candidate for matching does not actually
- // match. That subtensor_insert can still be bufferized inplace nonetheless
- // but this subtensor, which bufferizes to an inplace write, cannot.
- // CHECK-NEXT: subtensor
+ // The tensor.insert_slice that would be candidate for matching does not actually
+ // match. That tensor.insert_slice can still be bufferized inplace nonetheless
+ // but this tensor.extract_slice, which bufferizes to an inplace write, cannot.
+ // CHECK-NEXT: tensor.extract_slice
// CHECK-SAME: {__inplace_results_attr__ = ["false"]}
// CHECK-NEXT: fill
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor_insert
+ // CHECK-NEXT: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- // CHECK-NEXT: subtensor_insert
+ // CHECK-NEXT: tensor.insert_slice
// CHECK-SAME: {__inplace_results_attr__ = ["true"]}
- %sC = subtensor %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
- %ssC = subtensor %sC[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
+ %sC = tensor.extract_slice %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %ssC = tensor.extract_slice %sC[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
%FC = linalg.fill(%ssC, %f0) : tensor<4x4xf32>, f32 -> tensor<4x4xf32>
- %rsC = subtensor_insert %FC into %sC[0, 0][12345, 67890][1, 1] : tensor<4x4xf32> into tensor<?x?xf32>
- %rC = subtensor_insert %rsC into %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %rsC = tensor.insert_slice %FC into %sC[0, 0][12345, 67890][1, 1] : tensor<4x4xf32> into tensor<?x?xf32>
+ %rC = tensor.insert_slice %rsC into %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
return %rA, %rB, %rC: tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>
}
diff --git a/mlir/test/Dialect/Linalg/comprehensive-func-bufferize.mlir b/mlir/test/Dialect/Linalg/comprehensive-func-bufferize.mlir
index a58a764b6e851..21853d66944ba 100644
--- a/mlir/test/Dialect/Linalg/comprehensive-func-bufferize.mlir
+++ b/mlir/test/Dialect/Linalg/comprehensive-func-bufferize.mlir
@@ -118,8 +118,8 @@ func @vec_not_inplace(%A : tensor<?xf32> {linalg.inplaceable = true}, %vec : vec
// -----
-// CHECK-LABEL: func @subtensor_insert_fun
-func @subtensor_insert_fun(%A0 : tensor<?xf32>, %A1 : tensor<?xf32> {linalg.inplaceable = true},
+// CHECK-LABEL: func @insert_slice_fun
+func @insert_slice_fun(%A0 : tensor<?xf32>, %A1 : tensor<?xf32> {linalg.inplaceable = true},
%t0 : tensor<4xf32>, %t1 : tensor<4xf32> {linalg.inplaceable = true})
-> (tensor<?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>)
{
@@ -128,40 +128,40 @@ func @subtensor_insert_fun(%A0 : tensor<?xf32>, %A1 : tensor<?xf32> {linalg.inpl
// CHECK: %[[BUFFER_CAST_t0:.*]] = memref.buffer_cast {{.*}} : memref<4xf32
// CHECK: %[[BUFFER_CAST_t1:.*]] = memref.buffer_cast {{.*}} : memref<4xf32
- // Alloc and copy the whole result tensor. Copy the subtensor.
+ // Alloc and copy the whole result tensor. Copy the tensor.extract_slice.
// CHECK: %[[REALLOC_A0:.*]] = memref.alloc
// CHECK: linalg.copy(%[[BUFFER_CAST_A0]]
// CHECK: %[[SV_A0:.*]] = memref.subview %[[REALLOC_A0]]
// CHECK: linalg.copy(%[[BUFFER_CAST_t0]], %[[SV_A0]])
- %r0 = subtensor_insert %t0 into %A0[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r0 = tensor.insert_slice %t0 into %A0[0][4][1] : tensor<4xf32> into tensor<?xf32>
- // Alloc and copy the whole result tensor. Copy the subtensor.
+ // Alloc and copy the whole result tensor. Copy the tensor.extract_slice.
// CHECK: %[[REALLOC_A0_2:.*]] = memref.alloc
// CHECK: linalg.copy(%[[BUFFER_CAST_A0]]
// CHECK: %[[SV_A0_2:.*]] = memref.subview %[[REALLOC_A0_2]]
// CHECK: linalg.copy(%[[BUFFER_CAST_t1]], %[[SV_A0_2]])
- %r1 = subtensor_insert %t1 into %A0[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r1 = tensor.insert_slice %t1 into %A0[0][4][1] : tensor<4xf32> into tensor<?xf32>
- // Still alloc the large tensor because %A1 is read after. Copy the subtensor.
+ // Still alloc the large tensor because %A1 is read after. Copy the tensor.extract_slice.
// CHECK: %[[REALLOC_A1:.*]] = memref.alloc
// CHECK: linalg.copy(%[[BUFFER_CAST_A1]]
// CHECK: %[[SV_A1:.*]] = memref.subview %[[REALLOC_A1]]
// CHECK: linalg.copy(%[[BUFFER_CAST_t0]], %[[SV_A1]])
- %r2 = subtensor_insert %t0 into %A1[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r2 = tensor.insert_slice %t0 into %A1[0][4][1] : tensor<4xf32> into tensor<?xf32>
- // Do not realloc the large tensor. Copy the subtensor.
+ // Do not realloc the large tensor. Copy the tensor.extract_slice.
// CHECK-NOT: alloc
// CHECK: %[[SV_A1_2:.*]] = memref.subview %[[BUFFER_CAST_A1]]
// CHECK: linalg.copy(%[[BUFFER_CAST_t1]], %[[SV_A1_2]])
- %r3 = subtensor_insert %t1 into %A1[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r3 = tensor.insert_slice %t1 into %A1[0][4][1] : tensor<4xf32> into tensor<?xf32>
return %r0, %r1, %r2, %r3: tensor<?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_insert_fun
-func @subtensor_insert_fun(%A : tensor<?xf32> {linalg.inplaceable = true}, %t : tensor<4xf32>)
+// CHECK-LABEL: func @insert_slice_fun
+func @insert_slice_fun(%A : tensor<?xf32> {linalg.inplaceable = true}, %t : tensor<4xf32>)
-> tensor<?xf32>
{
%f0 = constant 0.0 : f32
@@ -172,7 +172,7 @@ func @subtensor_insert_fun(%A : tensor<?xf32> {linalg.inplaceable = true}, %t :
// CHECK-NOT: alloc
// CHECK: %[[SV:.*]] = memref.subview %[[BUFFER_CAST_A]]
// CHECK: linalg.copy(%[[BUFFER_CAST_B]], %[[SV]])
- %r0 = subtensor_insert %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r0 = tensor.insert_slice %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
/// Overwrite BUFFER_CAST_A inplace.
// CHECK: linalg.fill(%[[BUFFER_CAST_A]]
@@ -182,8 +182,8 @@ func @subtensor_insert_fun(%A : tensor<?xf32> {linalg.inplaceable = true}, %t :
// -----
-// CHECK-LABEL: func @subtensor_insert_fun
-func @subtensor_insert_fun(%A : tensor<?xf32> {linalg.inplaceable = true}, %t : tensor<4xf32>)
+// CHECK-LABEL: func @insert_slice_fun
+func @insert_slice_fun(%A : tensor<?xf32> {linalg.inplaceable = true}, %t : tensor<4xf32>)
-> tensor<?xf32>
{
%f0 = constant 0.0 : f32
@@ -198,15 +198,15 @@ func @subtensor_insert_fun(%A : tensor<?xf32> {linalg.inplaceable = true}, %t :
// CHECK: %[[SV:.*]] = memref.subview %[[BUFFER_CAST_A]]
/// Overwrite BUFFER_CAST_A inplace by copying into the subview.
// CHECK: linalg.copy(%[[BUFFER_CAST_B]], %[[SV]])
- %r1 = subtensor_insert %t into %r0[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r1 = tensor.insert_slice %t into %r0[0][4][1] : tensor<4xf32> into tensor<?xf32>
return %r1: tensor<?xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_insert_fun_not_inplace
-func @subtensor_insert_fun_not_inplace(%A : tensor<?xf32>, %t : tensor<4xf32>)
+// CHECK-LABEL: func @insert_slice_fun_not_inplace
+func @insert_slice_fun_not_inplace(%A : tensor<?xf32>, %t : tensor<4xf32>)
-> tensor<?xf32>
{
// CHECK: %[[BUFFER_CAST_A:.*]] = memref.buffer_cast {{.*}} : memref<?xf32
@@ -217,14 +217,14 @@ func @subtensor_insert_fun_not_inplace(%A : tensor<?xf32>, %t : tensor<4xf32>)
// CHECK: %[[SV:.*]] = memref.subview %[[ALLOC]][0] [4] [1] : memref<?xf32> to memref<4xf32>
// CHECK: linalg.copy(%[[BUFFER_CAST_B]], %[[SV]]) : memref<4xf32, #map>, memref<4xf32>
// CHECK: memref.dealloc %[[ALLOC]] : memref<?xf32>
- %r0 = subtensor_insert %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r0 = tensor.insert_slice %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
return %r0: tensor<?xf32>
}
// -----
-// CHECK-LABEL: func @subtensor_insert_fun_not_inplace
-func @subtensor_insert_fun_not_inplace(%A : tensor<?xf32> {linalg.inplaceable = true}, %t : tensor<4xf32>)
+// CHECK-LABEL: func @insert_slice_fun_not_inplace
+func @insert_slice_fun_not_inplace(%A : tensor<?xf32> {linalg.inplaceable = true}, %t : tensor<4xf32>)
-> (tensor<?xf32>, tensor<?xf32>)
{
%f0 = constant 0.0 : f32
@@ -232,10 +232,10 @@ func @subtensor_insert_fun_not_inplace(%A : tensor<?xf32> {linalg.inplaceable =
// CHECK-DAG: %[[BUFFER_CAST_A:.*]] = memref.buffer_cast {{.*}} : memref<?xf32{{.*}}
// CHECK-DAG: %[[BUFFER_CAST_B:.*]] = memref.buffer_cast {{.*}} : memref<4xf32{{.*}}
- // subtensor_insert is bufferized first, %A is inplaceable so we can make this inplace
+ // tensor.insert_slice is bufferized first, %A is inplaceable so we can make this inplace
// CHECK-DAG: %[[SV:.*]] = memref.subview %[[BUFFER_CAST_A]][0] [4] [1] : memref<?xf32, {{.*}}> to memref<4xf32, {{.*}}>
// CHECK-DAG: linalg.copy(%[[BUFFER_CAST_B]], %[[SV]]) : memref<4xf32, {{.*}}>, memref<4xf32, {{.*}}>
- %r0 = subtensor_insert %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
+ %r0 = tensor.insert_slice %t into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
// fill would interfere with %r0 that is also being returned.
// So we need to bufferize it out of place and make a new alloc.
@@ -253,8 +253,8 @@ func @subtensor_insert_fun_not_inplace(%A : tensor<?xf32> {linalg.inplaceable =
// -----
-// CHECK-LABEL: func @subtensor_fun
-func @subtensor_fun(%A : tensor<?xf32> {linalg.inplaceable = true})
+// CHECK-LABEL: func @extract_slice_fun
+func @extract_slice_fun(%A : tensor<?xf32> {linalg.inplaceable = true})
-> tensor<4xf32>
{
// This bufferizes to a pattern that the cross-function boundary pass needs to
@@ -268,9 +268,8 @@ func @subtensor_fun(%A : tensor<?xf32> {linalg.inplaceable = true})
// CHECK: %[[BUFFER_CAST_A:.*]] = memref.buffer_cast {{.*}} : memref<?xf32
// CHECK: %[[SV:.*]] = memref.subview %[[BUFFER_CAST_A]][0] [4] [1]
// CHECK: %[[RES:.*]] = memref.tensor_load %[[SV]]
- %r0 = subtensor %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
+ %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
// CHECK: return %[[RES]]
return %r0: tensor<4xf32>
}
-
diff --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index f5359e54a7d51..9e72461b78c30 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -299,28 +299,28 @@ func @fold_unit_dim_for_init_tensor(%input: tensor<1x1000xf32>) -> tensor<1xf32>
// -----
-func @fold_subtensor(
+func @fold_slice(
%arg0 : tensor<1x?x?x1x?x1x1xf32>, %arg1 : tensor<1x?x?x?x?x1x1xf32>,
%arg2 : index, %arg3 : index, %arg4 : index, %arg5 : index,
%arg6 : index, %arg7 : index) -> (tensor<1x?x?x1x?x1x1xf32>, tensor<1x?x?x1x?x1x1xf32>) {
- %0 = subtensor %arg0[0, %arg2, %arg3, 0, %arg4, 0, 0]
- [1, %arg5, %arg6, 1, %arg7, 1, 1] [1, 1, 1, 1, 1, 1, 1] :
+ %0 = tensor.extract_slice %arg0[0, %arg2, %arg3, 0, %arg4, 0, 0]
+ [1, %arg5, %arg6, 1, %arg7, 1, 1] [1, 1, 1, 1, 1, 1, 1] :
tensor<1x?x?x1x?x1x1xf32> to tensor<1x?x?x1x?x1x1xf32>
- %1 = subtensor %arg1[%arg2, 0, %arg3, 0, 0, %arg4, 0]
- [1, %arg5, %arg6, 1, %arg7, 1, 1] [1, 1, 1, 1, 1, 1, 1] :
+ %1 = tensor.extract_slice %arg1[%arg2, 0, %arg3, 0, 0, %arg4, 0]
+ [1, %arg5, %arg6, 1, %arg7, 1, 1] [1, 1, 1, 1, 1, 1, 1] :
tensor<1x?x?x?x?x1x1xf32> to tensor<1x?x?x1x?x1x1xf32>
return %0, %1 : tensor<1x?x?x1x?x1x1xf32>, tensor<1x?x?x1x?x1x1xf32>
}
-// CHECK: func @fold_subtensor
+// CHECK: func @fold_slice
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x?x?x1x?x1x1xf32>
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x?x?x?x?x1x1xf32>
-// CHECK: %[[SUBTENSOR1:.+]] = subtensor %[[ARG0]]
+// CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG0]]
// CHECK-SAME: to tensor<?x?x?xf32>
-// CHECK: %[[RESULT1:.+]] = linalg.tensor_expand_shape %[[SUBTENSOR1]]
+// CHECK: %[[RESULT1:.+]] = linalg.tensor_expand_shape %[[SLICE1]]
// CHECK-SAME: [0, 1], [2], [3, 4, 5, 6]
-// CHECK: %[[SUBTENSOR2:.+]] = subtensor %[[ARG1]]
+// CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG1]]
// CHECK-SAME: to tensor<?x?x?xf32>
-// CHECK: %[[RESULT2:.+]] = linalg.tensor_expand_shape %[[SUBTENSOR2]]
+// CHECK: %[[RESULT2:.+]] = linalg.tensor_expand_shape %[[SLICE2]]
