[Mlir-commits] [mlir] 942be7c - [mlir] Add DivOp lowering from Complex dialect to Standard/Math dialect.

Adrian Kuegel llvmlistbot at llvm.org
Wed Jun 2 02:16:24 PDT 2021


Author: Adrian Kuegel
Date: 2021-06-02T11:16:00+02:00
New Revision: 942be7cb4d98eb1fa0ffdc5d122e8c931cbc4cd6

URL: https://github.com/llvm/llvm-project/commit/942be7cb4d98eb1fa0ffdc5d122e8c931cbc4cd6
DIFF: https://github.com/llvm/llvm-project/commit/942be7cb4d98eb1fa0ffdc5d122e8c931cbc4cd6.diff

LOG: [mlir] Add DivOp lowering from Complex dialect to Standard/Math dialect.

Differential Revision: https://reviews.llvm.org/D103507

Added: 
    

Modified: 
    mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
    mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp b/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
index 5b1765407e690..f5c06638c86e2 100644
--- a/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
+++ b/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
@@ -77,14 +77,223 @@ struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> {
     return success();
   }
 };
+
+struct DivOpConversion : public OpConversionPattern<complex::DivOp> {
+  using OpConversionPattern<complex::DivOp>::OpConversionPattern;
+
+  LogicalResult
+  matchAndRewrite(complex::DivOp op, ArrayRef<Value> operands,
+                  ConversionPatternRewriter &rewriter) const override {
+    complex::DivOp::Adaptor transformed(operands);
+    auto loc = op.getLoc();
+    auto type = transformed.lhs().getType().template cast<ComplexType>();
+    auto elementType = type.getElementType().cast<FloatType>();
+
+    Value lhsReal =
+        rewriter.create<complex::ReOp>(loc, elementType, transformed.lhs());
+    Value lhsImag =
+        rewriter.create<complex::ImOp>(loc, elementType, transformed.lhs());
+    Value rhsReal =
+        rewriter.create<complex::ReOp>(loc, elementType, transformed.rhs());
+    Value rhsImag =
+        rewriter.create<complex::ImOp>(loc, elementType, transformed.rhs());
+
+    // Smith's algorithm to divide complex numbers. It is just a bit smarter
+    // way to compute the following formula:
+    //  (lhsReal + lhsImag * i) / (rhsReal + rhsImag * i)
+    //    = (lhsReal + lhsImag * i) (rhsReal - rhsImag * i) /
+    //          ((rhsReal + rhsImag * i)(rhsReal - rhsImag * i))
+    //    = ((lhsReal * rhsReal + lhsImag * rhsImag) +
+    //          (lhsImag * rhsReal - lhsReal * rhsImag) * i) / ||rhs||^2
+    //
+    // Depending on whether |rhsReal| < |rhsImag| we compute either
+    //   rhsRealImagRatio = rhsReal / rhsImag
+    //   rhsRealImagDenom = rhsImag + rhsReal * rhsRealImagRatio
+    //   resultReal = (lhsReal * rhsRealImagRatio + lhsImag) / rhsRealImagDenom
+    //   resultImag = (lhsImag * rhsRealImagRatio - lhsReal) / rhsRealImagDenom
+    //
+    // or
+    //
+    //   rhsImagRealRatio = rhsImag / rhsReal
+    //   rhsImagRealDenom = rhsReal + rhsImag * rhsImagRealRatio
+    //   resultReal = (lhsReal + lhsImag * rhsImagRealRatio) / rhsImagRealDenom
+    //   resultImag = (lhsImag - lhsReal * rhsImagRealRatio) / rhsImagRealDenom
+    //
+    // See https://dl.acm.org/citation.cfm?id=368661 for more details.
+    Value rhsRealImagRatio = rewriter.create<DivFOp>(loc, rhsReal, rhsImag);
+    Value rhsRealImagDenom = rewriter.create<AddFOp>(
+        loc, rhsImag, rewriter.create<MulFOp>(loc, rhsRealImagRatio, rhsReal));
+    Value realNumerator1 = rewriter.create<AddFOp>(
+        loc, rewriter.create<MulFOp>(loc, lhsReal, rhsRealImagRatio), lhsImag);
+    Value resultReal1 =
+        rewriter.create<DivFOp>(loc, realNumerator1, rhsRealImagDenom);
+    Value imagNumerator1 = rewriter.create<SubFOp>(
+        loc, rewriter.create<MulFOp>(loc, lhsImag, rhsRealImagRatio), lhsReal);
+    Value resultImag1 =
+        rewriter.create<DivFOp>(loc, imagNumerator1, rhsRealImagDenom);
+
+    Value rhsImagRealRatio = rewriter.create<DivFOp>(loc, rhsImag, rhsReal);
+    Value rhsImagRealDenom = rewriter.create<AddFOp>(
+        loc, rhsReal, rewriter.create<MulFOp>(loc, rhsImagRealRatio, rhsImag));
