[Mlir-commits] [mlir] fdb21f0 - [mlir][linalg] Remove generic PadTensorOp vectorization pattern

Matthias Springer llvmlistbot at llvm.org
Sun Jun 13 18:54:22 PDT 2021


Author: Matthias Springer
Date: 2021-06-14T10:53:50+09:00
New Revision: fdb21f0c5edd17b9aeb6f5135d0980b9e4c74bf2

URL: https://github.com/llvm/llvm-project/commit/fdb21f0c5edd17b9aeb6f5135d0980b9e4c74bf2
DIFF: https://github.com/llvm/llvm-project/commit/fdb21f0c5edd17b9aeb6f5135d0980b9e4c74bf2.diff

LOG: [mlir][linalg] Remove generic PadTensorOp vectorization pattern

The generic vectorization pattern handles only those cases, where
low and high padding is zero. This is already handled by a
canonicalization pattern.

Also add a new canonicalization test case to ensure that tensor cast ops
are properly inserted.

A more general vectorization pattern will be added in a subsequent commit.

Differential Revision: https://reviews.llvm.org/D103590

Added: 
    

Modified: 
    mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
    mlir/test/Dialect/Linalg/canonicalize.mlir
    mlir/test/Dialect/Linalg/vectorization.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index bf48f0e337e0..3e8fb3813ff2 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -671,52 +671,6 @@ static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
   return result;
 }
 
-/// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and
-/// TransferWriteOp. For now, this only applies when all low and high paddings
-/// are determined to be zero.
-struct GenericPadTensorOpVectorizationPattern
-    : public OpRewritePattern<PadTensorOp> {
-  using OpRewritePattern<PadTensorOp>::OpRewritePattern;
-
-  LogicalResult matchAndRewrite(PadTensorOp padOp,
-                                PatternRewriter &rewriter) const override {
-    /// Given an OpFoldResult, return true if its value is guaranteed to be a
-    /// zero integer.
-    auto isZeroInt = [&](OpFoldResult ofr) {
-      return isEqualConstantIntOrValue(ofr, rewriter.getIndexAttr(0)); };
-    // Low padding must be static 0.
-    if (!llvm::all_of(padOp.getMixedLowPad(), isZeroInt)) return failure();
-    // High padding must be static 0.
-    if (!llvm::all_of(padOp.getMixedHighPad(), isZeroInt)) return failure();
-    // Pad value must be a constant.
-    auto padValue = padOp.getConstantPaddingValue();
-    if (!padValue) return failure();
-
-    // Bail on non-static shapes.
-    auto resultShapedType = padOp.result().getType().cast<ShapedType>();
-    if (!resultShapedType.hasStaticShape())
-      return failure();
-    VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result());
-    if (!vectorType)
-      return failure();
-
-    // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] +
-    // TransferWriteOp@[0..0].
-    SmallVector<Value> indices(
-        resultShapedType.getRank(),
-        rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
-    Value read = rewriter.create<vector::TransferReadOp>(
-        padOp.getLoc(), vectorType, padOp.source(), indices, padValue);
-    Value init = rewriter.create<InitTensorOp>(
-        padOp.getLoc(), resultShapedType.getShape(),
-        resultShapedType.getElementType());
-    rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init,
-                                                         indices);
-
-    return success();
-  }
-};
-
 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given
 /// operation type OpTy.
 template <typename OpTy>
@@ -995,13 +949,14 @@ struct PadTensorOpVectorizationWithSubTensorInsertPattern
 
 void mlir::linalg::populatePadTensorOpVectorizationPatterns(
     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
-  patterns.add<GenericPadTensorOpVectorizationPattern>(
-      patterns.getContext(), baseBenefit);
+  // TODO: Canonicalizer handles simple cases where low = 0 and high = 0, but a
+  // generic vectorization pattern is still missing.
+
   // Try these specialized patterns first before resorting to the generic one.
   patterns.add<PadTensorOpVectorizationWithTransferReadPattern,
                PadTensorOpVectorizationWithTransferWritePattern,
                PadTensorOpVectorizationWithSubTensorInsertPattern>(
-      patterns.getContext(), baseBenefit.getBenefit() + 1);
+      patterns.getContext(), baseBenefit);
 }
 