// CHECK-SAME: [0, 1], [2], [3, 4, 5, 6]
// CHECK: return %[[RESULT1]], %[[RESULT2]]
@@ -430,25 +430,25 @@ func @unit_dim_for_reduction_inner(%arg0: tensor<?x1x?x1xf32>) -> tensor<?x1xf32
// -----
-func @subtensor_unit_dims(%arg0: tensor<1x3xf32>) -> tensor<1x1xf32> {
- %0 = subtensor %arg0[0, 2] [1, 1] [1, 1] : tensor<1x3xf32> to tensor<1x1xf32>
+func @slice_unit_dims(%arg0: tensor<1x3xf32>) -> tensor<1x1xf32> {
+ %0 = tensor.extract_slice %arg0[0, 2] [1, 1] [1, 1] : tensor<1x3xf32> to tensor<1x1xf32>
return %0 : tensor<1x1xf32>
}
-// CHECK-LABEL: func @subtensor_unit_dims
-// CHECK: %[[SUBTENSOR:.+]] = subtensor
+// CHECK-LABEL: func @slice_unit_dims
+// CHECK: %[[SLICE:.+]] = tensor.extract_slice
// CHECK-SAME: tensor<1x3xf32> to tensor<f32>
-// CHECK: %[[RESULT:.+]] = linalg.tensor_expand_shape %[[SUBTENSOR]] []
+// CHECK: %[[RESULT:.+]] = linalg.tensor_expand_shape %[[SLICE]] []
// CHECK: return %[[RESULT]]
// -----
-func @subtensor_insert_unit_dims(%arg0: tensor<1x3xf32>, %arg1: tensor<1x1xf32>) -> tensor<1x3xf32> {
- %0 = subtensor_insert %arg1 into %arg0[0, 2] [1, 1] [1, 1] : tensor<1x1xf32> into tensor<1x3xf32>
+func @insert_slice_unit_dims(%arg0: tensor<1x3xf32>, %arg1: tensor<1x1xf32>) -> tensor<1x3xf32> {
+ %0 = tensor.insert_slice %arg1 into %arg0[0, 2] [1, 1] [1, 1] : tensor<1x1xf32> into tensor<1x3xf32>
return %0 : tensor<1x3xf32>
}
-// CHECK-LABEL: func @subtensor_insert_unit_dims
+// CHECK-LABEL: func @insert_slice_unit_dims
// CHECK: %[[RESHAPE:.+]] = linalg.tensor_collapse_shape %{{.+}} []
-// CHECK: %[[RESULT:.+]] = subtensor_insert %[[RESHAPE]]
+// CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[RESHAPE]]
// CHECK-SAME: tensor<f32> into tensor<1x3xf32>
// CHECK: return %[[RESULT]]
diff --git a/mlir/test/Dialect/Linalg/fusion-sequence.mlir b/mlir/test/Dialect/Linalg/fusion-sequence.mlir
index 8455991e8f5e9..08140bb73c947 100644
--- a/mlir/test/Dialect/Linalg/fusion-sequence.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-sequence.mlir
@@ -175,18 +175,18 @@ module {
// CHECK: %[[INIT:.+]] = linalg.init_tensor
// CHECK: %[[R0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[ARG5:.+]] = %[[INIT]]) -> (tensor<?x?xf32>) {
// CHECK: %[[R1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[ARG7:.+]] = %[[ARG5]]) -> (tensor<?x?xf32>) {
-// CHECK-DAG: %[[STARG3:.+]] = subtensor %[[ARG3]]
-// CHECK-DAG: %[[STARG7:.+]] = subtensor %[[ARG7]]
-// CHECK-DAG: %[[STARG0:.+]] = subtensor %[[ARG0]]
-// CHECK-DAG: %[[STARG1:.+]] = subtensor %[[ARG1]]
-// CHECK-DAG: %[[STARG2:.+]] = subtensor %[[ARG2]]
+// CHECK-DAG: %[[STARG3:.+]] = tensor.extract_slice %[[ARG3]]
+// CHECK-DAG: %[[STARG7:.+]] = tensor.extract_slice %[[ARG7]]
+// CHECK-DAG: %[[STARG0:.+]] = tensor.extract_slice %[[ARG0]]
+// CHECK-DAG: %[[STARG1:.+]] = tensor.extract_slice %[[ARG1]]
+// CHECK-DAG: %[[STARG2:.+]] = tensor.extract_slice %[[ARG2]]
// CHECK: %[[T0:.+]] = linalg.matmul
// CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?xf32>, tensor<?x?xf32>)
// CHECK-SAME: outs(%[[STARG2]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[T1:.+]] = linalg.generic
// CHECK-SAME: ins(%[[T0:.+]], %[[STARG3]] : tensor<?x?xf32>, tensor<?xf32>)
// CHECK-SAME: outs(%[[STARG7]] : tensor<?x?xf32>)
-// CHECK: %[[RESULT:.+]] = subtensor_insert %[[T1]] into %[[ARG7]]
+// CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[T1]] into %[[ARG7]]
// CHECK: scf.yield %[[RESULT]]
// CHECK: }
// CHECK: scf.yield %[[R1]]
@@ -229,21 +229,21 @@ module {
// CHECK: %[[M_1:.+]] = memref.dim %[[ARG8]], %[[C0]]
// CHECK: %[[TILE_M_1:.+]] = affine.min #[[MAP0]](%[[M_1]], %[[IV0]])
// CHECK: %[[N3:.+]] = memref.dim %[[ARG8]], %[[C1]]
-// CHECK: %[[STARG6:.+]] = subtensor %[[ARG8]][%[[IV0]], 0]
+// CHECK: %[[STARG6:.+]] = tensor.extract_slice %[[ARG8]][%[[IV0]], 0]
// CHECK-SAME: [%[[TILE_M_1]], %[[N3]]]
// CHECK: %[[M_2:.+]] = memref.dim %[[ARG4]], %[[C0]]
// CHECK: %[[TILE_M_2:.+]] = affine.min #[[MAP1]](%[[IV0]])[%[[M_2]], %[[M]]]
// CHECK: %[[N2:.+]] = memref.dim %[[ARG4]], %[[C1]]
-// CHECK: %[[STARG4:.+]] = subtensor %[[ARG4]][%[[IV0]], 0]
+// CHECK: %[[STARG4:.+]] = tensor.extract_slice %[[ARG4]][%[[IV0]], 0]
// CHECK-SAME: [%[[TILE_M_2]], %[[N2]]]
// CHECK: %[[TILE_M_3:.+]] = affine.min #[[MAP1]](%[[IV0]])[%[[M]], %[[M]]]
// CHECK: %[[N0:.+]] = memref.dim %[[ARG0]], %[[C1]]
-// CHECK: %[[STARG0:.+]] = subtensor %[[ARG0]][%[[IV0]], 0]
+// CHECK: %[[STARG0:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0]
// CHECK-SAME: [%[[TILE_M_3]], %[[N0]]]
// CHECK: %[[M_3:.+]] = memref.dim %[[ARG2]], %[[C0]]
// CHECK: %[[TILE_M_4:.+]] = affine.min #[[MAP1]](%[[IV0]])[%[[M_3]], %[[M]]]
// CHECK: %[[N1:.+]] = memref.dim %[[ARG2]], %[[C1]]
-// CHECK: %[[STARG2:.+]] = subtensor %[[ARG2]][%[[IV0]], 0]
+// CHECK: %[[STARG2:.+]] = tensor.extract_slice %[[ARG2]][%[[IV0]], 0]
// CHECK-SAME: [%[[TILE_M_4]], %[[N1]]]
// CHECK: %[[T0:.+]] = linalg.matmul
// CHECK-SAME: ins(%[[STARG0]], %[[ARG1]] : tensor<?x?xf32>, tensor<?x?xf32>
@@ -254,7 +254,7 @@ module {
// CHECK: %[[T2:.+]] = linalg.matmul
// CHECK-SAME: ins(%[[T1]], %arg5 : tensor<?x?xf32>, tensor<?x?xf32>
// CHECK-SAME: ) outs(%[[STARG6]] : tensor<?x?xf32>)
-// CHECK: %[[R1:.+]] = subtensor_insert %[[T2]]
+// CHECK: %[[R1:.+]] = tensor.insert_slice %[[T2]]
// CHECK-SAME: into %[[ARG8]][%[[IV0]], 0] [%[[TILE_M_1]], %[[N3]]]
// CHECK: scf.yield %[[R1]] : tensor<?x?xf32>
// CHECK: }
diff --git a/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir b/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir
index 4ea25dffdcef1..f97aa8573ac60 100644
--- a/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir
@@ -38,16 +38,16 @@ module {
// CHECK: %[[M_2:.+]] = memref.dim %[[ARG6]], %[[C0]]
// CHECK: %[[TILE_M_2:.+]] = affine.min #[[MAP1]](%[[M_2]], %[[IV0]])
// CHECK: %[[N3:.+]] = memref.dim %[[ARG6]], %[[C1]]
-// CHECK: %[[ST_ARG6:.+]] = subtensor %[[ARG6]][%[[IV0]], 0]
+// CHECK: %[[ST_ARG6:.+]] = tensor.extract_slice %[[ARG6]][%[[IV0]], 0]
// CHECK-SAME: [%[[TILE_M_2]], %[[N3]]]
// CHECK: %[[TILE_M_3:.+]] = affine.min #[[MAP5]](%[[IV0]])[%[[M]], %[[M]]]
// CHECK: %[[N1:.+]] = memref.dim %[[ARG0]], %[[C1]]
-// CHECK: %[[ST_ARG0:.+]] = subtensor %[[ARG0]][%[[IV0]], 0]
+// CHECK: %[[ST_ARG0:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0]
// CHECK-SAME: [%[[TILE_M_3]], %[[N1]]]
// CHECK: %[[M_3:.+]] = memref.dim %[[ARG2]], %[[C0]]
// CHECK: %[[TILE_M_4:.+]] = affine.min #[[MAP5]](%[[IV0]])[%[[M_3]], %[[M]]]
// CHECK: %[[N2_2:.+]] = memref.dim %[[ARG2]], %[[C1]]
-// CHECK: %[[ST_ARG2:.+]] = subtensor %[[ARG2]][%[[IV0]], 0]
+// CHECK: %[[ST_ARG2:.+]] = tensor.extract_slice %[[ARG2]][%[[IV0]], 0]
// CHECK-SAME: [%[[TILE_M_4]], %[[N2_2]]]
// CHECK: %[[LHS:.+]] = linalg.matmul
// CHECK-SAME: __internal_linalg_transform__ = "after_lhs_fusion_producer"
@@ -62,30 +62,30 @@ module {
// CHECK-SAME: %[[C0]] to %[[N2]] step %[[C16]]
// CHECK-SAME: iter_args(%[[ARG10:.+]] = %[[ARG8]]) -> (tensor<?x?xf32>) {
// CHECK: %[[TILE_N2:.+]] = affine.min #[[MAP2]](%[[IV2]])[%[[N2]]]
-// CHECK: %[[ST_LHS:.+]] = subtensor %[[LHS]][0, %[[IV2]]]
+// CHECK: %[[ST_LHS:.+]] = tensor.extract_slice %[[LHS]][0, %[[IV2]]]
// CHECK-SAME: [%[[TILE_M_3]], %[[TILE_N2]]]
// CHECK: %[[N2_3:.+]] = memref.dim %[[ARG3]], %[[C0]]
// CHECK: %[[TILE_N2_2:.+]] = affine.min #[[MAP2]](%[[IV2]])[%[[N2_3]]]
// CHECK: %[[TILE_N3:.+]] = affine.min #[[MAP3]](%[[IV1]])[%[[N3_2]]]
-// CHECK: %[[ST_ARG3:.+]] = subtensor %[[ARG3]][%[[IV2]], %[[IV1]]]
+// CHECK: %[[ST_ARG3:.+]] = tensor.extract_slice %[[ARG3]][%[[IV2]], %[[IV1]]]
// CHECK-SAME: [%[[TILE_N2_2]], %[[TILE_N3]]]
// CHECK: %[[M_4:.+]] = memref.dim %[[ARG10]], %[[C0]]
// CHECK: %[[N3_3:.+]] = memref.dim %[[ARG10]], %[[C1]]
// CHECK: %[[TILE_N3_2:.+]] = affine.min #[[MAP4]](%[[N3_3]], %[[IV1]])
-// CHECK: %[[ST_ARG4:.+]] = subtensor %[[ARG10]][0, %[[IV1]]]
+// CHECK: %[[ST_ARG4:.+]] = tensor.extract_slice %[[ARG10]][0, %[[IV1]]]
// CHECK-SAME: [%[[M_4]], %[[TILE_N3_2]]]
// CHECK: %[[ST_RESULT:.+]] = linalg.matmul
// CHECK-SAME: __internal_linalg_transform__ = "after_lhs_fusion"
// CHECK-SAME: ins(%[[ST_LHS]], %[[ST_ARG3]]
// CHECK-SAME: : tensor<?x?xf32>, tensor<?x?xf32>)
// CHECK-SAME: outs(%[[ST_ARG4]] : tensor<?x?xf32>)
-// CHECK: %[[UPDATE1:.+]] = subtensor_insert %[[ST_RESULT]]
+// CHECK: %[[UPDATE1:.+]] = tensor.insert_slice %[[ST_RESULT]]
// CHECK-SAME: into %[[ARG10]][0, %[[IV1]]] [%[[M_4]], %[[TILE_N3_2]]]
// CHECK: scf.yield %[[UPDATE1]]
// CHECK: }
// CHECK: scf.yield %[[YIELD1]]
// CHECK: }
-// CHECK: %[[UPDATE0:.+]] = subtensor_insert %[[YIELD0]] into
+// CHECK: %[[UPDATE0:.+]] = tensor.insert_slice %[[YIELD0]] into
// CHECK-SAME: %[[ARG6]][%[[IV0]], 0] [%[[TILE_M_2]], %[[N3]]]
// CHECK: scf.yield %[[UPDATE0]]
// CHECK: }
@@ -114,9 +114,9 @@ module {
// TLOOP-SAME: %[[AB_INIT_:.*]] = %[[AB_INIT]]: tensor<?x?xf32>)
// TLOOP-SAME: outs (%[[ABC_INIT_:.*]] = %[[ABC_INIT]]: tensor<?x?xf32>) {
-// TLOOP: %[[ABC_INIT_SUB:.*]] = subtensor %[[ABC_INIT_]][%[[IV0]], 0]
-// TLOOP: %[[A_SUB:.*]] = subtensor %[[A_]][%[[IV0]], 0]
-// TLOOP: %[[AB_INIT_SUB:.*]] = subtensor %[[AB_INIT_]][%[[IV0]], 0]
+// TLOOP: %[[ABC_INIT_SUB:.*]] = tensor.extract_slice %[[ABC_INIT_]][%[[IV0]], 0]
+// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[IV0]], 0]
+// TLOOP: %[[AB_INIT_SUB:.*]] = tensor.extract_slice %[[AB_INIT_]][%[[IV0]], 0]
// TLOOP: %[[AB_SUB:.*]] = linalg.matmul
// TLOOP-SAME: ins(%[[A_SUB]], %[[B_]] : {{.*}}) outs(%[[AB_INIT_SUB]]
@@ -132,19 +132,19 @@ module {
// TLOOP-SAME: outs (%[[ABC_INIT_SUB_:.*]] = %[[ABC_INIT_SUB]]: [[TY]])
// TLOOP-SAME: iterators["parallel", "reduction"] {
-// TLOOP: %[[AB_SUB_SUB:.*]] = subtensor %[[AB_SUB_]][0, %[[IV2]]]
-// TLOOP: %[[C__SUB:.*]] = subtensor %[[C__]][%[[IV2]], %[[IV1]]]
-// TLOOP: %[[ABS_INIT_SUB_SUB:.*]] = subtensor %[[ABC_INIT_SUB_]][0, %[[IV1]]]
+// TLOOP: %[[AB_SUB_SUB:.*]] = tensor.extract_slice %[[AB_SUB_]][0, %[[IV2]]]
+// TLOOP: %[[C__SUB:.*]] = tensor.extract_slice %[[C__]][%[[IV2]], %[[IV1]]]
+// TLOOP: %[[ABS_INIT_SUB_SUB:.*]] = tensor.extract_slice %[[ABC_INIT_SUB_]][0, %[[IV1]]]
// TLOOP: %[[ABC_SUB_SUB:.*]] = linalg.matmul
// TLOOP-SAME: ins(%[[AB_SUB_SUB]], %[[C__SUB]] : [[TY]], [[TY]])
// TLOOP-SAME: outs(%[[ABS_INIT_SUB_SUB]] : [[TY]]) -> [[TY]]
-// TLOOP: %[[RES0:.*]] = subtensor_insert %[[ABC_SUB_SUB]]
+// TLOOP: %[[RES0:.*]] = tensor.insert_slice %[[ABC_SUB_SUB]]
// TLOOP-SAME: into %[[ABC_INIT_SUB_]][0, %[[IV1]]]
// TLOOP: linalg.yield %[[RES0]] : [[TY]]
// TLOOP: }
-// TLOOP: %[[RES1:.*]] = subtensor_insert %[[ABC_SUB_]] into %[[ABC_INIT_]][%[[IV0]], 0]
+// TLOOP: %[[RES1:.*]] = tensor.insert_slice %[[ABC_SUB_]] into %[[ABC_INIT_]][%[[IV0]], 0]
// TLOOP: linalg.yield %[[RES1]] : [[TY]]
// TLOOP: }
// TLOOP: return %[[ABC]] : [[TY]]
@@ -186,10 +186,10 @@ module {
// CHECK-SAME: iter_args(%[[ARG4:.+]] = %{{[a-zA-Z0-9_]+}})
// CHECK: %[[YIELD:.+]] = scf.for %[[IV1:[a-zA-Z0-9_]+]]
// CHECK-SAME: iter_args(%[[ARG6:.+]] = %[[ARG4]])
-// CHECK: %[[ST_ARG6:.+]] = subtensor %[[ARG6]][%[[IV0]], %[[IV1]]]
-// CHECK: %[[ST_ARG0:.+]] = subtensor %[[ARG0]][%[[IV0]], 0]
-// CHECK: %[[ST_ARG1:.+]] = subtensor %[[ARG1]][0, %[[IV1]]]
-// CHECK: %[[ST_ARG2:.+]] = subtensor %[[ARG2]][%[[IV0]], %[[IV1]]]
+// CHECK: %[[ST_ARG6:.+]] = tensor.extract_slice %[[ARG6]][%[[IV0]], %[[IV1]]]
+// CHECK: %[[ST_ARG0:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0]
+// CHECK: %[[ST_ARG1:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV1]]]
+// CHECK: %[[ST_ARG2:.+]] = tensor.extract_slice %[[ARG2]][%[[IV0]], %[[IV1]]]
// CHECK: %[[LHS:.+]] = linalg.matmul
// CHECK-SAME: ins(%[[ST_ARG0]], %[[ST_ARG1]]
// CHECK-SAME: : tensor<?x?xf32>, tensor<?x?xf32>)