+    Value realNumerator2 = rewriter.create<AddFOp>(
+        loc, lhsReal, rewriter.create<MulFOp>(loc, lhsImag, rhsImagRealRatio));
+    Value resultReal2 =
+        rewriter.create<DivFOp>(loc, realNumerator2, rhsImagRealDenom);
+    Value imagNumerator2 = rewriter.create<SubFOp>(
+        loc, lhsImag, rewriter.create<MulFOp>(loc, lhsReal, rhsImagRealRatio));
+    Value resultImag2 =
+        rewriter.create<DivFOp>(loc, imagNumerator2, rhsImagRealDenom);
+
+    // Consider corner cases.
+    // Case 1. Zero denominator, numerator contains at most one NaN value.
+    Value zero = rewriter.create<ConstantOp>(loc, elementType,
+                                             rewriter.getZeroAttr(elementType));
+    Value rhsRealAbs = rewriter.create<AbsFOp>(loc, rhsReal);
+    Value rhsRealIsZero =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsRealAbs, zero);
+    Value rhsImagAbs = rewriter.create<AbsFOp>(loc, rhsImag);
+    Value rhsImagIsZero =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsImagAbs, zero);
+    Value lhsRealIsNotNaN =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::ORD, lhsReal, zero);
+    Value lhsImagIsNotNaN =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::ORD, lhsImag, zero);
+    Value lhsContainsNotNaNValue =
+        rewriter.create<OrOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN);
+    Value resultIsInfinity = rewriter.create<AndOp>(
+        loc, lhsContainsNotNaNValue,
+        rewriter.create<AndOp>(loc, rhsRealIsZero, rhsImagIsZero));
+    Value inf = rewriter.create<ConstantOp>(
+        loc, elementType,
+        rewriter.getFloatAttr(
+            elementType, APFloat::getInf(elementType.getFloatSemantics())));
+    Value infWithSignOfRhsReal = rewriter.create<CopySignOp>(loc, inf, rhsReal);
+    Value infinityResultReal =
+        rewriter.create<MulFOp>(loc, infWithSignOfRhsReal, lhsReal);
+    Value infinityResultImag =
+        rewriter.create<MulFOp>(loc, infWithSignOfRhsReal, lhsImag);
+
+    // Case 2. Infinite numerator, finite denominator.
+    Value rhsRealFinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, rhsRealAbs, inf);
+    Value rhsImagFinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, rhsImagAbs, inf);
+    Value rhsFinite = rewriter.create<AndOp>(loc, rhsRealFinite, rhsImagFinite);
+    Value lhsRealAbs = rewriter.create<AbsFOp>(loc, lhsReal);
+    Value lhsRealInfinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, lhsRealAbs, inf);
+    Value lhsImagAbs = rewriter.create<AbsFOp>(loc, lhsImag);
+    Value lhsImagInfinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, lhsImagAbs, inf);
+    Value lhsInfinite =
+        rewriter.create<OrOp>(loc, lhsRealInfinite, lhsImagInfinite);
+    Value infNumFiniteDenom =
+        rewriter.create<AndOp>(loc, lhsInfinite, rhsFinite);
+    Value one = rewriter.create<ConstantOp>(
+        loc, elementType, rewriter.getFloatAttr(elementType, 1));
+    Value lhsRealIsInfWithSign = rewriter.create<CopySignOp>(
+        loc, rewriter.create<SelectOp>(loc, lhsRealInfinite, one, zero),
+        lhsReal);
+    Value lhsImagIsInfWithSign = rewriter.create<CopySignOp>(
+        loc, rewriter.create<SelectOp>(loc, lhsImagInfinite, one, zero),
+        lhsImag);
+    Value lhsRealIsInfWithSignTimesRhsReal =
+        rewriter.create<MulFOp>(loc, lhsRealIsInfWithSign, rhsReal);
+    Value lhsImagIsInfWithSignTimesRhsImag =
+        rewriter.create<MulFOp>(loc, lhsImagIsInfWithSign, rhsImag);
+    Value resultReal3 = rewriter.create<MulFOp>(
+        loc, inf,
+        rewriter.create<AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal,
+                                lhsImagIsInfWithSignTimesRhsImag));
+    Value lhsRealIsInfWithSignTimesRhsImag =
+        rewriter.create<MulFOp>(loc, lhsRealIsInfWithSign, rhsImag);
+    Value lhsImagIsInfWithSignTimesRhsReal =
+        rewriter.create<MulFOp>(loc, lhsImagIsInfWithSign, rhsReal);
+    Value resultImag3 = rewriter.create<MulFOp>(
+        loc, inf,