 // TODO: cleanup all the convolution vectorization patterns.

diff  --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir
index c51cbdbb3568..6fa9fc4900f6 100644
--- a/mlir/test/Dialect/Linalg/canonicalize.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize.mlir
@@ -1148,3 +1148,21 @@ func @tensor_pad_cast_fold(%arg0: tensor<4x4xf32>) -> tensor<4x4xf32> {
 // CHECK-LABEL: @tensor_pad_cast
 // CHECK-SAME: %[[ARG0:.+]]: tensor<4x4xf32>
 // CHECK: return %[[ARG0]]
+
+// -----
+
+// CHECK-LABEL: func @pad_static_zero_cast(
+//  CHECK-SAME:                  %[[ARG0:.*]]: tensor<?x?x?xf32>
+//   CHECK-NOT:   linalg.pad_tensor
+//       CHECK:   %[[RESULT:.*]] = tensor.cast %[[ARG0]] : tensor<?x?x?xf32> to tensor<2x3x4xf32>
+//       CHECK:   return %[[RESULT]]
+func @pad_static_zero_cast(%arg0: tensor<?x?x?xf32>, %pad_value: f32) -> tensor<2x3x4xf32> {
+  %c0 = constant 0 : index
+  %0 = linalg.pad_tensor %arg0 low[0, %c0, 0] high[0, 0, %c0] {
+    ^bb0(%arg1: index, %arg2: index, %arg3: index):
+      linalg.yield %pad_value : f32
+    } : tensor<?x?x?xf32> to tensor<2x3x4xf32>
+
+  return %0 : tensor<2x3x4xf32>
+}
+

diff  --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index bc5a2feff447..43dd39602b35 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -512,27 +512,6 @@ func @matmul_i8_i8_i32(%a: memref<4x6xi8>, %b: memref<6x12xi8>, %c: memref<4x12x
 
 // -----
 
-// CHECK-LABEL: func @pad_static
-//   CHECK-NOT:   linalg.pad_tensor
-func @pad_static(%arg0: tensor<?x?x?xf32>, %pad_value: f32) -> tensor<2x3x4xf32> {
-  //      CHECK: %[[C0:.*]] = constant 0 : index
-  //      CHECK: %[[READ:.*]] = vector.transfer_read %{{.*}}[%[[C0]], %[[C0]], %[[C0]]]
-  // CHECK-SAME:   : tensor<?x?x?xf32>, vector<2x3x4xf32>
-  //      CHECK: %[[INIT:.*]] = linalg.init_tensor [2, 3, 4] : tensor<2x3x4xf32>
-  //      CHECK: %[[WRITTEN:.*]] = vector.transfer_write %[[READ]], %[[INIT]][%[[C0]], %[[C0]], %[[C0]]]
-  // CHECK-SAME:   {in_bounds = [true, true, true]} : vector<2x3x4xf32>, tensor<2x3x4xf32>
-  %c0 = constant 0 : index
-  %0 = linalg.pad_tensor %arg0 low[0, %c0, 0] high[0, 0, %c0] {
-    ^bb0(%arg1: index, %arg2: index, %arg3: index):
-      linalg.yield %pad_value : f32
-    } : tensor<?x?x?xf32> to tensor<2x3x4xf32>
-
-  // CHECK: return %[[WRITTEN]] : tensor<2x3x4xf32>
-  return %0 : tensor<2x3x4xf32>
-}
-
-// -----
-
 // CHECK-LABEL: func @pad_static_high_padding
 //       CHECK:   linalg.pad_tensor
 func @pad_static_high_padding(%arg0: tensor<?x?x?xf32>, %pad_value: f32) -> tensor<2x3x4xf32> {


        


More information about the Mlir-commits mailing list