@@ -197,7 +197,7 @@ module {
// CHECK: %[[ST_RESULT:.+]] = linalg.generic
// CHECK-SAME: ins(%[[LHS]] : tensor<?x?xf32>)
// CHECK-SAME: outs(%[[ST_ARG6]] : tensor<?x?xf32>)
-// CHECK: %[[UPDATE:.+]] = subtensor_insert %[[ST_RESULT]]
+// CHECK: %[[UPDATE:.+]] = tensor.insert_slice %[[ST_RESULT]]
// CHECK-SAME: into %[[ARG6]][%[[IV0]], %[[IV1]]]
// CHECK: scf.yield %[[UPDATE]]
// CHECK: scf.yield %[[YIELD]]
@@ -226,10 +226,10 @@ module {
// TLOOP-SAME: %[[AB_:.*]] = %[[AB]]: [[TY]])
// TLOOP-SAME: outs (%[[INIT_:.*]] = %[[INIT]]: [[TY]]) {
-// TLOOP: %[[INIT_SUB:.*]] = subtensor %[[INIT_]][%[[IV0]], %[[IV1]]]
-// TLOOP: %[[A_SUB:.*]] = subtensor %[[A_]][%[[IV0]], 0]
-// TLOOP: %[[B_SUB:.*]] = subtensor %[[B_]][0, %[[IV1]]]
-// TLOOP: %[[AB_SUB_INIT:.*]] = subtensor %[[AB_]][%[[IV0]], %[[IV1]]]
+// TLOOP: %[[INIT_SUB:.*]] = tensor.extract_slice %[[INIT_]][%[[IV0]], %[[IV1]]]
+// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[IV0]], 0]
+// TLOOP: %[[B_SUB:.*]] = tensor.extract_slice %[[B_]][0, %[[IV1]]]
+// TLOOP: %[[AB_SUB_INIT:.*]] = tensor.extract_slice %[[AB_]][%[[IV0]], %[[IV1]]]
// TLOOP: %[[AB_SUB:.*]] = linalg.matmul
// TLOOP-SAME: ins(%[[A_SUB]], %[[B_SUB]] : [[TY]], [[TY]])
@@ -238,7 +238,7 @@ module {
// TLOOP: %[[DOUBLE_AB:.*]] = linalg.generic
// TLOOP-SAME: ins(%[[AB_SUB]] : [[TY]]) outs(%[[INIT_SUB]] : [[TY]])
-// TLOOP: %[[RESULT_SUB:.*]] = subtensor_insert
+// TLOOP: %[[RESULT_SUB:.*]] = tensor.insert_slice
// TLOOP-SAME: %[[DOUBLE_AB:.*]] into %[[INIT_]][%[[IV0]], %[[IV1]]]
// TLOOP: linalg.yield %[[RESULT_SUB]] : [[TY]]
@@ -267,13 +267,13 @@ module {
// CHECK-NOT: fill
// CHECK: scf.for %[[I:.*]]{{.*}}iter_args(%{{.*}} = %[[ARG0]]) -> (tensor<?x?xf32>) {
// CHECK: scf.for %[[J:.*]]
-// CHECK: %[[ST:.*]] = subtensor %[[ARG0]]
+// CHECK: %[[ST:.*]] = tensor.extract_slice %[[ARG0]]
// CHECK: %[[ST_FILL:.*]] = linalg.fill(%[[ST]], %[[C0]]) {__internal_linalg_transform__ = "after_out_fusion_producer"} : tensor<?x?xf32>, f32 -> tensor<?x?xf32>
// CHECK: %[[ST_MM_RES:.*]] = scf.for %[[K:.*]]{{.*}}iter_args(%[[BB:.*]] = %[[ST_FILL]]) -> (tensor<?x?xf32>) {
// CHECK-NOT: fill
// CHECK: %[[ST_MM:.*]] = linalg.matmul {__internal_linalg_transform__ = "after_out_fusion"} ins(%{{.*}}, %{{.*}} : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[BB]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: scf.yield %[[ST_MM]] : tensor<?x?xf32>
-// CHECK: %[[MM:.*]] = subtensor_insert %[[ST_MM_RES]] into {{.*}}
+// CHECK: %[[MM:.*]] = tensor.insert_slice %[[ST_MM_RES]] into {{.*}}
// CHECK: scf.yield %[[MM]] : tensor<?x?xf32>
@@ -300,9 +300,9 @@ module {
// TLOOP-SAME: outs (%[[OUT_:.*]] = %[[OUT]]: [[TY]]) {
// TLOOP: %[[DIM_A__1:.*]] = memref.dim %[[A_]], %[[C1]] : [[TY]]
-// TLOOP: %[[A_SUB:.*]] = subtensor %[[A_]][%[[I]], 0]
-// TLOOP: %[[B_SUB:.*]] = subtensor %[[B_]][0, %[[J]]]
-// TLOOP: %[[OUT_SUB:.*]] = subtensor %[[OUT_]][%[[I]], %[[J]]]
+// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[I]], 0]
+// TLOOP: %[[B_SUB:.*]] = tensor.extract_slice %[[B_]][0, %[[J]]]
+// TLOOP: %[[OUT_SUB:.*]] = tensor.extract_slice %[[OUT_]][%[[I]], %[[J]]]
// TLOOP: %[[INIT_SUB:.*]] = linalg.fill(%[[OUT_SUB]], %[[C0_F32]])
// TLOOP: %[[AB_SUB:.*]] = linalg.tiled_loop (%[[K:.*]]) = (%[[C0]])
@@ -312,15 +312,15 @@ module {
// TLOOP-SAME: outs (%[[INIT_SUB_:.*]] = %[[INIT_SUB]]: [[TY]])
// TLOOP-SAME: iterators["reduction"] {
-// TLOOP: %[[A_SUB_SUB:.*]] = subtensor %[[A_SUB_]][0, %[[K]]]
-// TLOOP: %[[B_SUB_SUB:.*]] = subtensor %[[B_SUB_]][%[[K]], 0]
+// TLOOP: %[[A_SUB_SUB:.*]] = tensor.extract_slice %[[A_SUB_]][0, %[[K]]]
+// TLOOP: %[[B_SUB_SUB:.*]] = tensor.extract_slice %[[B_SUB_]][%[[K]], 0]
// TLOOP: %[[AB_SUB_SUB:.*]] = linalg.matmul
// TLOOP-SAME: ins(%[[A_SUB_SUB]], %[[B_SUB_SUB]] : [[TY]], [[TY]])
// TLOOP-SAME: outs(%[[INIT_SUB_]] : [[TY]]) -> [[TY]]
// TLOOP: linalg.yield %[[AB_SUB_SUB]] : [[TY]]
// TLOOP: }
-// TLOOP: %[[SUB_RESULT:.*]] = subtensor_insert %[[AB_SUB]]
+// TLOOP: %[[SUB_RESULT:.*]] = tensor.insert_slice %[[AB_SUB]]
// TLOOP-SAME: into %[[OUT_]][%[[I]], %[[J]]]
// TLOOP: linalg.yield %[[SUB_RESULT]] : [[TY]]
// TLOOP: }
@@ -371,9 +371,9 @@ module {
// TLOOP-SAME: outs (%[[OUT_:.*]] = %[[OUT]]: [[TY]]) {
// TLOOP: %[[DIM_A__1:.*]] = memref.dim %[[A_]], %[[C1]] : [[TY]]
-// TLOOP: %[[A_SUB:.*]] = subtensor %[[A_]][%[[I]], 0]
-// TLOOP: %[[B_SUB:.*]] = subtensor %[[B_]][0, %[[J]]]
-// TLOOP: %[[OUT_SUB:.*]] = subtensor %[[OUT_]][%[[I]], %[[J]]]
+// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[I]], 0]
+// TLOOP: %[[B_SUB:.*]] = tensor.extract_slice %[[B_]][0, %[[J]]]
+// TLOOP: %[[OUT_SUB:.*]] = tensor.extract_slice %[[OUT_]][%[[I]], %[[J]]]
// TLOOP: %[[INIT_SUB:.*]] = linalg.generic
// TLOOP-SAME: ins(%[[C0_F32_]]
// TLOOP-SAME: outs(%[[OUT_SUB]]
@@ -385,15 +385,15 @@ module {
// TLOOP-SAME: outs (%[[INIT_SUB_:.*]] = %[[INIT_SUB]]: [[TY]])
// TLOOP-SAME: iterators["reduction"] {
-// TLOOP: %[[A_SUB_SUB:.*]] = subtensor %[[A_SUB_]][0, %[[K]]]
-// TLOOP: %[[B_SUB_SUB:.*]] = subtensor %[[B_SUB_]][%[[K]], 0]
+// TLOOP: %[[A_SUB_SUB:.*]] = tensor.extract_slice %[[A_SUB_]][0, %[[K]]]
+// TLOOP: %[[B_SUB_SUB:.*]] = tensor.extract_slice %[[B_SUB_]][%[[K]], 0]
// TLOOP: %[[AB_SUB_SUB:.*]] = linalg.matmul
// TLOOP-SAME: ins(%[[A_SUB_SUB]], %[[B_SUB_SUB]] : [[TY]], [[TY]])
// TLOOP-SAME: outs(%[[INIT_SUB_]] : [[TY]]) -> [[TY]]
// TLOOP: linalg.yield %[[AB_SUB_SUB]] : [[TY]]
// TLOOP: }
-// TLOOP: %[[SUB_RESULT:.*]] = subtensor_insert %[[AB_SUB]]
+// TLOOP: %[[SUB_RESULT:.*]] = tensor.insert_slice %[[AB_SUB]]
// TLOOP-SAME: into %[[OUT_]][%[[I]], %[[J]]]
// TLOOP: linalg.yield %[[SUB_RESULT]] : [[TY]]
// TLOOP: }
diff --git a/mlir/test/Dialect/Linalg/hoist-padding.mlir b/mlir/test/Dialect/Linalg/hoist-padding.mlir
index 248aa6414ad8b..8163f3be0b8c7 100644
--- a/mlir/test/Dialect/Linalg/hoist-padding.mlir
+++ b/mlir/test/Dialect/Linalg/hoist-padding.mlir
@@ -53,10 +53,10 @@ func @matmul_tensors(
// CHECK: %[[A:.*]] = scf.for %[[J1:[0-9a-z]+]] =
// Iteration count along J1
// CHECK: %[[IDXpad0_K:[0-9]+]] = affine.apply #[[$DIV4]](%[[J1]])
- // CHECK: subtensor %{{.*}} [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ // CHECK: tensor.extract_slice %{{.*}} [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: linalg.pad_tensor %{{.*}}
// CHECK: : tensor<?x?xf32> to tensor<2x4xf32>
- // CHECK: subtensor_insert %{{.*}} into %{{.*}}[%[[IDXpad0_K]], 0, 0]
+ // CHECK: tensor.insert_slice %{{.*}} into %{{.*}}[%[[IDXpad0_K]], 0, 0]
// CHECK-SAME: [1, 2, 4] [1, 1, 1] : tensor<2x4xf32> into tensor<?x2x4xf32>
// Second tensor is KxN but loop order is (M, N, K) so padded tensor is NxKx4x3
// CHECK: %[[SZpad1_N:[0-9]+]] = affine.apply #[[$DIVS3]]()[%[[dN]]]
@@ -69,23 +69,23 @@ func @matmul_tensors(
// CHECK: scf.for %[[J2:[0-9a-z]+]] =
// Iteration count along J2
// CHECK: %[[IDXpad1_N:[0-9]+]] = affine.apply #[[$DIV4]](%[[J2]])
- // CHECK: subtensor %{{.*}} [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ // CHECK: tensor.extract_slice %{{.*}} [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: linalg.pad_tensor %{{.*}}
// CHECK: : tensor<?x?xf32> to tensor<4x3xf32>
- // CHECK: subtensor_insert %{{.*}} into %{{.*}}[%[[IDXpad1_K]], %[[IDXpad1_N]], 0, 0]
+ // CHECK: tensor.insert_slice %{{.*}} into %{{.*}}[%[[IDXpad1_K]], %[[IDXpad1_N]], 0, 0]
// CHECK-SAME: [1, 1, 4, 3] [1, 1, 1, 1] : tensor<4x3xf32> into tensor<?x?x4x3xf32>
// 2-D loop
// CHECK: scf.for %[[J:[0-9a-zA-Z]+]]
// CHECK: scf.for %[[K:[0-9a-zA-Z]+]]
// Iteration count along K
// CHECK: %[[IDXpad0_K:[0-9]+]] = affine.apply #[[$DIV4]](%[[K]])
- // CHECK: %[[stA:.*]] = subtensor %[[A]][%[[IDXpad0_K]], 0, 0] [1, 2, 4] [1, 1, 1] :
+ // CHECK: %[[stA:.*]] = tensor.extract_slice %[[A]][%[[IDXpad0_K]], 0, 0] [1, 2, 4] [1, 1, 1] :
// CHECK-SAME: tensor<?x2x4xf32> to tensor<2x4xf32>
// Iteration count along J
// CHECK: %[[IDXpad1_N:[0-9]+]] = affine.apply #[[$DIV3]](%[[J]])
// Iteration count along K
// CHECK: %[[IDXpad1_K:[0-9]+]] = affine.apply #[[$DIV4]](%[[K]])
- // CHECK: %[[stB:.*]] = subtensor %[[B]][%[[IDXpad1_N]], %[[IDXpad1_K]], 0, 0] [1, 1, 4, 3] [1, 1, 1, 1] :
+ // CHECK: %[[stB:.*]] = tensor.extract_slice %[[B]][%[[IDXpad1_N]], %[[IDXpad1_K]], 0, 0] [1, 1, 4, 3] [1, 1, 1, 1] :
// CHECK-SAME: tensor<?x?x4x3xf32> to tensor<4x3xf32>
// CHECK: %[[stC:.*]] = linalg.pad_tensor %{{.*}}
// CHECK: : tensor<?x?xf32> to tensor<2x3xf32>
@@ -98,17 +98,17 @@ func @matmul_tensors(
%7 = affine.min #map0(%arg3)[%6]
%8 = memref.dim %arg0, %c1 : tensor<?x?xf32>
%9 = affine.min #map1(%arg7)[%8]
- %10 = subtensor %arg0[%arg3, %arg7] [%7, %9] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %10 = tensor.extract_slice %arg0[%arg3, %arg7] [%7, %9] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%11 = memref.dim %arg1, %c0 : tensor<?x?xf32>
%12 = affine.min #map1(%arg7)[%11]
%13 = memref.dim %arg1, %c1 : tensor<?x?xf32>
%14 = affine.min #map2(%arg5)[%13]
- %15 = subtensor %arg1[%arg7, %arg5] [%12, %14] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %15 = tensor.extract_slice %arg1[%arg7, %arg5] [%12, %14] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%16 = memref.dim %arg8, %c0 : tensor<?x?xf32>
%17 = affine.min #map3(%16, %arg3)
%18 = memref.dim %arg8, %c1 : tensor<?x?xf32>
%19 = affine.min #map4(%18, %arg5)
- %20 = subtensor %arg8[%arg3, %arg5] [%17, %19] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %20 = tensor.extract_slice %arg8[%arg3, %arg5] [%17, %19] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%21 = subi %c2, %7 : index
%22 = subi %c4, %9 : index
%23 = linalg.pad_tensor %10 low[%c0, %c0] high[%21, %22] {
@@ -128,8 +128,8 @@ func @matmul_tensors(
linalg.yield %cst : f32
} : tensor<?x?xf32> to tensor<2x3xf32>
%30 = linalg.matmul ins(%23, %26 : tensor<2x4xf32>, tensor<4x3xf32>) outs(%29 : tensor<2x3xf32>) -> tensor<2x3xf32>
- %31 = subtensor %30[0, 0] [%7, %14] [1, 1] : tensor<2x3xf32> to tensor<?x?xf32>
- %32 = subtensor_insert %31 into %arg8[%arg3, %arg5] [%17, %19] [%c1, %c1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %31 = tensor.extract_slice %30[0, 0] [%7, %14] [1, 1] : tensor<2x3xf32> to tensor<?x?xf32>
+ %32 = tensor.insert_slice %31 into %arg8[%arg3, %arg5] [%17, %19] [%c1, %c1] : tensor<?x?xf32> into tensor<?x?xf32>
scf.yield %32 : tensor<?x?xf32>
}
scf.yield %5 : tensor<?x?xf32>
@@ -173,7 +173,7 @@ func @dot(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<f32>)
// CHECK: %[[INIT_PACKED_A:.*]] = linalg.init_tensor [%[[D0]], %[[D1]], 2] : tensor<?x?x2xf32>
// CHECK: %[[PACKED_A:.*]] = scf.for %[[II:[0-9a-z]+]] = {{.*}} iter_args(%{{.*}} = %[[INIT_PACKED_A]]) -> (tensor<?x?x2xf32>) {
// CHECK: scf.for %[[III:[0-9a-z]+]] =
- // CHECK: subtensor_insert %{{.*}} into %{{.*}}[%{{.*}}, %{{.*}}, 0] [1, 1, 2] [1, 1, 1] : tensor<2xf32> into tensor<?x?x2xf32>
+ // CHECK: tensor.insert_slice %{{.*}} into %{{.*}}[%{{.*}}, %{{.*}}, 0] [1, 1, 2] [1, 1, 1] : tensor<2xf32> into tensor<?x?x2xf32>
//
// CHECK: %[[D0_2:.*]] = affine.apply #[[$DIV4]](%[[MR8]])
// CHECK: %[[MM4_2:.*]] = affine.min #[[$MIN_MOD4]](%[[MR8]])
@@ -182,33 +182,33 @@ func @dot(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<f32>)
// CHECK: %[[INIT_PACKED_B:.*]] = linalg.init_tensor [%[[D0_2]], %[[D1_2]], 2] : tensor<?x?x2xf32>
// CHECK: %[[PACKED_B:.*]] = scf.for %[[II_2:[0-9a-z]+]] = {{.*}} iter_args(%{{.*}} = %[[INIT_PACKED_B]]) -> (tensor<?x?x2xf32>) {
// CHECK: scf.for %[[III_2:[0-9a-z]+]] =
- // CHECK: subtensor_insert %{{.*}} into %{{.*}}[%{{.*}}, %{{.*}}, 0] [1, 1, 2] [1, 1, 1] : tensor<2xf32> into tensor<?x?x2xf32>
+ // CHECK: tensor.insert_slice %{{.*}} into %{{.*}}[%{{.*}}, %{{.*}}, 0] [1, 1, 2] [1, 1, 1] : tensor<2xf32> into tensor<?x?x2xf32>
// Compute.