+        rewriter.create<SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal,
+                                lhsRealIsInfWithSignTimesRhsImag));
+
+    // Case 3: Finite numerator, infinite denominator.
+    Value lhsRealFinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, lhsRealAbs, inf);
+    Value lhsImagFinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::ONE, lhsImagAbs, inf);
+    Value lhsFinite = rewriter.create<AndOp>(loc, lhsRealFinite, lhsImagFinite);
+    Value rhsRealInfinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsRealAbs, inf);
+    Value rhsImagInfinite =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::OEQ, rhsImagAbs, inf);
+    Value rhsInfinite =
+        rewriter.create<OrOp>(loc, rhsRealInfinite, rhsImagInfinite);
+    Value finiteNumInfiniteDenom =
+        rewriter.create<AndOp>(loc, lhsFinite, rhsInfinite);
+    Value rhsRealIsInfWithSign = rewriter.create<CopySignOp>(
+        loc, rewriter.create<SelectOp>(loc, rhsRealInfinite, one, zero),
+        rhsReal);
+    Value rhsImagIsInfWithSign = rewriter.create<CopySignOp>(
+        loc, rewriter.create<SelectOp>(loc, rhsImagInfinite, one, zero),
+        rhsImag);
+    Value rhsRealIsInfWithSignTimesLhsReal =
+        rewriter.create<MulFOp>(loc, lhsReal, rhsRealIsInfWithSign);
+    Value rhsImagIsInfWithSignTimesLhsImag =
+        rewriter.create<MulFOp>(loc, lhsImag, rhsImagIsInfWithSign);
+    Value resultReal4 = rewriter.create<MulFOp>(
+        loc, zero,
+        rewriter.create<AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal,
+                                rhsImagIsInfWithSignTimesLhsImag));
+    Value rhsRealIsInfWithSignTimesLhsImag =
+        rewriter.create<MulFOp>(loc, lhsImag, rhsRealIsInfWithSign);
+    Value rhsImagIsInfWithSignTimesLhsReal =
+        rewriter.create<MulFOp>(loc, lhsReal, rhsImagIsInfWithSign);
+    Value resultImag4 = rewriter.create<MulFOp>(
+        loc, zero,
+        rewriter.create<SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag,
+                                rhsImagIsInfWithSignTimesLhsReal));
+
+    Value realAbsSmallerThanImagAbs = rewriter.create<CmpFOp>(
+        loc, CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs);
+    Value resultReal = rewriter.create<SelectOp>(loc, realAbsSmallerThanImagAbs,
+                                                 resultReal1, resultReal2);
+    Value resultImag = rewriter.create<SelectOp>(loc, realAbsSmallerThanImagAbs,
+                                                 resultImag1, resultImag2);
+    Value resultRealSpecialCase3 = rewriter.create<SelectOp>(
+        loc, finiteNumInfiniteDenom, resultReal4, resultReal);
+    Value resultImagSpecialCase3 = rewriter.create<SelectOp>(
+        loc, finiteNumInfiniteDenom, resultImag4, resultImag);
+    Value resultRealSpecialCase2 = rewriter.create<SelectOp>(
+        loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3);
+    Value resultImagSpecialCase2 = rewriter.create<SelectOp>(
+        loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3);
+    Value resultRealSpecialCase1 = rewriter.create<SelectOp>(
+        loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2);
+    Value resultImagSpecialCase1 = rewriter.create<SelectOp>(
+        loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2);
+
+    Value resultRealIsNaN =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::UNO, resultReal, zero);
+    Value resultImagIsNaN =
+        rewriter.create<CmpFOp>(loc, CmpFPredicate::UNO, resultImag, zero);
+    Value resultIsNaN =
+        rewriter.create<AndOp>(loc, resultRealIsNaN, resultImagIsNaN);
+    Value resultRealWithSpecialCases = rewriter.create<SelectOp>(
+        loc, resultIsNaN, resultRealSpecialCase1, resultReal);
+    Value resultImagWithSpecialCases = rewriter.create<SelectOp>(
+        loc, resultIsNaN, resultImagSpecialCase1, resultImag);
+
+    rewriter.replaceOpWithNewOp<complex::CreateOp>(
+        op, type, resultRealWithSpecialCases, resultImagWithSpecialCases);
+    return success();
+  }
+};
 } // namespace
 
