[Mlir-commits] [mlir] 4c2f3d8 - [mlir][linalg] Vectorize linalg.pad_op source copying (static source shape)
Matthias Springer
llvmlistbot at llvm.org
Sun Jun 13 22:38:03 PDT 2021
Author: Matthias Springer
Date: 2021-06-14T14:31:34+09:00
New Revision: 4c2f3d810b4a032792b632998d90baf4ab2ff7f3
URL: https://github.com/llvm/llvm-project/commit/4c2f3d810b4a032792b632998d90baf4ab2ff7f3
DIFF: https://github.com/llvm/llvm-project/commit/4c2f3d810b4a032792b632998d90baf4ab2ff7f3.diff
LOG: [mlir][linalg] Vectorize linalg.pad_op source copying (static source shape)
If the source operand of a linalg.pad_op operation has static shape, vectorize the copying of the source.
Differential Revision: https://reviews.llvm.org/D103747
Added:
Modified:
mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
mlir/test/Dialect/Linalg/vectorization.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index f52bd10da122..8d927783a8b4 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -673,10 +673,8 @@ static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
/// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and
/// SubTensorInsertOp. For now, only constant padding values are supported.
-/// Note: This rewrite is not yet a vectorization, but some of the generated ops
-/// may be vectorized down the line (e.g., FillOp).
-/// TODO: If there is enough static shape information, generate TransferReadOps
-/// and TransferWriteOps instead of SubTensorInsertOp.
+/// If there is enough static type information, TransferReadOps and
+/// TransferWriteOps may be generated instead of SubTensorInsertOps.
struct GenericPadTensorOpVectorizationPattern
: public OpRewritePattern<PadTensorOp> {
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
@@ -720,6 +718,20 @@ struct GenericPadTensorOpVectorizationPattern
rewriter.create<FillOp>(padOp.getLoc(), init, padValue).result();
auto sourceType = padOp.getSourceType();
+
+ // Copy of source with static shape can be vectorized.
+ if (sourceType.hasStaticShape()) {
+ auto vecType = VectorType::get(sourceType.getShape(),
+ sourceType.getElementType());
+ vectorizeStaticShapeSource(rewriter, padOp, fill, vecType);
+ return success();
+ }
+
+ // TODO: Vectorize dynamic source but static destination.
+
+ // Neither source type nor PadTensorOp result type have static shape. Such
+ // PadTensorOps cannot be vectorized. Generate a SubTensorInsertOp instead.
+
// Compute size of source of PadTensorOp.
SmallVector<OpFoldResult> srcSizes;
for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
@@ -738,6 +750,25 @@ struct GenericPadTensorOpVectorizationPattern
return success();
}
+
+ /// Vectorize the copying of a PadTensorOp's source that has static shape.
+ void vectorizeStaticShapeSource(PatternRewriter &rewriter, PadTensorOp padOp,
+ Value dest, VectorType vecType) const {
+ // Generate TransferReadOp.
+ SmallVector<Value> readIndices(
+ vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
+ auto read = rewriter.create<vector::TransferReadOp>(
+ padOp.getLoc(), vecType, padOp.source(), readIndices);
+
+ // Generate TransferWriteOp. The destination dimensions may be dynamic, but
+ // the write cannot be out-of-bounds. (A large enough destination tensor is
+ // allocated in this pattern.)
+ auto writeIndices = ofrToIndexValues(
+ rewriter, padOp.getLoc(), padOp.getMixedLowPad());
+ SmallVector<bool> inBounds(vecType.getRank(), true);
+ rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
+ padOp, read, dest, writeIndices, inBounds);
+ }
};
/// Base pattern for rewriting PadTensorOps whose result is consumed by a given
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index a3223309cc01..94c9c3aaf1d5 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -532,6 +532,27 @@ func @pad_static(%arg0: tensor<2x?x2xf32>, %pad_value: f32) -> tensor<2x3x4xf32>
// -----
+// CHECK-LABEL: func @pad_static_source(
+// CHECK-SAME: %[[ARG0:.*]]: tensor<2x5x2xf32>, %[[PAD:.*]]: f32
+// CHECK-NOT: linalg.pad_tensor
+// CHECK-DAG: %[[C0:.*]] = constant 0 : index
+// CHECK-DAG: %[[C2:.*]] = constant 2 : index
+// CHECK: %[[INIT:.*]] = linalg.init_tensor [2, 6, 4] : tensor<2x6x4xf32>
+// CHECK: %[[VEC:.*]] = vector.broadcast %[[PAD]] : f32 to vector<2x6x4xf32>
+// CHECK: %[[FILL:.*]] = vector.transfer_write %[[VEC]], %[[INIT]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<2x6x4xf32>, tensor<2x6x4xf32>
+// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]], %{{.*}} {in_bounds = [true, true, true]} : tensor<2x5x2xf32>, vector<2x5x2xf32>
+// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[FILL]][%[[C0]], %[[C0]], %[[C2]]] {in_bounds = [true, true, true]} : vector<2x5x2xf32>, tensor<2x6x4xf32>
+// CHECK: return %[[WRITE]]
+func @pad_static_source(%arg0: tensor<2x5x2xf32>, %pad_value: f32) -> tensor<2x6x4xf32> {
+ %0 = linalg.pad_tensor %arg0 low[0, 0, 2] high[0, 1, 0] {
+ ^bb0(%arg1: index, %arg2: index, %arg3: index):
+ linalg.yield %pad_value : f32
+ } : tensor<2x5x2xf32> to tensor<2x6x4xf32>
+ return %0 : tensor<2x6x4xf32>
+}
+
+// -----
+
// CHECK-LABEL: func @pad_static_dynamic(
// CHECK-SAME: %[[SRC:.*]]: tensor<1x2x2x?xf32>, %[[LOW:.*]]: index, %[[HIGH:.*]]: index
// CHECK-NOT: linalg.pad_tensor
More information about the Mlir-commits
mailing list