// CHECK: scf.for %[[II_3:[0-9a-z]+]] =
// CHECK: scf.for %[[III_3:[0-9a-z]+]] = {{.*}} iter_args(%[[C:.*]] = %{{.*}}) -> (tensor<f32>) {
// CHECK: %[[IDX0:.*]] = affine.apply #[[$DIV4]](%[[II_3]])
// CHECK: %[[IDX1:.*]] = affine.apply #[[$DIV2]](%[[III_3]])
- // CHECK: %[[A:.*]] = subtensor %[[PACKED_A]][%[[IDX0]], %[[IDX1]], 0] [1, 1, 2] [1, 1, 1] : tensor<?x?x2xf32> to tensor<2xf32>
+ // CHECK: %[[A:.*]] = tensor.extract_slice %[[PACKED_A]][%[[IDX0]], %[[IDX1]], 0] [1, 1, 2] [1, 1, 1] : tensor<?x?x2xf32> to tensor<2xf32>
// CHECK: %[[IDX0_2:.*]] = affine.apply #[[$DIV4]](%[[II_3]])
// CHECK: %[[IDX1_2:.*]] = affine.apply #[[$DIV2]](%[[III_3]])
- // CHECK: %[[B:.*]] = subtensor %[[PACKED_B]][%[[IDX0_2]], %[[IDX1_2]], 0] [1, 1, 2] [1, 1, 1] : tensor<?x?x2xf32> to tensor<2xf32>
+ // CHECK: %[[B:.*]] = tensor.extract_slice %[[PACKED_B]][%[[IDX0_2]], %[[IDX1_2]], 0] [1, 1, 2] [1, 1, 1] : tensor<?x?x2xf32> to tensor<2xf32>
// CHECK: linalg.dot ins(%[[A]], %[[B]] : tensor<2xf32>, tensor<2xf32>) outs(%[[C]] : tensor<f32>) -> tensor<f32>
%4 = scf.for %arg3 = %c0 to %1 step %c8 iter_args(%arg4 = %arg2) -> (tensor<f32>) {
%5 = affine.min #map0(%arg3)[%2]
- %6 = subtensor %arg0[%arg3] [%5] [1] : tensor<?xf32> to tensor<?xf32>
+ %6 = tensor.extract_slice %arg0[%arg3] [%5] [1] : tensor<?xf32> to tensor<?xf32>
%7 = affine.min #map0(%arg3)[%3]
- %8 = subtensor %arg1[%arg3] [%7] [1] : tensor<?xf32> to tensor<?xf32>
+ %8 = tensor.extract_slice %arg1[%arg3] [%7] [1] : tensor<?xf32> to tensor<?xf32>
%9 = scf.for %arg5 = %c0 to %5 step %c4 iter_args(%arg6 = %arg4) -> (tensor<f32>) {
%10 = affine.min #map1(%5, %arg5)
- %11 = subtensor %6[%arg5] [%10] [1] : tensor<?xf32> to tensor<?xf32>
+ %11 = tensor.extract_slice %6[%arg5] [%10] [1] : tensor<?xf32> to tensor<?xf32>
%12 = affine.min #map1(%7, %arg5)
- %13 = subtensor %8[%arg5] [%12] [1] : tensor<?xf32> to tensor<?xf32>
+ %13 = tensor.extract_slice %8[%arg5] [%12] [1] : tensor<?xf32> to tensor<?xf32>
%14 = scf.for %arg7 = %c0 to %10 step %c2 iter_args(%arg8 = %arg6) -> (tensor<f32>) {
%15 = affine.min #map2(%10, %arg7)
- %16 = subtensor %11[%arg7] [%15] [1] : tensor<?xf32> to tensor<?xf32>
+ %16 = tensor.extract_slice %11[%arg7] [%15] [1] : tensor<?xf32> to tensor<?xf32>
%17 = affine.min #map2(%12, %arg7)
- %18 = subtensor %13[%arg7] [%17] [1] : tensor<?xf32> to tensor<?xf32>
+ %18 = tensor.extract_slice %13[%arg7] [%17] [1] : tensor<?xf32> to tensor<?xf32>
%19 = subi %c2, %15 : index
%20 = linalg.pad_tensor %16 low[%c0] high[%19] {
^bb0(%arg9: index): // no predecessors
@@ -245,17 +245,17 @@ func @matmul_2d_tiling(%arg0: tensor<32x128xf32>, %arg1: tensor<128x64xf32>, %ar
%1 = scf.for %arg3 = %c0 to %c32 step %c16 iter_args(%arg4 = %arg2) -> (tensor<32x64xf32>) {
%2 = scf.for %arg5 = %c0 to %c64 step %c32 iter_args(%arg6 = %arg4) -> (tensor<32x64xf32>) {
%3 = scf.for %arg7 = %c0 to %c128 step %c32 iter_args(%arg8 = %arg6) -> (tensor<32x64xf32>) {
- %4 = subtensor %arg0[%arg3, %arg7] [16, 32] [1, 1] : tensor<32x128xf32> to tensor<16x32xf32>
- %5 = subtensor %arg1[%arg7, %arg5] [32, 32] [1, 1] : tensor<128x64xf32> to tensor<32x32xf32>
- %6 = subtensor %arg8[%arg3, %arg5] [16, 32] [1, 1] : tensor<32x64xf32> to tensor<16x32xf32>
+ %4 = tensor.extract_slice %arg0[%arg3, %arg7] [16, 32] [1, 1] : tensor<32x128xf32> to tensor<16x32xf32>
+ %5 = tensor.extract_slice %arg1[%arg7, %arg5] [32, 32] [1, 1] : tensor<128x64xf32> to tensor<32x32xf32>
+ %6 = tensor.extract_slice %arg8[%arg3, %arg5] [16, 32] [1, 1] : tensor<32x64xf32> to tensor<16x32xf32>
%7 = scf.for %arg9 = %c0 to %c16 step %c2 iter_args(%arg10 = %6) -> (tensor<16x32xf32>) {
%10 = scf.for %arg11 = %c0 to %c32 step %c4 iter_args(%arg12 = %arg10) -> (tensor<16x32xf32>) {
%11 = scf.for %arg13 = %c0 to %c32 step %c16 iter_args(%arg14 = %arg12) -> (tensor<16x32xf32>) {
- %12 = subtensor %4[%arg9, %arg13] [2, 16] [1, 1] : tensor<16x32xf32> to tensor<2x16xf32>
+ %12 = tensor.extract_slice %4[%arg9, %arg13] [2, 16] [1, 1] : tensor<16x32xf32> to tensor<2x16xf32>
%13 = tensor.cast %12 : tensor<2x16xf32> to tensor<?x?xf32>
- %14 = subtensor %5[%arg13, %arg11] [16, 4] [1, 1] : tensor<32x32xf32> to tensor<16x4xf32>
+ %14 = tensor.extract_slice %5[%arg13, %arg11] [16, 4] [1, 1] : tensor<32x32xf32> to tensor<16x4xf32>
%15 = tensor.cast %14 : tensor<16x4xf32> to tensor<?x?xf32>
- %16 = subtensor %arg14[%arg9, %arg11] [2, 4] [1, 1] : tensor<16x32xf32> to tensor<2x4xf32>
+ %16 = tensor.extract_slice %arg14[%arg9, %arg11] [2, 4] [1, 1] : tensor<16x32xf32> to tensor<2x4xf32>
%17 = tensor.cast %16 : tensor<2x4xf32> to tensor<?x?xf32>
%18 = linalg.pad_tensor %13 low[%c0, %c0] high[%c0, %c0] {
^bb0(%arg15: index, %arg16: index): // no predecessors
@@ -271,7 +271,7 @@ func @matmul_2d_tiling(%arg0: tensor<32x128xf32>, %arg1: tensor<128x64xf32>, %ar
} : tensor<?x?xf32> to tensor<2x4xf32>
%21 = linalg.matmul ins(%18, %19 : tensor<2x16xf32>, tensor<16x4xf32>) outs(%20 : tensor<2x4xf32>) -> tensor<2x4xf32>
%22 = tensor.cast %21 : tensor<2x4xf32> to tensor<?x?xf32>
- %23 = subtensor_insert %22 into %arg14[%arg9, %arg11] [%c2, %c4] [1, 1] : tensor<?x?xf32> into tensor<16x32xf32>
+ %23 = tensor.insert_slice %22 into %arg14[%arg9, %arg11] [%c2, %c4] [1, 1] : tensor<?x?xf32> into tensor<16x32xf32>
scf.yield %23 : tensor<16x32xf32>
}
scf.yield %11 : tensor<16x32xf32>
@@ -279,7 +279,7 @@ func @matmul_2d_tiling(%arg0: tensor<32x128xf32>, %arg1: tensor<128x64xf32>, %ar
scf.yield %10 : tensor<16x32xf32>
}
%8 = tensor.cast %7 : tensor<16x32xf32> to tensor<?x?xf32>
- %9 = subtensor_insert %8 into %arg8[%arg3, %arg5] [%c16, %c32] [1, 1] : tensor<?x?xf32> into tensor<32x64xf32>
+ %9 = tensor.insert_slice %8 into %arg8[%arg3, %arg5] [%c16, %c32] [1, 1] : tensor<?x?xf32> into tensor<32x64xf32>
scf.yield %9 : tensor<32x64xf32>
}
scf.yield %3 : tensor<32x64xf32>
diff --git a/mlir/test/Dialect/Linalg/hoisting.mlir b/mlir/test/Dialect/Linalg/hoisting.mlir
index 302665ab31847..9c03c467bfc0a 100644
--- a/mlir/test/Dialect/Linalg/hoisting.mlir
+++ b/mlir/test/Dialect/Linalg/hoisting.mlir
@@ -321,14 +321,14 @@ func @hoist_vector_transfer_pairs_disjoint_tensor(
// -----
-// CHECK-LABEL: func @hoist_vector_transfer_pairs_tensor_and_subtensors
+// CHECK-LABEL: func @hoist_vector_transfer_pairs_tensor_and_slices
// CHECK-SAME: %[[TENSOR0:[a-zA-Z0-9]*]]: tensor<?x?xf32>,
// CHECK-SAME: %[[TENSOR1:[a-zA-Z0-9]*]]: tensor<?x?xf32>,
// CHECK-SAME: %[[TENSOR2:[a-zA-Z0-9]*]]: tensor<?x?xf32>,
// CHECK-SAME: %[[TENSOR3:[a-zA-Z0-9]*]]: tensor<?x?xf32>,
// CHECK-SAME: %[[TENSOR4:[a-zA-Z0-9]*]]: tensor<?x?xf32>,
// CHECK-SAME: %[[TENSOR5:[a-zA-Z0-9]*]]: tensor<?x?xf32>
-func @hoist_vector_transfer_pairs_tensor_and_subtensors(
+func @hoist_vector_transfer_pairs_tensor_and_slices(
%tensor0: tensor<?x?xf32>, %tensor1: tensor<?x?xf32>, %tensor2: tensor<?x?xf32>,
%tensor3: tensor<?x?xf32>, %tensor4: tensor<?x?xf32>, %tensor5: tensor<?x?xf32>,
%val: index, %lb : index, %ub : index, %step: index) ->
@@ -349,7 +349,7 @@ func @hoist_vector_transfer_pairs_tensor_and_subtensors(
-> (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) {
// Hoisted
- // CHECK: %[[ST0:.*]] = subtensor %[[TENSOR0_ARG]][%[[I]], %[[I]]]{{.*}}: tensor<?x?xf32> to tensor<?x?xf32>
+ // CHECK: %[[ST0:.*]] = tensor.extract_slice %[[TENSOR0_ARG]][%[[I]], %[[I]]]{{.*}}: tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[V0:.*]] = vector.transfer_read %[[ST0]]{{.*}} : tensor<?x?xf32>, vector<1xf32>
// CHECK: %[[R:.*]]:3 = scf.for %[[J:.*]] = {{.*}} iter_args(
@@ -362,19 +362,19 @@ func @hoist_vector_transfer_pairs_tensor_and_subtensors(
iter_args(%arg6 = %arg0, %arg7 = %arg1, %arg8 = %arg2)
-> (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) {
// Hoists.
- %st0 = subtensor %arg6[%i, %i][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %st0 = tensor.extract_slice %arg6[%i, %i][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%r0 = vector.transfer_read %st0[%c0, %c0], %cst: tensor<?x?xf32>, vector<1xf32>
- // CHECK: %[[ST1:.*]] = subtensor %[[TENSOR1_ARG_L2]][%[[J]],{{.*}}: tensor<?x?xf32> to tensor<?x?xf32>
+ // CHECK: %[[ST1:.*]] = tensor.extract_slice %[[TENSOR1_ARG_L2]][%[[J]],{{.*}}: tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[V1:.*]] = vector.transfer_read %[[ST1]]{{.*}} : tensor<?x?xf32>, vector<2xf32>
- // Does not hoist (subtensor depends on %j)
- %st1 = subtensor %arg7[%j, %c0][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ // Does not hoist (slice depends on %j)
+ %st1 = tensor.extract_slice %arg7[%j, %c0][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%r1 = vector.transfer_read %st1[%c0, %c0], %cst: tensor<?x?xf32>, vector<2xf32>
- // CHECK: %[[ST2:.*]] = subtensor %[[TENSOR2_ARG_L2]][%[[I]],{{.*}}: tensor<?x?xf32> to tensor<?x?xf32>
+ // CHECK: %[[ST2:.*]] = tensor.extract_slice %[[TENSOR2_ARG_L2]][%[[I]],{{.*}}: tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[V2:.*]] = vector.transfer_read %[[ST2]]{{.*}} : tensor<?x?xf32>, vector<3xf32>
- // Does not hoist, 2 subtensor %arg8.
- %st2 = subtensor %arg8[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ // Does not hoist, 2 slice %arg8.
+ %st2 = tensor.extract_slice %arg8[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%r2 = vector.transfer_read %st2[%c0, %c0], %cst: tensor<?x?xf32>, vector<3xf32>
// CHECK: %[[U0:.*]] = "some_use"(%[[V0_ARG_L2]]) : (vector<1xf32>) -> vector<1xf32>
@@ -388,25 +388,25 @@ func @hoist_vector_transfer_pairs_tensor_and_subtensors(
%w0 = vector.transfer_write %u0, %st0[%c0, %c0] : vector<1xf32>, tensor<?x?xf32>
// CHECK-DAG: %[[STI1:.*]] = vector.transfer_write %[[U1]], %{{.*}} : vector<2xf32>, tensor<?x?xf32>
- // Does not hoist (associated subtensor depends on %j).
+ // Does not hoist (associated slice depends on %j).
%w1 = vector.transfer_write %u1, %st1[%i, %i] : vector<2xf32>, tensor<?x?xf32>
// CHECK-DAG: %[[STI2:.*]] = vector.transfer_write %[[U2]], %{{.*}} : vector<3xf32>, tensor<?x?xf32>
- // Does not hoist, 2 subtensor / subtensor_insert for %arg8.
+ // Does not hoist, 2 slice / insert_slice for %arg8.
%w2 = vector.transfer_write %u2, %st2[%c0, %c0] : vector<3xf32>, tensor<?x?xf32>
// Hoists.
- %sti0 = subtensor_insert %w0 into %arg6[%i, %i][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %sti0 = tensor.insert_slice %w0 into %arg6[%i, %i][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
- // CHECK-DAG: subtensor_insert %[[STI1]] into %[[TENSOR1_ARG_L2]][%[[J]],{{.*}}: tensor<?x?xf32> into tensor<?x?xf32>
+ // CHECK-DAG: tensor.insert_slice %[[STI1]] into %[[TENSOR1_ARG_L2]][%[[J]],{{.*}}: tensor<?x?xf32> into tensor<?x?xf32>
// Does not hoist (depends on %j).
- %sti1 = subtensor_insert %w1 into %arg7[%j, %c0][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %sti1 = tensor.insert_slice %w1 into %arg7[%j, %c0][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
- // CHECK-DAG: subtensor_insert %[[STI2]] into %[[TENSOR2_ARG_L2]][%[[I]],{{.*}}: tensor<?x?xf32> into tensor<?x?xf32>
- // Does not hoist, 2 subtensor / subtensor_insert for %arg8.
- %sti2 = subtensor_insert %w2 into %arg8[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
- %st22 = subtensor %sti2[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
- %sti22 = subtensor_insert %st22 into %arg8[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ // CHECK-DAG: tensor.insert_slice %[[STI2]] into %[[TENSOR2_ARG_L2]][%[[I]],{{.*}}: tensor<?x?xf32> into tensor<?x?xf32>
+ // Does not hoist, 2 slice / insert_slice for %arg8.
+ %sti2 = tensor.insert_slice %w2 into %arg8[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %st22 = tensor.extract_slice %sti2[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %sti22 = tensor.insert_slice %st22 into %arg8[%i, %c0][%step, %step][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
// CHECK: scf.yield {{.*}} : tensor<?x?xf32>, tensor<?x?xf32>, vector<1xf32>
// CHECK: }
@@ -416,7 +416,7 @@ func @hoist_vector_transfer_pairs_tensor_and_subtensors(
// Hoisted
// CHECK: %[[STI0:.*]] = vector.transfer_write %[[R]]#2, %[[ST0]]{{.*}} : vector<1xf32>, tensor<?x?xf32>
- // CHECK: subtensor_insert %[[STI0]] into %[[TENSOR0_ARG]][%[[I]], %[[I]]]{{.*}} : tensor<?x?xf32> into tensor<?x?xf32>
+ // CHECK: tensor.insert_slice %[[STI0]] into %[[TENSOR0_ARG]][%[[I]], %[[I]]]{{.*}} : tensor<?x?xf32> into tensor<?x?xf32>
// CHECK: scf.yield {{.*}} : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>
scf.yield %1#0, %1#1, %1#2 :
diff --git a/mlir/test/Dialect/Linalg/roundtrip.mlir b/mlir/test/Dialect/Linalg/roundtrip.mlir
index 8fe0f95451dcd..6680ddd35c037 100644
--- a/mlir/test/Dialect/Linalg/roundtrip.mlir
+++ b/mlir/test/Dialect/Linalg/roundtrip.mlir
@@ -732,11 +732,11 @@ func @tiled_loop(%lhs: tensor<24x64xi8>, %rhs: tensor<24x64xi8>,
%prod = linalg.tiled_loop (%i) = (%c0) to (%c24) step (%c4)
ins(%lhs_ = %lhs: tensor<24x64xi8>, %rhs_ = %rhs: tensor<24x64xi8>)
outs(%out_ = %out: tensor<24x64xi8>) {
- %lhs_sub = subtensor %lhs_[%i, 0] [%c4, %c64] [1, 1]
+ %lhs_sub = tensor.extract_slice %lhs_[%i, 0] [%c4, %c64] [1, 1]
: tensor<24x64xi8> to tensor<?x?xi8>
- %rhs_sub = subtensor %rhs_[%i, 0] [%c4, %c64] [1, 1]
+ %rhs_sub = tensor.extract_slice %rhs_[%i, 0] [%c4, %c64] [1, 1]
: tensor<24x64xi8> to tensor<?x?xi8>
- %out_sub = subtensor %out_[%i, 0] [%c4, %c64] [1, 1]
+ %out_sub = tensor.extract_slice %out_[%i, 0] [%c4, %c64] [1, 1]
: tensor<24x64xi8> to tensor<?x?xi8>
%sum = linalg.generic #trait_4
@@ -747,7 +747,7 @@ func @tiled_loop(%lhs: tensor<24x64xi8>, %rhs: tensor<24x64xi8>,
linalg.yield %s : i8
} -> tensor<?x?xi8>
- %sum_sub = subtensor_insert %sum into %out_[%i, 0][%c4, %c64][1, 1]
+ %sum_sub = tensor.insert_slice %sum into %out_[%i, 0][%c4, %c64][1, 1]
: tensor<?x?xi8> into tensor<24x64xi8>
linalg.yield %sum_sub : tensor<24x64xi8>
}
@@ -792,13 +792,13 @@ func @tiled_loop_reduction(%input_3d: tensor<16x24x32xf32>,
outs(%o_ = %output: tensor<24xf32>)
iterators["reduction", "parallel", "reduction"]
distribution["block_x", "block_y", "none"] {
- %sub_3d = subtensor %i3d_[%i, %j, %k][2, 4, 8][1, 1, 1]
+ %sub_3d = tensor.extract_slice %i3d_[%i, %j, %k][2, 4, 8][1, 1, 1]
: tensor<16x24x32xf32> to tensor<2x4x8xf32>
- %sub_2d = subtensor %i2d_[%i, %k][2, 8][1, 1]
+ %sub_2d = tensor.extract_slice %i2d_[%i, %k][2, 8][1, 1]
: tensor<16x32xf32> to tensor<2x8xf32>
- %sub_1d = subtensor %i1d_[%j] [4] [1]
+ %sub_1d = tensor.extract_slice %i1d_[%j] [4] [1]
: tensor<24xf32> to tensor<4xf32>
- %sub_out = subtensor %o_[%j] [4] [1]
+ %sub_out = tensor.extract_slice %o_[%j] [4] [1]
: tensor<24xf32> to tensor<4xf32>
%acc = linalg.generic #trait_5
ins(%sub_3d, %sub_2d, %sub_1d
@@ -810,7 +810,7 @@ func @tiled_loop_reduction(%input_3d: tensor<16x24x32xf32>,
linalg.yield %1 : f32
} -> tensor<4xf32>
- %sum_sub = subtensor_insert %acc into %o_[%j][%c4][1]
+ %sum_sub = tensor.insert_slice %acc into %o_[%j][%c4][1]
: tensor<4xf32> into tensor<24xf32>
linalg.yield %sum_sub : tensor<24xf32>
}
diff --git a/mlir/test/Dialect/Linalg/subtensor-of-padtensor.mlir b/mlir/test/Dialect/Linalg/subtensor-of-padtensor.mlir
index 9eb8c2b1f6a88..6e72fc29ea8bf 100644
--- a/mlir/test/Dialect/Linalg/subtensor-of-padtensor.mlir
+++ b/mlir/test/Dialect/Linalg/subtensor-of-padtensor.mlir
@@ -2,7 +2,7 @@
// CHECK-LABEL: @static_data_only(
// CHECK-SAME: %[[ARG0:.*]]: tensor<4x5xf32>
-// CHECK: %[[RESULT:.*]] = subtensor %[[ARG0]][1, 2] [2, 1] [1, 1] : tensor<4x5xf32> to tensor<2x1xf32>
+// CHECK: %[[RESULT:.*]] = tensor.extract_slice %[[ARG0]][1, 2] [2, 1] [1, 1] : tensor<4x5xf32> to tensor<2x1xf32>
// CHECK: return %[[RESULT]]
func @static_data_only(%arg0 : tensor<4x5xf32>, %pad : f32)
-> tensor<2x1xf32> {
@@ -10,7 +10,7 @@ func @static_data_only(%arg0 : tensor<4x5xf32>, %pad : f32)
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<4x5xf32> to tensor<11x13xf32>
- %1 = subtensor %0[1, 2] [2, 1] [1, 1] : tensor<11x13xf32> to tensor<2x1xf32>
+ %1 = tensor.extract_slice %0[1, 2] [2, 1] [1, 1] : tensor<11x13xf32> to tensor<2x1xf32>
return %1 : tensor<2x1xf32>
}