 void mlir::populateComplexToStandardConversionPatterns(
     RewritePatternSet &patterns) {
   patterns.add<AbsOpConversion,
                ComparisonOpConversion<complex::EqualOp, CmpFPredicate::OEQ>,
-               ComparisonOpConversion<complex::NotEqualOp, CmpFPredicate::UNE>>(
-      patterns.getContext());
+               ComparisonOpConversion<complex::NotEqualOp, CmpFPredicate::UNE>,
+               DivOpConversion>(patterns.getContext());
 }
 
 namespace {
@@ -103,7 +312,8 @@ void ConvertComplexToStandardPass::runOnFunction() {
   ConversionTarget target(getContext());
   target.addLegalDialect<StandardOpsDialect, math::MathDialect,
                          complex::ComplexDialect>();
-  target.addIllegalOp<complex::AbsOp, complex::EqualOp, complex::NotEqualOp>();
+  target.addIllegalOp<complex::AbsOp, complex::DivOp, complex::EqualOp,
+                      complex::NotEqualOp>();
   if (failed(applyPartialConversion(function, target, std::move(patterns))))
     signalPassFailure();
 }

diff  --git a/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir b/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
index d09f1a0cb708d..998104045720e 100644
--- a/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
+++ b/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
@@ -14,6 +14,115 @@ func @complex_abs(%arg: complex<f32>) -> f32 {
 // CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
 // CHECK: return %[[NORM]] : f32
 