@@ -19,7 +19,7 @@ func @static_data_only(%arg0 : tensor<4x5xf32>, %pad : f32)
// CHECK-LABEL: @static_high_pad_only
// CHECK-SAME: %[[ARG0:.*]]: tensor<4x5xf32>, %[[PAD:.*]]: f32
// CHECK-NOT: linalg.pad_tensor
-// CHECK-NOT: subtensor
+// CHECK-NOT: tensor.extract_slice
// CHECK: %[[RESULT:.*]] = tensor.generate
// CHECK: tensor.yield %[[PAD]]
// CHECK: return %[[RESULT]] : tensor<2x4xf32>
@@ -29,7 +29,7 @@ func @static_high_pad_only(%arg0 : tensor<4x5xf32>, %pad : f32)
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<4x5xf32> to tensor<11x13xf32>
- %1 = subtensor %0[4, 5] [2, 4] [1, 1] : tensor<11x13xf32> to tensor<2x4xf32>
+ %1 = tensor.extract_slice %0[4, 5] [2, 4] [1, 1] : tensor<11x13xf32> to tensor<2x4xf32>
return %1 : tensor<2x4xf32>
}
@@ -38,7 +38,7 @@ func @static_high_pad_only(%arg0 : tensor<4x5xf32>, %pad : f32)
// CHECK-LABEL: @static_low_pad_only
// CHECK-SAME: %[[ARG0:.*]]: tensor<4x5xf32>, %[[PAD:.*]]: f32
// CHECK-NOT: linalg.pad_tensor
-// CHECK-NOT: subtensor
+// CHECK-NOT: tensor.extract_slice
// CHECK: %[[RESULT:.*]] = tensor.generate
// CHECK: tensor.yield %[[PAD]]
// CHECK: return %[[RESULT]] : tensor<2x3xf32>
@@ -48,7 +48,7 @@ func @static_low_pad_only(%arg0 : tensor<4x5xf32>, %pad : f32)
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<4x5xf32> to tensor<14x20xf32>
- %1 = subtensor %0[1, 3] [2, 3] [1, 1] : tensor<14x20xf32> to tensor<2x3xf32>
+ %1 = tensor.extract_slice %0[1, 3] [2, 3] [1, 1] : tensor<14x20xf32> to tensor<2x3xf32>
return %1 : tensor<2x3xf32>
}
@@ -57,7 +57,7 @@ func @static_low_pad_only(%arg0 : tensor<4x5xf32>, %pad : f32)
// CHECK-LABEL: @static_low_pad_only_2
// CHECK-SAME: %[[ARG0:.*]]: tensor<4x5xf32>, %[[PAD:.*]]: f32
// CHECK-NOT: linalg.pad_tensor
-// CHECK-NOT: subtensor
+// CHECK-NOT: tensor.extract_slice
// CHECK: %[[RESULT:.*]] = tensor.generate
// CHECK: tensor.yield %[[PAD]]
// CHECK: return %[[RESULT]] : tensor<1x3xf32>
@@ -67,7 +67,7 @@ func @static_low_pad_only_2(%arg0 : tensor<4x5xf32>, %pad : f32)
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<4x5xf32> to tensor<14x20xf32>
- %1 = subtensor %0[1, 3] [1, 3] [1, 1] : tensor<14x20xf32> to tensor<1x3xf32>
+ %1 = tensor.extract_slice %0[1, 3] [1, 3] [1, 1] : tensor<14x20xf32> to tensor<1x3xf32>
return %1 : tensor<1x3xf32>
}
@@ -76,7 +76,7 @@ func @static_low_pad_only_2(%arg0 : tensor<4x5xf32>, %pad : f32)
// CHECK-LABEL: @static_mixed_data_high_pad
// CHECK-SAME: %[[ARG0:.*]]: tensor<4x5xf32>, %[[PAD:.*]]: f32
// CHECK-NOT: linalg.pad_tensor
-// CHECK: %[[SUBTENSOR:.*]] = subtensor %[[ARG0]][2, 4] [2, 1] [1, 1] : tensor<4x5xf32> to tensor<2x1xf32>
+// CHECK: %[[SUBTENSOR:.*]] = tensor.extract_slice %[[ARG0]][2, 4] [2, 1] [1, 1] : tensor<4x5xf32> to tensor<2x1xf32>
// CHECK: %[[RESULT:.*]] = linalg.pad_tensor %[[SUBTENSOR]] low[0, 0] high[1, 3]
// CHECK: linalg.yield %[[PAD]]
// CHECK: return %[[RESULT]] : tensor<3x4xf32>
@@ -86,7 +86,7 @@ func @static_mixed_data_high_pad(%arg0 : tensor<4x5xf32>, %pad : f32)
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<4x5xf32> to tensor<11x13xf32>
- %1 = subtensor %0[2, 4] [3, 4] [1, 1] : tensor<11x13xf32> to tensor<3x4xf32>
+ %1 = tensor.extract_slice %0[2, 4] [3, 4] [1, 1] : tensor<11x13xf32> to tensor<3x4xf32>
return %1 : tensor<3x4xf32>
}
@@ -95,7 +95,7 @@ func @static_mixed_data_high_pad(%arg0 : tensor<4x5xf32>, %pad : f32)
// CHECK-LABEL: @static_mixed_data_low_pad
// CHECK-SAME: %[[ARG0:.*]]: tensor<4x5xf32>, %[[PAD:.*]]: f32
// CHECK-NOT: linalg.pad_tensor
-// CHECK: %[[SUBTENSOR:.*]] = subtensor %[[ARG0]][0, 0] [2, 1] [1, 1] : tensor<4x5xf32> to tensor<2x1xf32>
+// CHECK: %[[SUBTENSOR:.*]] = tensor.extract_slice %[[ARG0]][0, 0] [2, 1] [1, 1] : tensor<4x5xf32> to tensor<2x1xf32>
// CHECK: %[[RESULT:.*]] = linalg.pad_tensor %[[SUBTENSOR]] low[1, 3] high[0, 0]
// CHECK: linalg.yield %[[PAD]]
// CHECK: return %[[RESULT]] : tensor<3x4xf32>
@@ -105,7 +105,7 @@ func @static_mixed_data_low_pad(%arg0 : tensor<4x5xf32>, %pad : f32)
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<4x5xf32> to tensor<14x20xf32>
- %1 = subtensor %0[2, 4] [3, 4] [1, 1] : tensor<14x20xf32> to tensor<3x4xf32>
+ %1 = tensor.extract_slice %0[2, 4] [3, 4] [1, 1] : tensor<14x20xf32> to tensor<3x4xf32>
return %1 : tensor<3x4xf32>
}
@@ -123,7 +123,7 @@ func @static_mixed_data_low_high_pad(%arg0 : tensor<4x5xf32>, %pad : f32)
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<4x5xf32> to tensor<13x16xf32>
- %1 = subtensor %0[1, 2] [7, 9] [1, 1] : tensor<13x16xf32> to tensor<7x9xf32>
+ %1 = tensor.extract_slice %0[1, 2] [7, 9] [1, 1] : tensor<13x16xf32> to tensor<7x9xf32>
return %1 : tensor<7x9xf32>
}
@@ -138,7 +138,7 @@ func @static_mixed_data_low_high_pad(%arg0 : tensor<4x5xf32>, %pad : f32)
// CHECK: %[[GEN:.*]] = tensor.generate
// CHECK: scf.yield %[[GEN]]
// CHECK: } else {
-// CHECK: %[[SUBTENSOR:.*]] = subtensor %[[ARG0]][%{{.*}}, 4] [%{{.*}}, 1] [1, 1] : tensor<?x5xf32> to tensor<?x1xf32>
+// CHECK: %[[SUBTENSOR:.*]] = tensor.extract_slice %[[ARG0]][%{{.*}}, 4] [%{{.*}}, 1] [1, 1] : tensor<?x5xf32> to tensor<?x1xf32>
// CHECK: %[[PADTENSOR:.*]] = linalg.pad_tensor %[[SUBTENSOR]] low[0, 0] high[%{{.*}}, 3]
// CHECK: %[[CAST:.*]] = tensor.cast %[[PADTENSOR]] : tensor<?x4xf32> to tensor<3x4xf32>
// CHECK: scf.yield %[[CAST]]
@@ -149,7 +149,7 @@ func @dynamic_high_pad(%arg0 : tensor<?x5xf32>, %h1: index, %pad : f32) -> tenso
^bb0(%arg1: index, %arg2: index):
linalg.yield %pad : f32
} : tensor<?x5xf32> to tensor<?x13xf32>
- %1 = subtensor %0[2, 4] [3, 4] [1, 1] : tensor<?x13xf32> to tensor<3x4xf32>
+ %1 = tensor.extract_slice %0[2, 4] [3, 4] [1, 1] : tensor<?x13xf32> to tensor<3x4xf32>
return %1 : tensor<3x4xf32>
}
diff --git a/mlir/test/Dialect/Linalg/tile-and-distribute.mlir b/mlir/test/Dialect/Linalg/tile-and-distribute.mlir
index 59c34bfacd934..4e2b668fd9285 100644
--- a/mlir/test/Dialect/Linalg/tile-and-distribute.mlir
+++ b/mlir/test/Dialect/Linalg/tile-and-distribute.mlir
@@ -199,12 +199,12 @@ func @matmul_tensors(
// CHECK: %[[STEPX:.+]] = affine.apply #[[MULMAP]]()[%[[NBLOCKSX]], %[[C8]]]
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?xf32>) {
-// CHECK: %[[sTA:.*]] = subtensor %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
-// CHECK: %[[sTB:.*]] = subtensor %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
-// CHECK: %[[sTC:.*]] = subtensor %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>)
// CHECK-SAME: outs(%[[sTC]] : tensor<?x?xf32>) -> tensor<?x?xf32>
-// CHECK: %[[TD:.*]] = subtensor_insert %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<?x?xf32>
+// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<?x?xf32>
// CHECK: scf.yield %[[TD]] : tensor<?x?xf32>
// CHECK: scf.yield %[[TD2]] : tensor<?x?xf32>
// CHECK: scf.yield %[[TD1]] : tensor<?x?xf32>
diff --git a/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir b/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
index bffbca1df75ab..a464419239ef4 100644
--- a/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
+++ b/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
@@ -16,11 +16,11 @@ func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tens
%3 = scf.for %arg3 = %c0 to %0 step %c2 iter_args(%arg4 = %arg2) -> (tensor<?x?xf32>) {
%4 = scf.for %arg5 = %c0 to %2 step %c3 iter_args(%arg6 = %arg4) -> (tensor<?x?xf32>) {
%5 = scf.for %arg7 = %c0 to %1 step %c4 iter_args(%arg8 = %arg6) -> (tensor<?x?xf32>) {
- %6 = subtensor %t0[%arg3, %arg7][%c2, 4][1, 1] : tensor<?x?xf32> to tensor<?x4xf32>
- %7 = subtensor %arg1[%arg7, %arg5][4, %c3][1, 1] : tensor<?x?xf32> to tensor<4x?xf32>
- %8 = subtensor %arg8[%arg3, %arg5][%c2, %c3][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+ %6 = tensor.extract_slice %t0[%arg3, %arg7][%c2, 4][1, 1] : tensor<?x?xf32> to tensor<?x4xf32>
+ %7 = tensor.extract_slice %arg1[%arg7, %arg5][4, %c3][1, 1] : tensor<?x?xf32> to tensor<4x?xf32>
+ %8 = tensor.extract_slice %arg8[%arg3, %arg5][%c2, %c3][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%9 = linalg.matmul ins(%6, %7 : tensor<?x4xf32>, tensor<4x?xf32>) outs(%8 : tensor<?x?xf32>) -> tensor<?x?xf32>
- %10 = subtensor_insert %9 into %arg8[%arg3, %arg5] [%c2, %c3] [1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
+ %10 = tensor.insert_slice %9 into %arg8[%arg3, %arg5] [%c2, %c3] [1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
scf.yield %10 : tensor<?x?xf32>
}
scf.yield %5 : tensor<?x?xf32>
@@ -48,22 +48,22 @@ func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tens
// CHECK-DAG: %[[dC1:.*]] = memref.dim %[[C]], %[[C1]] : tensor<?x?xf32>
// CHECK: scf.for %[[I:[0-9a-z]*]]
// CHECK: %[[sizeA0:.*]] = affine.min #[[BOUND2_MAP]](%[[I]])[%[[dA0]]]
-// CHECK: %[[stA:.*]] = subtensor %[[A]][%[[I]], 0] [%[[sizeA0]], %[[dA1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[stA:.*]] = tensor.extract_slice %[[A]][%[[I]], 0] [%[[sizeA0]], %[[dA1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[sizeC0:.*]] = affine.min #[[BOUND2_MAP]](%[[I]])[%[[dC0]]]
// CHECK-NEXT: scf.for %[[J:[0-9a-z]*]]
// CHECK-NEXT: scf.for %[[K:[0-9a-z]*]] {{.*}} iter_args(%[[RES:[0-9a-z]*]]
-// CHECK-DAG: %[[stB1:.*]] = subtensor %[[B]][%[[K]], %[[J]]] [4, 3] [1, 1] : tensor<?x?xf32> to tensor<4x3xf32>
-// CHECK-DAG: %[[stF:.*]] = subtensor %[[RES]][%[[I]], %[[J]]] [2, 3] [1, 1] : tensor<?x?xf32> to tensor<2x3xf32>
+// CHECK-DAG: %[[stB1:.*]] = tensor.extract_slice %[[B]][%[[K]], %[[J]]] [4, 3] [1, 1] : tensor<?x?xf32> to tensor<4x3xf32>
+// CHECK-DAG: %[[stF:.*]] = tensor.extract_slice %[[RES]][%[[I]], %[[J]]] [2, 3] [1, 1] : tensor<?x?xf32> to tensor<2x3xf32>
//
-// subtensors of the producing matmul.
+// slices of the producing matmul.
// CHECK: %[[sizeB1:.*]] = affine.min #[[BOUND4_MAP]](%[[K]])[%[[dB1]]]
-// CHECK: %[[stB2:.*]] = subtensor %[[B]][0, %[[K]]] [%[[dB0]], %[[sizeB1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[stB2:.*]] = tensor.extract_slice %[[B]][0, %[[K]]] [%[[dB0]], %[[sizeB1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[sizeC1:.*]] = affine.min #[[BOUND4_MAP]](%[[K]])[%[[dC1]]]
-// CHECK: %[[stC:.*]] = subtensor %[[C]][%[[I]], %[[K]]] [%[[sizeC0]], %[[sizeC1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[stC:.*]] = tensor.extract_slice %[[C]][%[[I]], %[[K]]] [%[[sizeC0]], %[[sizeC1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[stD:.*]] = linalg.matmul ins(%[[stA]], %[[stB2]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[stC]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[CAST:.*]] = tensor.cast %[[stD]] : tensor<?x?xf32> to tensor<?x4xf32>
// CHECK-NEXT: %[[stG:.*]] = linalg.matmul ins(%[[CAST]], %[[stB1]] : tensor<?x4xf32>, tensor<4x3xf32>) outs(%[[stF]] : tensor<2x3xf32>) -> tensor<2x3xf32>
-// CHECK-NEXT: subtensor_insert %[[stG]] into %[[RES]][%[[I]], %[[J]]]
+// CHECK-NEXT: tensor.insert_slice %[[stG]] into %[[RES]][%[[I]], %[[J]]]
// -----
@@ -87,9 +87,9 @@ func @conv_tensors_static(%input: tensor<1x225x225x3xf32>, %filter: tensor<3x3x3
%for0 = scf.for %iv0 = %c0 to %c112 step %c8 iter_args(%arg0 = %fill) -> tensor<1x112x112x32xf32> {
%for1 = scf.for %iv1 = %c0 to %c112 step %c16 iter_args(%arg1 = %arg0) -> tensor<1x112x112x32xf32> {
%for2 = scf.for %iv2 = %c0 to %c32 step %c4 iter_args(%arg2 = %arg1) -> tensor<1x112x112x32xf32> {
- %0 = subtensor %conv[0, %iv0, %iv1, %iv2][1, 8, 16, 4][1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
- %1 = subtensor %elementwise[0, %iv0, %iv1, %iv2][1, 8, 16, 4][1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
- %2 = subtensor %arg2[0, %iv0, %iv1, %iv2][1, 8, 16, 4][1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
+ %0 = tensor.extract_slice %conv[0, %iv0, %iv1, %iv2][1, 8, 16, 4][1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
+ %1 = tensor.extract_slice %elementwise[0, %iv0, %iv1, %iv2][1, 8, 16, 4][1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
+ %2 = tensor.extract_slice %arg2[0, %iv0, %iv1, %iv2][1, 8, 16, 4][1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
%add = linalg.generic
{
indexing_maps = [
@@ -104,7 +104,7 @@ func @conv_tensors_static(%input: tensor<1x225x225x3xf32>, %filter: tensor<3x3x3
linalg.yield %result : f32
} -> tensor<1x8x16x4xf32>
- %insert = subtensor_insert %add into %arg2[0, %iv0, %iv1, %iv2] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x8x16x4xf32> into tensor<1x112x112x32xf32>
+ %insert = tensor.insert_slice %add into %arg2[0, %iv0, %iv1, %iv2] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x8x16x4xf32> into tensor<1x112x112x32xf32>
scf.yield %insert : tensor<1x112x112x32xf32>
}
scf.yield %for2 : tensor<1x112x112x32xf32>
@@ -127,19 +127,19 @@ func @conv_tensors_static(%input: tensor<1x225x225x3xf32>, %filter: tensor<3x3x3
// CHECK-NEXT: %[[OFFSET_H:.+]] = affine.apply #[[MAP0]](%[[IV0]])
// CHECK-NEXT: scf.for %[[IV1:.+]] = %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[ARG1:.+]] = %[[ARG0]])
// CHECK-NEXT: %[[OFFSET_W:.+]] = affine.apply #[[MAP0]](%[[IV1]])
-// CHECK-NEXT: %[[ST_INPUT:.+]] = subtensor %arg0[0, %[[OFFSET_H]], %[[OFFSET_W]], 0] [1, 17, 33, 3] [1, 1, 1, 1] : tensor<1x225x225x3xf32> to tensor<1x17x33x3xf32>
+// CHECK-NEXT: %[[ST_INPUT:.+]] = tensor.extract_slice %arg0[0, %[[OFFSET_H]], %[[OFFSET_W]], 0] [1, 17, 33, 3] [1, 1, 1, 1] : tensor<1x225x225x3xf32> to tensor<1x17x33x3xf32>
// CHECK-NEXT: scf.for %[[IV2:.+]] = %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[ARG2:.+]] = %[[ARG1]])
-// CHECK-NEXT: %[[ST_ELEM:.+]] = subtensor %[[ELEM]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
-// CHECK-NEXT: %[[ST_ARG2:.+]] = subtensor %[[ARG2]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
-// CHECK-NEXT: %[[ST_FILTER:.+]] = subtensor %[[FILTER]][0, 0, 0, %[[IV2]]] [3, 3, 3, 4] [1, 1, 1, 1] : tensor<3x3x3x32xf32> to tensor<3x3x3x4xf32>
-// CHECK-NEXT: %[[ST_FILL:.+]] = subtensor %[[FILL]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
+// CHECK-NEXT: %[[ST_ELEM:.+]] = tensor.extract_slice %[[ELEM]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
+// CHECK-NEXT: %[[ST_ARG2:.+]] = tensor.extract_slice %[[ARG2]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
+// CHECK-NEXT: %[[ST_FILTER:.+]] = tensor.extract_slice %[[FILTER]][0, 0, 0, %[[IV2]]] [3, 3, 3, 4] [1, 1, 1, 1] : tensor<3x3x3x32xf32> to tensor<3x3x3x4xf32>
+// CHECK-NEXT: %[[ST_FILL:.+]] = tensor.extract_slice %[[FILL]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4] [1, 1, 1, 1] : tensor<1x112x112x32xf32> to tensor<1x8x16x4xf32>
// CHECK-NEXT: %[[ST_CONV:.+]] = linalg.conv_2d_input_nhwc_filter_hwcf
// CHECK-SAME: ins(%[[ST_INPUT]], %[[ST_FILTER]] : tensor<1x17x33x3xf32>, tensor<3x3x3x4xf32>)
// CHECK-SAME: outs(%[[ST_FILL]] : tensor<1x8x16x4xf32>)
// CHECK-NEXT: %[[ADD:.+]] = linalg.generic
// CHECK-SAME: ins(%[[ST_CONV]], %[[ST_ELEM]] : tensor<1x8x16x4xf32>, tensor<1x8x16x4xf32>)
// CHECK-SAME: outs(%[[ST_ARG2]] : tensor<1x8x16x4xf32>)
-// CHECK: subtensor_insert %[[ADD]] into %[[ARG2]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4]
+// CHECK: tensor.insert_slice %[[ADD]] into %[[ARG2]][0, %[[IV0]], %[[IV1]], %[[IV2]]] [1, 8, 16, 4]
// -----
@@ -174,9 +174,9 @@ func @conv_tensors_dynamic(%input: tensor<?x?x?x?xf32>, %filter: tensor<?x?x?x?x
%oh_size = affine.min affine_map<(d0)[s0] -> (16, -d0 + s0)>(%iv1)[%oh]
%ow_size = affine.min affine_map<(d0)[s0] -> (4, -d0 + s0)>(%iv2)[%ow]
%oc_size = affine.min affine_map<(d0)[s0] -> (2, -d0 + s0)>(%iv2)[%oc]
- %0 = subtensor %conv[%iv0, %iv1, %iv2, %iv3][%n_size, %oh_size, %ow_size, %oc_size][1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
- %1 = subtensor %elementwise[%iv0, %iv1, %iv2, %iv3][%n_size, %oh_size, %ow_size, %oc_size][1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
- %2 = subtensor %arg3[%iv0, %iv1, %iv2, %iv3][%n_size, %oh_size, %ow_size, %oc_size][1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
+ %0 = tensor.extract_slice %conv[%iv0, %iv1, %iv2, %iv3][%n_size, %oh_size, %ow_size, %oc_size][1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