+// CHECK-LABEL: func @complex_div
+// CHECK-SAME: (%[[LHS:.*]]: complex<f32>, %[[RHS:.*]]: complex<f32>)
+func @complex_div(%lhs: complex<f32>, %rhs: complex<f32>) -> complex<f32> {
+  %div = complex.div %lhs, %rhs : complex<f32>
+  return %div : complex<f32>
+}
+// CHECK: %[[LHS_REAL:.*]] = complex.re %[[LHS]] : complex<f32>
+// CHECK: %[[LHS_IMAG:.*]] = complex.im %[[LHS]] : complex<f32>
+// CHECK: %[[RHS_REAL:.*]] = complex.re %[[RHS]] : complex<f32>
+// CHECK: %[[RHS_IMAG:.*]] = complex.im %[[RHS]] : complex<f32>
+
+// CHECK: %[[RHS_REAL_IMAG_RATIO:.*]] = divf %[[RHS_REAL]], %[[RHS_IMAG]] : f32
+// CHECK: %[[RHS_REAL_TIMES_RHS_REAL_IMAG_RATIO:.*]] = mulf %[[RHS_REAL_IMAG_RATIO]], %[[RHS_REAL]] : f32
+// CHECK: %[[RHS_REAL_IMAG_DENOM:.*]] = addf %[[RHS_IMAG]], %[[RHS_REAL_TIMES_RHS_REAL_IMAG_RATIO]] : f32
+// CHECK: %[[LHS_REAL_TIMES_RHS_REAL_IMAG_RATIO:.*]] = mulf %[[LHS_REAL]], %[[RHS_REAL_IMAG_RATIO]] : f32
+// CHECK: %[[REAL_NUMERATOR_1:.*]] = addf %[[LHS_REAL_TIMES_RHS_REAL_IMAG_RATIO]], %[[LHS_IMAG]] : f32
+// CHECK: %[[RESULT_REAL_1:.*]] = divf %[[REAL_NUMERATOR_1]], %[[RHS_REAL_IMAG_DENOM]] : f32
+// CHECK: %[[LHS_IMAG_TIMES_RHS_REAL_IMAG_RATIO:.*]] = mulf %[[LHS_IMAG]], %[[RHS_REAL_IMAG_RATIO]] : f32
+// CHECK: %[[IMAG_NUMERATOR_1:.*]] = subf %[[LHS_IMAG_TIMES_RHS_REAL_IMAG_RATIO]], %[[LHS_REAL]] : f32
+// CHECK: %[[RESULT_IMAG_1:.*]] = divf %[[IMAG_NUMERATOR_1]], %[[RHS_REAL_IMAG_DENOM]] : f32
+
+// CHECK: %[[RHS_IMAG_REAL_RATIO:.*]] = divf %[[RHS_IMAG]], %[[RHS_REAL]] : f32
+// CHECK: %[[RHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO:.*]] = mulf %[[RHS_IMAG_REAL_RATIO]], %[[RHS_IMAG]] : f32
+// CHECK: %[[RHS_IMAG_REAL_DENOM:.*]] = addf %[[RHS_REAL]], %[[RHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO]] : f32
+// CHECK: %[[LHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO:.*]] = mulf %[[LHS_IMAG]], %[[RHS_IMAG_REAL_RATIO]] : f32
+// CHECK: %[[REAL_NUMERATOR_2:.*]] = addf %[[LHS_REAL]], %[[LHS_IMAG_TIMES_RHS_IMAG_REAL_RATIO]] : f32
+// CHECK: %[[RESULT_REAL_2:.*]] = divf %[[REAL_NUMERATOR_2]], %[[RHS_IMAG_REAL_DENOM]] : f32
+// CHECK: %[[LHS_REAL_TIMES_RHS_IMAG_REAL_RATIO:.*]] = mulf %[[LHS_REAL]], %[[RHS_IMAG_REAL_RATIO]] : f32
+// CHECK: %[[IMAG_NUMERATOR_2:.*]] = subf %[[LHS_IMAG]], %[[LHS_REAL_TIMES_RHS_IMAG_REAL_RATIO]] : f32
+// CHECK: %[[RESULT_IMAG_2:.*]] = divf %[[IMAG_NUMERATOR_2]], %[[RHS_IMAG_REAL_DENOM]] : f32
+
+// Case 1. Zero denominator, numerator contains at most one NaN value.
+// CHECK: %[[ZERO:.*]] = constant 0.000000e+00 : f32
+// CHECK: %[[RHS_REAL_ABS:.*]] = absf %[[RHS_REAL]] : f32
+// CHECK: %[[RHS_REAL_ABS_IS_ZERO:.*]] = cmpf oeq, %[[RHS_REAL_ABS]], %[[ZERO]] : f32
+// CHECK: %[[RHS_IMAG_ABS:.*]] = absf %[[RHS_IMAG]] : f32
+// CHECK: %[[RHS_IMAG_ABS_IS_ZERO:.*]] = cmpf oeq, %[[RHS_IMAG_ABS]], %[[ZERO]] : f32
+// CHECK: %[[LHS_REAL_IS_NOT_NAN:.*]] = cmpf ord, %[[LHS_REAL]], %[[ZERO]] : f32
+// CHECK: %[[LHS_IMAG_IS_NOT_NAN:.*]] = cmpf ord, %[[LHS_IMAG]], %[[ZERO]] : f32
+// CHECK: %[[LHS_CONTAINS_NOT_NAN_VALUE:.*]] = or %[[LHS_REAL_IS_NOT_NAN]], %[[LHS_IMAG_IS_NOT_NAN]] : i1
+// CHECK: %[[RHS_IS_ZERO:.*]] = and %[[RHS_REAL_ABS_IS_ZERO]], %[[RHS_IMAG_ABS_IS_ZERO]] : i1
+// CHECK: %[[RESULT_IS_INFINITY:.*]] = and %[[LHS_CONTAINS_NOT_NAN_VALUE]], %[[RHS_IS_ZERO]] : i1