+ %1 = tensor.extract_slice %elementwise[%iv0, %iv1, %iv2, %iv3][%n_size, %oh_size, %ow_size, %oc_size][1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
+ %2 = tensor.extract_slice %arg3[%iv0, %iv1, %iv2, %iv3][%n_size, %oh_size, %ow_size, %oc_size][1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
%add = linalg.generic
{
indexing_maps = [
@@ -191,7 +191,7 @@ func @conv_tensors_dynamic(%input: tensor<?x?x?x?xf32>, %filter: tensor<?x?x?x?x
linalg.yield %result : f32
} -> tensor<?x?x?x?xf32>
- %insert = subtensor_insert %add into %arg3[%iv0, %iv1, %iv2, %iv3] [%n_size, %oh_size, %ow_size, %oc_size] [1, 1, 1, 1] : tensor<?x?x?x?xf32> into tensor<?x?x?x?xf32>
+ %insert = tensor.insert_slice %add into %arg3[%iv0, %iv1, %iv2, %iv3] [%n_size, %oh_size, %ow_size, %oc_size] [1, 1, 1, 1] : tensor<?x?x?x?xf32> into tensor<?x?x?x?xf32>
scf.yield %insert : tensor<?x?x?x?xf32>
}
scf.yield %for3 : tensor<?x?x?x?xf32>
@@ -257,19 +257,19 @@ func @conv_tensors_dynamic(%input: tensor<?x?x?x?xf32>, %filter: tensor<?x?x?x?x
// CHECK-NEXT: %[[SIZE_ELEM_OC:.+]] = affine.min #[[BOUND2_MAP]](%[[IV2]])[%[[ELEM_OC]]]
// CHECK-NEXT: %[[OFFSET_OW:.+]] = affine.apply #[[X2_MAP]](%[[IV2]])
// CHECK-NEXT: %[[SIZE_INPUT_W:.+]] = affine.min #[[INPUT_BOUND]](%[[SIZE_ELEM_OW]], %[[IV2]])[%[[FILTER_W]], %[[INPUT_W]]]
-// CHECK-NEXT: %[[ST_INPUT:.+]] = subtensor %[[INPUT]][%[[IV0]], %[[OFFSET_OH]], %[[OFFSET_OW]], 0]
+// CHECK-NEXT: %[[ST_INPUT:.+]] = tensor.extract_slice %[[INPUT]][%[[IV0]], %[[OFFSET_OH]], %[[OFFSET_OW]], 0]
// CHECK-SAME: [%[[SIZE_INPUT_N]], %[[SIZE_INPUT_H]], %[[SIZE_INPUT_W]], %[[INPUT_C]]]
// CHECK-NEXT: %[[SIZE_ELEM_OW_2:.+]] = affine.min #[[BOUND4_MAP_2]](%[[IV2]])[%[[FILL_W]], %[[ELEM_OW]]]
// CHECK-NEXT: scf.for %[[IV3:.+]] = %{{.+}} to %[[ELEM_OC]] step %{{.+}} iter_args(%[[ARG:[a-z0-9]+]]
-// CHECK-NEXT: %[[ST_ELEM:.+]] = subtensor %[[ELEM]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
+// CHECK-NEXT: %[[ST_ELEM:.+]] = tensor.extract_slice %[[ELEM]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
// CHECK-SAME: [%[[SIZE_ELEM_N]], %[[SIZE_ELEM_OH]], %[[SIZE_ELEM_OW]], %[[SIZE_ELEM_OC]]]
-// CHECK-NEXT: %[[ST_ARG:.+]] = subtensor %[[ARG]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
+// CHECK-NEXT: %[[ST_ARG:.+]] = tensor.extract_slice %[[ARG]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
// CHECK-SAME: [%[[SIZE_ELEM_N]], %[[SIZE_ELEM_OH]], %[[SIZE_ELEM_OW]], %[[SIZE_ELEM_OC]]]
// CHECK-NEXT: %[[SIZE_ELEM_OC_2:.+]] = affine.min #[[BOUND2_MAP_2]](%[[IV3]], %[[IV2]])[%[[FILTER_OC]], %[[ELEM_OC]]]
-// CHECK-NEXT: %[[ST_FILTER:.+]] = subtensor %[[FILTER]][0, 0, 0, %[[IV3]]]
+// CHECK-NEXT: %[[ST_FILTER:.+]] = tensor.extract_slice %[[FILTER]][0, 0, 0, %[[IV3]]]
// CHECK-SAME: [%[[FILTER_H]], %[[FILTER_W]], %[[FILTER_IC]], %[[SIZE_ELEM_OC_2]]]
// CHECK-NEXT: %[[SIZE_ELEM_OC_3:.+]] = affine.min #[[BOUND2_MAP_2]](%[[IV3]], %[[IV2]])[%[[FILL_C]], %[[ELEM_OC]]]
-// CHECK-NEXT: %[[ST_FILL:.+]] = subtensor %[[FILL]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
+// CHECK-NEXT: %[[ST_FILL:.+]] = tensor.extract_slice %[[FILL]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
// CHECK-SAME: [%[[SIZE_ELEM_N_2]], %[[SIZE_ELEM_OH_2]], %[[SIZE_ELEM_OW_2]], %[[SIZE_ELEM_OC_3]]]
// CHECK-NEXT: %[[ST_CONV:.+]] = linalg.conv_2d_input_nhwc_filter_hwcf
// CHECK-SAME: ins(%[[ST_INPUT]], %[[ST_FILTER]] : tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
@@ -277,5 +277,5 @@ func @conv_tensors_dynamic(%input: tensor<?x?x?x?xf32>, %filter: tensor<?x?x?x?x
// CHECK-NEXT: %[[ST_ADD:.+]] = linalg.generic
// CHECK-SAME: ins(%[[ST_CONV]], %[[ST_ELEM]] : tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
// CHECK-SAME: outs(%[[ST_ARG]] : tensor<?x?x?x?xf32>)
-// CHECK: subtensor_insert %[[ST_ADD]] into %[[ARG]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
+// CHECK: tensor.insert_slice %[[ST_ADD]] into %[[ARG]][%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]]]
// CHECK-SAME: [%[[SIZE_ELEM_N]], %[[SIZE_ELEM_OH]], %[[SIZE_ELEM_OW]], %[[SIZE_ELEM_OC]]]
diff --git a/mlir/test/Dialect/Linalg/tile-and-pad-tensors.mlir b/mlir/test/Dialect/Linalg/tile-and-pad-tensors.mlir
index a7322a7a34a90..f8b49c14ff7ef 100644
--- a/mlir/test/Dialect/Linalg/tile-and-pad-tensors.mlir
+++ b/mlir/test/Dialect/Linalg/tile-and-pad-tensors.mlir
@@ -12,9 +12,9 @@ func @matmul_tensors(
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?xi32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xi32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?xi32>) {
-// CHECK: %[[sTA:.*]] = subtensor %[[TA]][{{.*}}] : tensor<?x?xi8> to tensor<?x?xi8>
-// CHECK: %[[sTB:.*]] = subtensor %[[TB]][{{.*}}] : tensor<?x?xi8> to tensor<?x?xi8>
-// CHECK: %[[sTC:.*]] = subtensor %[[TC2]][{{.*}}] : tensor<?x?xi32> to tensor<?x?xi32>
+// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x?xi8> to tensor<?x?xi8>
+// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<?x?xi8> to tensor<?x?xi8>
+// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?xi32> to tensor<?x?xi32>
// Dynamic op has been canonicalized away.
// CHECK-NOT: linalg.matmul {{.*}} tensor<?x?xi8>
@@ -28,8 +28,8 @@ func @matmul_tensors(
// CHECK: : tensor<?x?xi32> to tensor<2x3xi32>
// CHECK: %[[pD:.*]] = linalg.matmul_i8_i8_i32 ins(%[[pA]], %[[pB]] : tensor<2x4xi8>, tensor<4x3xi8>)
// CHECK-SAME: outs(%[[pC]] : tensor<2x3xi32>) -> tensor<2x3xi32>
-// CHECK: %[[sTD:.*]] = subtensor %[[pD]][0, 0] [%{{.*}}, %{{.*}}] [1, 1] : tensor<2x3xi32> to tensor<?x?xi32>
-// CHECK: %[[TD:.*]] = subtensor_insert %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xi32> into tensor<?x?xi32>
+// CHECK: %[[sTD:.*]] = tensor.extract_slice %[[pD]][0, 0] [%{{.*}}, %{{.*}}] [1, 1] : tensor<2x3xi32> to tensor<?x?xi32>
+// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xi32> into tensor<?x?xi32>
// CHECK: scf.yield %[[TD]] : tensor<?x?xi32>
// CHECK: scf.yield %[[TD2]] : tensor<?x?xi32>
// CHECK: scf.yield %[[TD1]] : tensor<?x?xi32>
@@ -52,15 +52,15 @@ func @generic_scalar_and_tensor(
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
-// CHECK: %[[sTC:.*]] = subtensor %[[TC2]][{{.*}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
+// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// Padding injects static information.
// CHECK: %[[pC:.*]] = linalg.pad_tensor %[[sTC]] low[%[[C0]], %[[C0]], %[[C0]]] high[%{{.*}}, %{{.*}}, %{{.*}}]
// CHECK: : tensor<?x?x?xf32> to tensor<2x3x4xf32>
// CHECK: %[[pD:.*]] = linalg.generic
// CHECK-SAME: ins(%[[VAL]] : f32) outs(%[[pC]] : tensor<2x3x4xf32>)
-// CHECK: %[[sTD:.*]] = subtensor %[[pD]][0, 0, 0] [%{{.*}}, %{{.*}}, %{{.*}}] [1, 1, 1] : tensor<2x3x4xf32> to tensor<?x?x?xf32>
-// CHECK: %[[TD:.*]] = subtensor_insert %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?x?xf32> into tensor<?x?x?xf32>
+// CHECK: %[[sTD:.*]] = tensor.extract_slice %[[pD]][0, 0, 0] [%{{.*}}, %{{.*}}, %{{.*}}] [1, 1, 1] : tensor<2x3x4xf32> to tensor<?x?x?xf32>
+// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?x?xf32> into tensor<?x?x?xf32>
// CHECK: scf.yield %[[TD]] : tensor<?x?x?xf32>
// CHECK: scf.yield %[[TD2]] : tensor<?x?x?xf32>
// CHECK: scf.yield %[[TD1]] : tensor<?x?x?xf32>
@@ -104,11 +104,11 @@ func @matmul_partially_padded_tensors(
// CHECK-1DIM-TILE: %[[C0:.*]] = constant 0 : index
// CHECK-1DIM-TILE: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?xi32>) {
// CHECK-1DIM-TILE: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xi32>) {
-// CHECK-1DIM-TILE: %[[sTA:.*]] = subtensor %[[TA]][{{.*}}] : tensor<?x8xi8> to tensor<?x8xi8>
+// CHECK-1DIM-TILE: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x8xi8> to tensor<?x8xi8>
// CHECK-1DIM-TILE: %[[sTAc:.*]] = tensor.cast %[[sTA]] : tensor<?x8xi8> to tensor<?x?xi8>
-// CHECK-1DIM-TILE: %[[sTB:.*]] = subtensor %[[TB]][{{.*}}] : tensor<8x?xi8> to tensor<8x?xi8>
+// CHECK-1DIM-TILE: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<8x?xi8> to tensor<8x?xi8>
// CHECK-1DIM-TILE: %[[sTBc:.*]] = tensor.cast %[[sTB]] : tensor<8x?xi8> to tensor<?x?xi8>
-// CHECK-1DIM-TILE: %[[sTC:.*]] = subtensor %[[TC1]][{{.*}}] : tensor<?x?xi32> to tensor<?x?xi32>
+// CHECK-1DIM-TILE: %[[sTC:.*]] = tensor.extract_slice %[[TC1]][{{.*}}] : tensor<?x?xi32> to tensor<?x?xi32>
// CHECK-1DIM-TILE: %[[pA:.*]] = linalg.pad_tensor %[[sTAc]] low[%[[C0]], %[[C0]]] high[%{{.*}}, %{{.*}}]
// CHECK-1DIM-TILE: : tensor<?x?xi8> to tensor<2x8xi8>
// CHECK-1DIM-TILE: %[[pB:.*]] = linalg.pad_tensor %[[sTBc]] low[%[[C0]], %[[C0]]] high[%{{.*}}, %{{.*}}]
diff --git a/mlir/test/Dialect/Linalg/tile-tensors.mlir b/mlir/test/Dialect/Linalg/tile-tensors.mlir
index 6b7e71042a491..f446d9da9179d 100644
--- a/mlir/test/Dialect/Linalg/tile-tensors.mlir
+++ b/mlir/test/Dialect/Linalg/tile-tensors.mlir
@@ -11,12 +11,12 @@ func @matmul_tensors(
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?xf32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?xf32>) {
-// CHECK: %[[sTA:.*]] = subtensor %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
-// CHECK: %[[sTB:.*]] = subtensor %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
-// CHECK: %[[sTC:.*]] = subtensor %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
+// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>)
// CHECK-SAME: outs(%[[sTC]] : tensor<?x?xf32>) -> tensor<?x?xf32>
-// CHECK: %[[TD:.*]] = subtensor_insert %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<?x?xf32>
+// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<?x?xf32>
// CHECK: scf.yield %[[TD]] : tensor<?x?xf32>
// CHECK: scf.yield %[[TD2]] : tensor<?x?xf32>
// CHECK: scf.yield %[[TD1]] : tensor<?x?xf32>
@@ -51,14 +51,14 @@ func @matmul_tensors(
// TLOOP-SAME: iterators["parallel", "parallel", "reduction"]
// TLOOP-SAME: distribution["block_x", "block_y", "none"] {
-// TLOOP: %[[SUB_ARG_0:.*]] = subtensor %[[A0]][%[[I]], %[[K]]]
-// TLOOP: %[[SUB_ARG_1:.*]] = subtensor %[[A1]][%[[K]], %[[J]]]
-// TLOOP: %[[SUB_ARG_2:.*]] = subtensor %[[A2]][%[[I]], %[[J]]]
+// TLOOP: %[[SUB_ARG_0:.*]] = tensor.extract_slice %[[A0]][%[[I]], %[[K]]]
+// TLOOP: %[[SUB_ARG_1:.*]] = tensor.extract_slice %[[A1]][%[[K]], %[[J]]]
+// TLOOP: %[[SUB_ARG_2:.*]] = tensor.extract_slice %[[A2]][%[[I]], %[[J]]]
// TLOOP: %[[PROD:.*]] = linalg.matmul ins(%[[SUB_ARG_0]], %[[SUB_ARG_1]]
// TLOOP-SE: outs(%[[SUB_ARG_2]] : [[TY]]) -> [[TY]]
-// TLOOP: %[[O:.*]] = subtensor_insert %[[PROD]] into %[[A2]][%[[I]], %[[J]]]
+// TLOOP: %[[O:.*]] = tensor.insert_slice %[[PROD]] into %[[A2]][%[[I]], %[[J]]]
// TLOOP: linalg.yield %[[O]] : [[TY]]
// -----
@@ -93,13 +93,13 @@ func @generic_op_tensors(
// CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
-// CHECK: %[[STARG0:.+]] = subtensor %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
-// CHECK: %[[STARG1:.+]] = subtensor %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
-// CHECK: %[[STARG2:.+]] = subtensor %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
+// CHECK: %[[STARG0:.+]] = tensor.extract_slice %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
+// CHECK: %[[STARG1:.+]] = tensor.extract_slice %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
+// CHECK: %[[STARG2:.+]] = tensor.extract_slice %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STRETURN:.+]] = linalg.generic
// CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
// CHECK-SAME: outs(%[[STARG2]] : tensor<?x?x?xf32>)
-// CHECK: %[[TD:.+]] = subtensor_insert %[[STRETURN]] into %[[TC2]]
+// CHECK: %[[TD:.+]] = tensor.insert_slice %[[STRETURN]] into %[[TC2]]
// CHECK: scf.yield %[[TD]]
// CHECK: }
// CHECK: scf.yield %[[TD2]]
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index 0705c49a5042f..5f59dff62eb61 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -586,7 +586,7 @@ func @pad_static_source(%arg0: tensor<2x5x2xf32>, %pad_value: f32) -> tensor<2x6
// CHECK: %[[INIT:.*]] = linalg.init_tensor [6, %[[V1]], %[[V2]], %[[V5]]] : tensor<6x?x?x?xf32>
// CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]], %{{.*}}) : tensor<6x?x?x?xf32>, f32 -> tensor<6x?x?x?xf32>
// CHECK: %[[SRCDIM:.*]] = memref.dim %[[SRC]], %[[C3]] : tensor<1x2x2x?xf32>
-// CHECK: %[[RESULT:.*]] = subtensor_insert %[[SRC]] into %[[FILL]][2, %[[LOW]], 3, 3] [1, 2, 2, %[[SRCDIM]]] [1, 1, 1, 1] : tensor<1x2x2x?xf32> into tensor<6x?x?x?xf32>
+// CHECK: %[[RESULT:.*]] = tensor.insert_slice %[[SRC]] into %[[FILL]][2, %[[LOW]], 3, 3] [1, 2, 2, %[[SRCDIM]]] [1, 1, 1, 1] : tensor<1x2x2x?xf32> into tensor<6x?x?x?xf32>
// CHECK: return %[[RESULT]]
func @pad_static_dynamic(%arg0: tensor<1x2x2x?xf32>, %low: index, %high: index,
%pad_value: f32) -> tensor<6x?x?x?xf32> {
@@ -638,7 +638,7 @@ func @pad_and_transfer_write_static(
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = vector.transfer_write %arg1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<10x13xf32>
- %2 = subtensor %1[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
+ %2 = tensor.extract_slice %1[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
return %2 : tensor<5x6xf32>
}
@@ -648,14 +648,14 @@ func @pad_and_transfer_write_static(
// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[ARG1:.*]]: vector<7x9xf32>, %[[SIZE:.*]]: index, %[[PADDING:.*]]: index
// CHECK-NOT: linalg.pad_tensor
// CHECK: %[[C0:.*]] = constant 0 : index
-// CHECK: %[[SUB:.*]] = subtensor %[[ARG0]][0, 0] [%[[SIZE]], 6] [1, 1] : tensor<?x?xf32> to tensor<?x6xf32>
+// CHECK: %[[SUB:.*]] = tensor.extract_slice %[[ARG0]][0, 0] [%[[SIZE]], 6] [1, 1] : tensor<?x?xf32> to tensor<?x6xf32>
// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[ARG1]], %[[SUB]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<?x6xf32>
// CHECK: return %[[RESULT]]
func @pad_and_transfer_write_dynamic_static(
%arg0: tensor<?x?xf32>, %arg1: vector<7x9xf32>, %size: index, %padding: index) -> tensor<?x6xf32> {
%c0 = constant 0 : index
%c5 = constant 5.0 : f32
- %s = subtensor %arg0[0, 0] [%size, 6] [1, 1]
+ %s = tensor.extract_slice %arg0[0, 0] [%size, 6] [1, 1]
: tensor<?x?xf32> to tensor<?x6xf32>
%0 = linalg.pad_tensor %s low[0, 0] high[%padding, 7] {
^bb0(%arg2: index, %arg3: index):
@@ -663,13 +663,13 @@ func @pad_and_transfer_write_dynamic_static(
} : tensor<?x6xf32> to tensor<?x13xf32>
%1 = vector.transfer_write %arg1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<?x13xf32>
- %2 = subtensor %1[0, 0] [%size, 6] [1, 1] : tensor<?x13xf32> to tensor<?x6xf32>
+ %2 = tensor.extract_slice %1[0, 0] [%size, 6] [1, 1] : tensor<?x13xf32> to tensor<?x6xf32>
return %2 : tensor<?x6xf32>
}
// -----
-// CHECK-LABEL: func @pad_and_subtensor_insert
+// CHECK-LABEL: func @pad_and_insert_slice
// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>, %[[ARG1:.*]]: tensor<12x13xf32>
// CHECK-NOT: linalg.pad_tensor
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
@@ -677,7 +677,7 @@ func @pad_and_transfer_write_dynamic_static(
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[ARG1]][%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<7x9xf32>, tensor<12x13xf32>
// CHECK: return %[[WRITE]]
-func @pad_and_subtensor_insert(
+func @pad_and_insert_slice(
%arg0: tensor<5x6xf32>, %arg1: tensor<12x13xf32>) -> tensor<12x13xf32> {
%c0 = constant 0 : index
%c5 = constant 5.0 : f32
@@ -685,7 +685,7 @@ func @pad_and_subtensor_insert(
^bb0(%arg2: index, %arg3: index):
linalg.yield %c5 : f32
} : tensor<5x6xf32> to tensor<7x9xf32>
- %r = subtensor_insert %0 into %arg1[0, 0][7, 9][1, 1] : tensor<7x9xf32> into tensor<12x13xf32>
+ %r = tensor.insert_slice %0 into %arg1[0, 0][7, 9][1, 1] : tensor<7x9xf32> into tensor<12x13xf32>
return %r : tensor<12x13xf32>
}
diff --git a/mlir/test/Dialect/MemRef/canonicalize.mlir b/mlir/test/Dialect/MemRef/canonicalize.mlir
index ec5fd88e69cde..7c5fcd2503a8c 100644
--- a/mlir/test/Dialect/MemRef/canonicalize.mlir
+++ b/mlir/test/Dialect/MemRef/canonicalize.mlir
@@ -367,27 +367,3 @@ func @tensor_cast_to_memref(%arg0 : tensor<4x6x16x32xi8>) ->
%1 = memref.buffer_cast %0 : memref<?x?x16x32xi8>
return %1 : memref<?x?x16x32xi8>
}
-
-// -----
-
-// TODO: Move this test to Tensor/canonicalize.mlir.
-func @subtensor_insert_propagate_dest_cast(%arg0 : tensor<2x?xi32>, %arg1 : tensor<i32>,
- %arg2 : index, %arg3 : index) -> tensor<?x?xi32> {
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c2 = constant 2 : index
- %c8 = constant 8 : index
- %0 = memref.dim %arg0, %c1 : tensor<2x?xi32>
- %1 = tensor.extract %arg1[] : tensor<i32>
- %2 = tensor.generate %arg2, %c8 {
- ^bb0(%arg4: index, %arg5: index):
- tensor.yield %1 : i32
- } : tensor<?x?xi32>
- %3 = subtensor_insert %arg0 into %2[%c0, %arg3] [%c2, %0] [%c1, %c1] : tensor<2x?xi32> into tensor<?x?xi32>
- return %3 : tensor<?x?xi32>
-}
-// CHECK-LABEL: func @subtensor_insert_propagate_dest_cast
-// CHECK: %[[UPDATED:.+]] = subtensor_insert %{{.+}} into %{{.+}}[0, %{{.+}}] [2, %{{.+}}] [1, 1]
-// CHECK-SAME: tensor<2x?xi32> into tensor<?x8xi32>
-// CHECK: %[[CAST:.+]] = tensor.cast %[[UPDATED]]
-// CHECK: return %[[CAST]]
diff --git a/mlir/test/Dialect/SCF/canonicalize.mlir b/mlir/test/Dialect/SCF/canonicalize.mlir
index 59f0146866bbb..8b57bc8513cdd 100644
--- a/mlir/test/Dialect/SCF/canonicalize.mlir
+++ b/mlir/test/Dialect/SCF/canonicalize.mlir
@@ -659,10 +659,10 @@ func @matmul_on_tensors(%t0: tensor<32x1024xf32>, %t1: tensor<1024x1024xf32>) ->
scf.yield %2 : tensor<?x?xf32>
}
// CHECK-NOT: tensor.cast
-// CHECK: %[[RES:.*]] = subtensor_insert %[[FOR_RES]] into %[[T1]][0, 0] [32, 1024] [1, 1] : tensor<32x1024xf32> into tensor<1024x1024xf32>
+// CHECK: %[[RES:.*]] = tensor.insert_slice %[[FOR_RES]] into %[[T1]][0, 0] [32, 1024] [1, 1] : tensor<32x1024xf32> into tensor<1024x1024xf32>
// CHECK: return %[[RES]] : tensor<1024x1024xf32>
%2 = tensor.cast %1 : tensor<?x?xf32> to tensor<32x1024xf32>
- %res = subtensor_insert %2 into %t1[0, 0] [32, 1024] [1, 1] : tensor<32x1024xf32> into tensor<1024x1024xf32>
+ %res = tensor.insert_slice %2 into %t1[0, 0] [32, 1024] [1, 1] : tensor<32x1024xf32> into tensor<1024x1024xf32>
return %res : tensor<1024x1024xf32>
}
diff --git a/mlir/test/Dialect/Standard/canonicalize.mlir b/mlir/test/Dialect/Standard/canonicalize.mlir
index aed84cfd16c31..f3b9bdf9c54f2 100644
--- a/mlir/test/Dialect/Standard/canonicalize.mlir
+++ b/mlir/test/Dialect/Standard/canonicalize.mlir
@@ -24,202 +24,6 @@ func @cmpi_equal_operands(%arg0: i64)
// -----
-func @subtensor_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
- %arg2 : index) -> tensor<?x?x?xf32>
-{
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c4 = constant 4 : index
- %0 = subtensor %arg0[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
- return %0 : tensor<?x?x?xf32>
-}
-// CHECK-LABEL: func @subtensor_canonicalize
-// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xf32>
-// CHECK: %[[SUBTENSOR:.+]] = subtensor %[[ARG0]][0, %{{[a-zA-Z0-9_]+}}, 1]
-// CHECK-SAME: [4, 1, %{{[a-zA-Z0-9_]+}}] [1, 1, 1]
-// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x1x?xf32>
-// CHECK: %[[RESULT:.+]] = tensor.cast %[[SUBTENSOR]]
-// CHEKC: return %[[RESULT]]
-
-// -----
-
-func @rank_reducing_subtensor_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
- %arg2 : index) -> tensor<?x?xf32>
-{
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c4 = constant 4 : index
- %0 = subtensor %arg0[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?xf32>
- return %0 : tensor<?x?xf32>
-}
-// CHECK-LABEL: func @rank_reducing_subtensor_canonicalize
-// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xf32>
-// CHECK: %[[SUBTENSOR:.+]] = subtensor %[[ARG0]][0, %{{[a-zA-Z0-9_]+}}, 1]
-// CHECK-SAME: [4, 1, %{{[a-zA-Z0-9_]+}}] [1, 1, 1]
-// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x?xf32>
-// CHECK: %[[RESULT:.+]] = tensor.cast %[[SUBTENSOR]]
-// CHEKC: return %[[RESULT]]
-
-// -----
-
-// CHECK-LABEL: func @trivial_subtensor
-// CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
-// CHECK-NOT: subtensor
-// CHECK: return %[[ARG0]] : tensor<4x6x16x32xi8>
-func @trivial_subtensor(%arg0 : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> {
- %0 = subtensor %arg0[0, 0, 0, 0] [4, 6, 16, 32] [1, 1, 1, 1] : tensor<4x6x16x32xi8> to tensor<4x6x16x32xi8>
- return %0 : tensor<4x6x16x32xi8>
-}
-
-// -----
-
-// CHECK-LABEL: func @trivial_subtensor_insert
-// CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
-// CHECK-NOT: subtensor
-// CHECK: return %[[ARG0]] : tensor<4x6x16x32xi8>
-func @trivial_subtensor_insert(%arg0 : tensor<4x6x16x32xi8>, %arg1 : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> {
- %0 = subtensor_insert %arg0 into %arg1[0, 0, 0, 0] [4, 6, 16, 32] [1, 1, 1, 1] : tensor<4x6x16x32xi8> into tensor<4x6x16x32xi8>
- return %0 : tensor<4x6x16x32xi8>
-}
-
-// -----
-
-// CHECK-LABEL: func @rank_reducing_tensor_of_cast
-// CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
-// CHECK: %[[S:.+]] = subtensor %arg0[0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<4x6x16x32xi8> to tensor<16x32xi8>
-// Tensor cast is moved after subtensor and then gets canonicalized away.
-// CHECK-NOT: tensor.cast
-// CHECK: return %[[S]] : tensor<16x32xi8>
-func @rank_reducing_tensor_of_cast(%arg : tensor<4x6x16x32xi8>) -> tensor<16x32xi8> {
- %0 = tensor.cast %arg : tensor<4x6x16x32xi8> to tensor<?x?x16x32xi8>
- %1 = subtensor %0[0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<?x?x16x32xi8> to tensor<16x32xi8>
- return %1 : tensor<16x32xi8>
-}
-
-// -----
-
-// CHECK-LABEL: func @rank_reducing_subtensor_insert_of_cast
-// CHECK-SAME: %[[A:.[a-z0-9A-Z_]+]]: tensor<16x32xi8>
-// CHECK-SAME: %[[B:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
-// CHECK: %[[S:.+]] = subtensor_insert %[[A]] into %[[B]][0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<16x32xi8> into tensor<4x6x16x32xi8>
-// Tensor cast is folded away.
-// CHECK-NOT: tensor.cast
-// CHECK: return %[[S]] : tensor<4x6x16x32xi8>
-func @rank_reducing_subtensor_insert_of_cast(%a : tensor<16x32xi8>, %b : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> {
- %cast = tensor.cast %a : tensor<16x32xi8> to tensor<?x32xi8>
- %res = subtensor_insert %cast into %b[0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<?x32xi8> into tensor<4x6x16x32xi8>
- return %res : tensor<4x6x16x32xi8>
-}
-
-// -----
-
-func @subtensor_insert_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
- %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
-{
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c4 = constant 4 : index
- %0 = subtensor_insert %arg0 into %arg3[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> into tensor<?x?x?xf32>
- return %0 : tensor<?x?x?xf32>
-}
-// CHECK-LABEL: func @subtensor_insert_canonicalize
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
-// CHECK: %[[RESULT:.+]] = subtensor_insert %[[ARG0]]
-// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
-// CHECK-SAME: : tensor<?x?x?xf32> into tensor<?x?x?xf32>
-// CHEKC: return %[[RESULT]]
-
-// -----
-
-func @subtensor_to_subtensor_insert_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
- %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
-{
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c4 = constant 4 : index
- %0 = subtensor %arg0[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
- %1 = subtensor_insert %0 into %arg3[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> into tensor<?x?x?xf32>
- return %1 : tensor<?x?x?xf32>
-}
-// CHECK-LABEL: func @subtensor_to_subtensor_insert_canonicalize
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
-// CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
-// CHECK: %[[SUBTENSOR:.+]] = subtensor %[[ARG0]]
-// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}} [1, 1, 1]
-// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x1x?xf32>
-// CHECK: %[[RESULT:.+]] = subtensor_insert %[[SUBTENSOR]]
-// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
-// CHECK-SAME: : tensor<4x1x?xf32> into tensor<?x?x?xf32>
-// CHEKC: return %[[RESULT]]
-
-// -----
-
-func @rank_reducing_subtensor_insert_canonicalize(%arg0 : tensor<?x?xf32>, %arg1 : index,
- %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
-{
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c4 = constant 4 : index
- %0 = subtensor_insert %arg0 into %arg3[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?xf32> into tensor<?x?x?xf32>
- return %0 : tensor<?x?x?xf32>
-}
-// CHECK-LABEL: func @rank_reducing_subtensor_insert_canonicalize
-// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xf32>
-// CHECK: %[[RESULT:.+]] = subtensor_insert %[[ARG0]]
-// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
-// CHECK-SAME: : tensor<?x?xf32> into tensor<?x?x?xf32>
-// CHEKC: return %[[RESULT]]
-
-// -----
-
-func @rank_reducing_subtensor_to_subtensor_insert_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
- %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
-{
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c4 = constant 4 : index
- %0 = subtensor %arg0[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?xf32>
- %1 = subtensor_insert %0 into %arg3[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?xf32> into tensor<?x?x?xf32>
- return %1 : tensor<?x?x?xf32>
-}
-// CHECK-LABEL: func @rank_reducing_subtensor_to_subtensor_insert_canonicalize
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
-// CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
-// CHECK: %[[SUBTENSOR:.+]] = subtensor %[[ARG0]]
-// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
-// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x?xf32>
-// CHECK: %[[RESULT:.+]] = subtensor_insert %[[SUBTENSOR]] into %[[ARG3]]
-// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
-// CHECK-SAME: : tensor<4x?xf32> into tensor<?x?x?xf32>
-// CHEKC: return %[[RESULT]]
-
-// -----
-
-func @subtensor_insert_output_dest_canonicalize(%arg0 : tensor<2x3xi32>, %arg1 : tensor<i32>) -> tensor<3x9xi32> {
- %c0 = constant 0 : index
- %c1 = constant 1 : index
- %c2 = constant 2 : index
- %c9 = constant 9 : index
- %c3 = constant 3 : index
- %2 = tensor.extract %arg1[] : tensor<i32>
- %4 = tensor.generate %c3, %c9 {
- ^bb0(%arg2: index, %arg3: index):
- tensor.yield %2 : i32
- } : tensor<?x?xi32>
- %5 = subtensor_insert %arg0 into %4[%c0, %c1] [%c2, %c3] [1, 1] : tensor<2x3xi32> into tensor<?x?xi32>
- %6 = tensor.cast %5 : tensor<?x?xi32> to tensor<3x9xi32>
- return %6 : tensor<3x9xi32>
-}
-// CHECK-LABEL: func @subtensor_insert_output_dest_canonicalize
-// CHECK-SAME: %[[ARG0:[a-zA-z0-9_]+]]: tensor<2x3xi32>
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<i32>
-// CHECK: %[[PAD:.+]] = tensor.extract %[[ARG1]]
-// CHECK: %[[GENERATE:.+]] = tensor.generate
-// CHECK: %[[RESULT:.+]] = subtensor_insert %[[ARG0]] into %[[GENERATE]]
-// CHECK: return %[[RESULT]]
-
-// -----
-
// CHECK-LABEL: @select_same_val
// CHECK: return %arg1
func @select_same_val(%arg0: i1, %arg1: i64) -> i64 {
diff --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
index e4f5cc7fe5562..1420e49889255 100644
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ b/mlir/test/Dialect/Tensor/canonicalize.mlir
@@ -263,3 +263,222 @@ func @from_elements.constant() -> tensor<3xindex> {
%tensor = tensor.from_elements %c1, %c2, %c1 : tensor<3xindex>
return %tensor : tensor<3xindex>
}
+
+// -----
+
+func @slice_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
+ %arg2 : index) -> tensor<?x?x?xf32>
+{
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c4 = constant 4 : index
+ %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
+ return %0 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func @slice_canonicalize
+// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xf32>
+// CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]][0, %{{[a-zA-Z0-9_]+}}, 1]
+// CHECK-SAME: [4, 1, %{{[a-zA-Z0-9_]+}}] [1, 1, 1]
+// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x1x?xf32>
+// CHECK: %[[RESULT:.+]] = tensor.cast %[[SLICE]]
+// CHEKC: return %[[RESULT]]
+
+// -----
+
+func @rank_reducing_slice_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
+ %arg2 : index) -> tensor<?x?xf32>
+{
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c4 = constant 4 : index
+ %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?xf32>
+ return %0 : tensor<?x?xf32>
+}
+// CHECK-LABEL: func @rank_reducing_slice_canonicalize
+// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xf32>
+// CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]][0, %{{[a-zA-Z0-9_]+}}, 1]
+// CHECK-SAME: [4, 1, %{{[a-zA-Z0-9_]+}}] [1, 1, 1]
+// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x?xf32>
+// CHECK: %[[RESULT:.+]] = tensor.cast %[[SLICE]]
+// CHEKC: return %[[RESULT]]
+
+// -----
+
+// CHECK-LABEL: func @trivial_slice
+// CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
+// CHECK-NOT: tensor.extract_slice
+// CHECK: return %[[ARG0]] : tensor<4x6x16x32xi8>
+func @trivial_slice(%arg0 : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> {
+ %0 = tensor.extract_slice %arg0[0, 0, 0, 0] [4, 6, 16, 32] [1, 1, 1, 1] : tensor<4x6x16x32xi8> to tensor<4x6x16x32xi8>
+ return %0 : tensor<4x6x16x32xi8>
+}
+
+// -----
+
+// CHECK-LABEL: func @trivial_insert_slice
+// CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
+// CHECK-NOT: tensor.extract_slice
+// CHECK: return %[[ARG0]] : tensor<4x6x16x32xi8>
+func @trivial_insert_slice(%arg0 : tensor<4x6x16x32xi8>, %arg1 : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> {
+ %0 = tensor.insert_slice %arg0 into %arg1[0, 0, 0, 0] [4, 6, 16, 32] [1, 1, 1, 1] : tensor<4x6x16x32xi8> into tensor<4x6x16x32xi8>
+ return %0 : tensor<4x6x16x32xi8>
+}
+
+// -----
+
+// CHECK-LABEL: func @rank_reducing_tensor_of_cast
+// CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
+// CHECK: %[[S:.+]] = tensor.extract_slice %arg0[0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<4x6x16x32xi8> to tensor<16x32xi8>
+// Tensor cast is moved after slice and then gets canonicalized away.
+// CHECK-NOT: tensor.cast
+// CHECK: return %[[S]] : tensor<16x32xi8>
+func @rank_reducing_tensor_of_cast(%arg : tensor<4x6x16x32xi8>) -> tensor<16x32xi8> {
+ %0 = tensor.cast %arg : tensor<4x6x16x32xi8> to tensor<?x?x16x32xi8>
+ %1 = tensor.extract_slice %0[0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<?x?x16x32xi8> to tensor<16x32xi8>
+ return %1 : tensor<16x32xi8>
+}
+
+// -----
+
+// CHECK-LABEL: func @rank_reducing_insert_slice_of_cast
+// CHECK-SAME: %[[A:.[a-z0-9A-Z_]+]]: tensor<16x32xi8>
+// CHECK-SAME: %[[B:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8>
+// CHECK: %[[S:.+]] = tensor.insert_slice %[[A]] into %[[B]][0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<16x32xi8> into tensor<4x6x16x32xi8>
+// Tensor cast is folded away.
+// CHECK-NOT: tensor.cast
+// CHECK: return %[[S]] : tensor<4x6x16x32xi8>
+func @rank_reducing_insert_slice_of_cast(%a : tensor<16x32xi8>, %b : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> {
+ %cast = tensor.cast %a : tensor<16x32xi8> to tensor<?x32xi8>
+ %res = tensor.insert_slice %cast into %b[0, 1, 0] [1, 1, 16] [1, 1, 1] : tensor<?x32xi8> into tensor<4x6x16x32xi8>
+ return %res : tensor<4x6x16x32xi8>
+}
+
+// -----
+
+func @insert_slice_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
+ %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
+{
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c4 = constant 4 : index
+ %0 = tensor.insert_slice %arg0 into %arg3[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> into tensor<?x?x?xf32>
+ return %0 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func @insert_slice_canonicalize
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
+// CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[ARG0]]
+// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
+// CHECK-SAME: : tensor<?x?x?xf32> into tensor<?x?x?xf32>
+// CHEKC: return %[[RESULT]]
+
+// -----
+
+func @slice_to_insert_slice_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
+ %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
+{
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c4 = constant 4 : index
+ %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
+ %1 = tensor.insert_slice %0 into %arg3[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> into tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func @slice_to_insert_slice_canonicalize
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
+// CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
+// CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]]
+// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}} [1, 1, 1]
+// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x1x?xf32>
+// CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[SLICE]]
+// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
+// CHECK-SAME: : tensor<4x1x?xf32> into tensor<?x?x?xf32>
+// CHEKC: return %[[RESULT]]
+
+// -----
+
+func @rank_reducing_insert_slice_canonicalize(%arg0 : tensor<?x?xf32>, %arg1 : index,
+ %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
+{
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c4 = constant 4 : index
+ %0 = tensor.insert_slice %arg0 into %arg3[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?xf32> into tensor<?x?x?xf32>
+ return %0 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func @rank_reducing_insert_slice_canonicalize
+// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xf32>
+// CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[ARG0]]
+// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
+// CHECK-SAME: : tensor<?x?xf32> into tensor<?x?x?xf32>
+// CHEKC: return %[[RESULT]]
+
+// -----
+
+func @rank_reducing_slice_to_insert_slice_canonicalize(%arg0 : tensor<?x?x?xf32>, %arg1 : index,
+ %arg2 : index, %arg3 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
+{
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c4 = constant 4 : index
+ %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32> to tensor<?x?xf32>
+ %1 = tensor.insert_slice %0 into %arg3[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor<?x?xf32> into tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func @rank_reducing_slice_to_insert_slice_canonicalize
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
+// CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
+// CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]]
+// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
+// CHECK-SAME: : tensor<?x?x?xf32> to tensor<4x?xf32>
+// CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[SLICE]] into %[[ARG3]]
+// CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1]
+// CHECK-SAME: : tensor<4x?xf32> into tensor<?x?x?xf32>
+// CHEKC: return %[[RESULT]]
+
+// -----
+
+func @insert_slice_propagate_dest_cast(%arg0 : tensor<2x?xi32>, %arg1 : tensor<i32>,
+ %arg2 : index, %arg3 : index) -> tensor<?x?xi32> {
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c2 = constant 2 : index
+ %c8 = constant 8 : index
+ %0 = memref.dim %arg0, %c1 : tensor<2x?xi32>
+ %1 = tensor.extract %arg1[] : tensor<i32>
+ %2 = tensor.generate %arg2, %c8 {
+ ^bb0(%arg4: index, %arg5: index):
+ tensor.yield %1 : i32
+ } : tensor<?x?xi32>
+ %3 = tensor.insert_slice %arg0 into %2[%c0, %arg3] [%c2, %0] [%c1, %c1] : tensor<2x?xi32> into tensor<?x?xi32>
+ return %3 : tensor<?x?xi32>
+}
+// CHECK-LABEL: func @insert_slice_propagate_dest_cast
+// CHECK: %[[UPDATED:.+]] = tensor.insert_slice %{{.+}} into %{{.+}}[0, %{{.+}}] [2, %{{.+}}] [1, 1]
+// CHECK-SAME: tensor<2x?xi32> into tensor<?x8xi32>
+// CHECK: %[[CAST:.+]] = tensor.cast %[[UPDATED]]
+// CHECK: return %[[CAST]]
+
+// -----
+
+func @insert_slice_output_dest_canonicalize(%arg0 : tensor<2x3xi32>, %arg1 : tensor<i32>) -> tensor<3x9xi32> {
+ %c0 = constant 0 : index
+ %c1 = constant 1 : index
+ %c2 = constant 2 : index
+ %c9 = constant 9 : index
+ %c3 = constant 3 : index
+ %2 = tensor.extract %arg1[] : tensor<i32>
+ %4 = tensor.generate %c3, %c9 {
+ ^bb0(%arg2: index, %arg3: index):
+ tensor.yield %2 : i32
+ } : tensor<?x?xi32>
+ %5 = tensor.insert_slice %arg0 into %4[%c0, %c1] [%c2, %c3] [1, 1] : tensor<2x3xi32> into tensor<?x?xi32>
+ %6 = tensor.cast %5 : tensor<?x?xi32> to tensor<3x9xi32>
+ return %6 : tensor<3x9xi32>
+}
+// CHECK-LABEL: func @insert_slice_output_dest_canonicalize
+// CHECK-SAME: %[[ARG0:[a-zA-z0-9_]+]]: tensor<2x3xi32>
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<i32>
+// CHECK: %[[PAD:.+]] = tensor.extract %[[ARG1]]
+// CHECK: %[[GENERATE:.+]] = tensor.generate
+// CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[ARG0]] into %[[GENERATE]]
+// CHECK: return %[[RESULT]]
diff --git a/mlir/test/IR/core-ops.mlir b/mlir/test/IR/core-ops.mlir
index 43108465df1a1..280e22accbad8 100644
--- a/mlir/test/IR/core-ops.mlir
+++ b/mlir/test/IR/core-ops.mlir
@@ -825,31 +825,31 @@ func @assume_alignment(%0: memref<4x4xf16>) {
return
}
-// CHECK-LABEL: func @subtensor({{.*}}) {
-func @subtensor(%t: tensor<8x16x4xf32>, %idx : index) {
+// CHECK-LABEL: func @slice({{.*}}) {
+func @slice(%t: tensor<8x16x4xf32>, %idx : index) {
%c0 = constant 0 : index
%c1 = constant 1 : index
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: tensor<8x16x4xf32> to tensor<?x?x?xf32>
- %1 = subtensor %t[%c0, %c0, %c0][%idx, %idx, %idx][%c1, %c1, %c1]
+ %1 = tensor.extract_slice %t[%c0, %c0, %c0][%idx, %idx, %idx][%c1, %c1, %c1]
: tensor<8x16x4xf32> to tensor<?x?x?xf32>
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: tensor<8x16x4xf32> to tensor<4x4x4xf32>
- %2 = subtensor %t[0, 2, 0][4, 4, 4][1, 1, 1]
+ %2 = tensor.extract_slice %t[0, 2, 0][4, 4, 4][1, 1, 1]
: tensor<8x16x4xf32> to tensor<4x4x4xf32>
- // CHECK: subtensor
+ // CHECK: tensor.extract_slice
// CHECK-SAME: tensor<8x16x4xf32> to tensor<4x4xf32>
- %3 = subtensor %t[0, 2, 0][4, 1, 4][1, 1, 1]
+ %3 = tensor.extract_slice %t[0, 2, 0][4, 1, 4][1, 1, 1]
: tensor<8x16x4xf32> to tensor<4x4xf32>
return
}
-// CHECK-LABEL: func @subtensor_insert({{.*}}) {
-func @subtensor_insert(
+// CHECK-LABEL: func @insert_slice({{.*}}) {
+func @insert_slice(
%t: tensor<8x16x4xf32>,
%t2: tensor<16x32x8xf32>,
%t3: tensor<4x4xf32>,
@@ -857,19 +857,19 @@ func @subtensor_insert(
%c0 = constant 0 : index
%c1 = constant 1 : index
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: tensor<8x16x4xf32> into tensor<16x32x8xf32>
- %1 = subtensor_insert %t into %t2[%c0, %c0, %c0][%idx, %idx, %idx][%c1, %c1, %c1]
+ %1 = tensor.insert_slice %t into %t2[%c0, %c0, %c0][%idx, %idx, %idx][%c1, %c1, %c1]
: tensor<8x16x4xf32> into tensor<16x32x8xf32>
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: tensor<8x16x4xf32> into tensor<16x32x8xf32>
- %2 = subtensor_insert %t into %t2[%c0, %idx, %c0][%idx, 4, %idx][%c1, 1, %c1]
+ %2 = tensor.insert_slice %t into %t2[%c0, %idx, %c0][%idx, 4, %idx][%c1, 1, %c1]
: tensor<8x16x4xf32> into tensor<16x32x8xf32>
- // CHECK: subtensor_insert
+ // CHECK: tensor.insert_slice
// CHECK-SAME: tensor<4x4xf32> into tensor<8x16x4xf32>
- %3 = subtensor_insert %t3 into %t[0, 2, 0][4, 1, 4][1, 1, 1]
+ %3 = tensor.insert_slice %t3 into %t[0, 2, 0][4, 1, 4][1, 1, 1]
: tensor<4x4xf32> into tensor<8x16x4xf32>
return
diff --git a/mlir/test/IR/invalid-ops.mlir b/mlir/test/IR/invalid-ops.mlir
index 145566ce4c5dd..5bc3e3f29433e 100644
--- a/mlir/test/IR/invalid-ops.mlir
+++ b/mlir/test/IR/invalid-ops.mlir
@@ -1214,9 +1214,9 @@ func @assume_alignment(%0: memref<4x4xf16>) {
// -----
-func @subtensor_wrong_dynamic_type(%t: tensor<8x16x4xf32>, %idx : index) {
+func @slice_wrong_dynamic_type(%t: tensor<8x16x4xf32>, %idx : index) {
// expected-error @+1 {{expected result type to be 'tensor<4x4x4xf32>' or a rank-reduced version. (mismatch of result sizes)}}
- %0 = subtensor %t[0, 2, 0][4, 4, 4][1, 1, 1]
+ %0 = tensor.extract_slice %t[0, 2, 0][4, 4, 4][1, 1, 1]
: tensor<8x16x4xf32> to tensor<?x4x4xf32>
return
@@ -1224,9 +1224,9 @@ func @subtensor_wrong_dynamic_type(%t: tensor<8x16x4xf32>, %idx : index) {
// -----
-func @subtensor_wrong_static_type(%t: tensor<8x16x4xf32>, %idx : index) {
+func @slice_wrong_static_type(%t: tensor<8x16x4xf32>, %idx : index) {
// expected-error @+1 {{expected result type to be 'tensor<?x3x?xf32>' or a rank-reduced version. (mismatch of result sizes)}}
- %0 = subtensor %t[0, 0, 0][%idx, 3, %idx][1, 1, 1]
+ %0 = tensor.extract_slice %t[0, 0, 0][%idx, 3, %idx][1, 1, 1]
: tensor<8x16x4xf32> to tensor<4x4x4xf32>
return
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert-multiple-uses.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert-multiple-uses.mlir
index db5d6be43a1c7..0137081776dc9 100644
--- a/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert-multiple-uses.mlir
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert-multiple-uses.mlir
@@ -10,12 +10,12 @@ func @main() {
%const = constant dense<10.0> : tensor<2xf32>
%insert_val = constant dense<20.0> : tensor<1xf32>
- // Both of these subtensor_insert ops insert into the same original tensor
+ // Both of these insert_slice ops insert into the same original tensor
// value `%const`. This can easily cause bugs if at the memref level
// we attempt to write in-place into the memref that %const has been
// converted into.
- %inserted_at_position_0 = subtensor_insert %insert_val into %const[0][1][1] : tensor<1xf32> into tensor<2xf32>
- %inserted_at_position_1 = subtensor_insert %insert_val into %const[1][1][1] : tensor<1xf32> into tensor<2xf32>
+ %inserted_at_position_0 = tensor.insert_slice %insert_val into %const[0][1][1] : tensor<1xf32> into tensor<2xf32>
+ %inserted_at_position_1 = tensor.insert_slice %insert_val into %const[1][1][1] : tensor<1xf32> into tensor<2xf32>
%unranked_at_position_0 = tensor.cast %inserted_at_position_0 : tensor<2xf32> to tensor<*xf32>
call @print_memref_f32(%unranked_at_position_0) : (tensor<*xf32>) -> ()
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert.mlir
index 1e07dcf32cc53..0fd30cc5bb5a5 100644
--- a/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert.mlir
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/test-subtensor-insert.mlir
@@ -9,7 +9,7 @@
func @main() {
%const = constant dense<10.0> : tensor<2xf32>
%insert_val = constant dense<20.0> : tensor<1xf32>
- %inserted = subtensor_insert %insert_val into %const[0][1][1] : tensor<1xf32> into tensor<2xf32>
+ %inserted = tensor.insert_slice %insert_val into %const[0][1][1] : tensor<1xf32> into tensor<2xf32>
%unranked = tensor.cast %inserted : tensor<2xf32> to tensor<*xf32>
call @print_memref_f32(%unranked) : (tensor<*xf32>) -> ()
diff --git a/mlir/test/Transforms/canonicalize.mlir b/mlir/test/Transforms/canonicalize.mlir
index 07b21c5ac64c8..860e55dc04a2b 100644
--- a/mlir/test/Transforms/canonicalize.mlir
+++ b/mlir/test/Transforms/canonicalize.mlir
@@ -1065,9 +1065,9 @@ func @memref_cast_folding_subview_static(%V: memref<16x16xf32>, %a: index, %b: i
// -----
-// CHECK-LABEL: func @subtensor
+// CHECK-LABEL: func @slice
// CHECK-SAME: %[[ARG0:[0-9a-z]*]]: index, %[[ARG1:[0-9a-z]*]]: index
-func @subtensor(%t: tensor<8x16x4xf32>, %arg0 : index, %arg1 : index)
+func @slice(%t: tensor<8x16x4xf32>, %arg0 : index, %arg1 : index)
-> tensor<?x?x?xf32>
{
%c0 = constant 0 : index
@@ -1076,18 +1076,18 @@ func @subtensor(%t: tensor<8x16x4xf32>, %arg0 : index, %arg1 : index)
%c7 = constant 7 : index
%c11 = constant 11 : index
- // CHECK: subtensor %{{.*}}[0, 0, 0] [7, 11, 2] [1, 1, 1] :
+ // CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [7, 11, 2] [1, 1, 1] :
// CHECK-SAME: tensor<8x16x4xf32> to tensor<7x11x2xf32>
// tensor.cast gets folded away in consumer.
// CHECK-NOT: tensor.cast
- %1 = subtensor %t[%c0, %c0, %c0] [%c7, %c11, %c2] [%c1, %c1, %c1]
+ %1 = tensor.extract_slice %t[%c0, %c0, %c0] [%c7, %c11, %c2] [%c1, %c1, %c1]
: tensor<8x16x4xf32> to tensor<?x?x?xf32>
- // Test: subtensor with one dynamic operand can also be folded.
- // CHECK: subtensor %{{.*}}[0, 0, 0] [2, %[[ARG0]], 2] [1, 1, 1] :
+ // Test: slice with one dynamic operand can also be folded.
+ // CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [2, %[[ARG0]], 2] [1, 1, 1] :
// CHECK-SAME: tensor<7x11x2xf32> to tensor<2x?x2xf32>
// CHECK: tensor.cast %{{.*}} : tensor<2x?x2xf32> to tensor<?x?x?xf32>
- %2 = subtensor %1[%c0, %c0, %c0] [%c2, %arg0, %c2] [%c1, %c1, %c1]
+ %2 = tensor.extract_slice %1[%c0, %c0, %c0] [%c2, %arg0, %c2] [%c1, %c1, %c1]
: tensor<?x?x?xf32> to tensor<?x?x?xf32>
return %2 : tensor<?x?x?xf32>
diff --git a/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp b/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
index 402a26475a503..3da0aec922f7a 100644
--- a/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
+++ b/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
@@ -529,9 +529,9 @@ static void applyPadTensorToGenericPatterns(FuncOp funcOp) {
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
-static void applySubTensorOfPadTensorSwapPattern(FuncOp funcOp) {
+static void applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
- patterns.add<SubTensorOfPadTensorSwapPattern>(funcOp.getContext());
+ patterns.add<ExtractSliceOfPadTensorSwapPattern>(funcOp.getContext());
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
@@ -614,7 +614,7 @@ void TestLinalgTransforms::runOnFunction() {
if (testTransformPadTensor)
return applyPadTensorToGenericPatterns(getFunction());
if (testSwapSubTensorPadTensor)
- return applySubTensorOfPadTensorSwapPattern(getFunction());
+ return applyExtractSliceOfPadTensorSwapPattern(getFunction());
if (testAffineMinSCFCanonicalizationPatterns)
return applyAffineMinSCFCanonicalizationPatterns(getFunction());
if (testTileAndPadPattern)
More information about the Mlir-commits
mailing list