+// CHECK: %[[INF:.*]] = constant 0x7F800000 : f32
+// CHECK: %[[INF_WITH_SIGN_OF_RHS_REAL:.*]] = copysign %[[INF]], %[[RHS_REAL]] : f32
+// CHECK: %[[INFINITY_RESULT_REAL:.*]] = mulf %[[INF_WITH_SIGN_OF_RHS_REAL]], %[[LHS_REAL]] : f32
+// CHECK: %[[INFINITY_RESULT_IMAG:.*]] = mulf %[[INF_WITH_SIGN_OF_RHS_REAL]], %[[LHS_IMAG]] : f32
+
+// Case 2. Infinite numerator, finite denominator.
+// CHECK: %[[RHS_REAL_FINITE:.*]] = cmpf one, %[[RHS_REAL_ABS]], %[[INF]] : f32
+// CHECK: %[[RHS_IMAG_FINITE:.*]] = cmpf one, %[[RHS_IMAG_ABS]], %[[INF]] : f32
+// CHECK: %[[RHS_IS_FINITE:.*]] = and %[[RHS_REAL_FINITE]], %[[RHS_IMAG_FINITE]] : i1
+// CHECK: %[[LHS_REAL_ABS:.*]] = absf %[[LHS_REAL]] : f32
+// CHECK: %[[LHS_REAL_INFINITE:.*]] = cmpf oeq, %[[LHS_REAL_ABS]], %[[INF]] : f32
+// CHECK: %[[LHS_IMAG_ABS:.*]] = absf %[[LHS_IMAG]] : f32
+// CHECK: %[[LHS_IMAG_INFINITE:.*]] = cmpf oeq, %[[LHS_IMAG_ABS]], %[[INF]] : f32
+// CHECK: %[[LHS_IS_INFINITE:.*]] = or %[[LHS_REAL_INFINITE]], %[[LHS_IMAG_INFINITE]] : i1
+// CHECK: %[[INF_NUM_FINITE_DENOM:.*]] = and %[[LHS_IS_INFINITE]], %[[RHS_IS_FINITE]] : i1
+// CHECK: %[[ONE:.*]] = constant 1.000000e+00 : f32
+// CHECK: %[[LHS_REAL_IS_INF:.*]] = select %[[LHS_REAL_INFINITE]], %[[ONE]], %[[ZERO]] : f32
+// CHECK: %[[LHS_REAL_IS_INF_WITH_SIGN:.*]] = copysign %[[LHS_REAL_IS_INF]], %[[LHS_REAL]] : f32
+// CHECK: %[[LHS_IMAG_IS_INF:.*]] = select %[[LHS_IMAG_INFINITE]], %[[ONE]], %[[ZERO]] : f32
+// CHECK: %[[LHS_IMAG_IS_INF_WITH_SIGN:.*]] = copysign %[[LHS_IMAG_IS_INF]], %[[LHS_IMAG]] : f32
+// CHECK: %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_REAL:.*]] = mulf %[[LHS_REAL_IS_INF_WITH_SIGN]], %[[RHS_REAL]] : f32
+// CHECK: %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_IMAG:.*]] = mulf %[[LHS_IMAG_IS_INF_WITH_SIGN]], %[[RHS_IMAG]] : f32
+// CHECK: %[[INF_MULTIPLICATOR_1:.*]] = addf %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_REAL]], %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_IMAG]] : f32
+// CHECK: %[[RESULT_REAL_3:.*]] = mulf %[[INF]], %[[INF_MULTIPLICATOR_1]] : f32
+// CHECK: %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_IMAG:.*]] = mulf %[[LHS_REAL_IS_INF_WITH_SIGN]], %[[RHS_IMAG]] : f32
+// CHECK: %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_REAL:.*]] = mulf %[[LHS_IMAG_IS_INF_WITH_SIGN]], %[[RHS_REAL]] : f32
+// CHECK: %[[INF_MULTIPLICATOR_2:.*]] = subf %[[LHS_IMAG_IS_INF_WITH_SIGN_TIMES_RHS_REAL]], %[[LHS_REAL_IS_INF_WITH_SIGN_TIMES_RHS_IMAG]] : f32
+// CHECK: %[[RESULT_IMAG_3:.*]] = mulf %[[INF]], %[[INF_MULTIPLICATOR_2]] : f32
+
+// Case 3. Finite numerator, infinite denominator.
+// CHECK: %[[LHS_REAL_FINITE:.*]] = cmpf one, %[[LHS_REAL_ABS]], %[[INF]] : f32
+// CHECK: %[[LHS_IMAG_FINITE:.*]] = cmpf one, %[[LHS_IMAG_ABS]], %[[INF]] : f32
+// CHECK: %[[LHS_IS_FINITE:.*]] = and %[[LHS_REAL_FINITE]], %[[LHS_IMAG_FINITE]] : i1
+// CHECK: %[[RHS_REAL_INFINITE:.*]] = cmpf oeq, %[[RHS_REAL_ABS]], %[[INF]] : f32
+// CHECK: %[[RHS_IMAG_INFINITE:.*]] = cmpf oeq, %[[RHS_IMAG_ABS]], %[[INF]] : f32
+// CHECK: %[[RHS_IS_INFINITE:.*]] = or %[[RHS_REAL_INFINITE]], %[[RHS_IMAG_INFINITE]] : i1
+// CHECK: %[[FINITE_NUM_INFINITE_DENOM:.*]] = and %[[LHS_IS_FINITE]], %[[RHS_IS_INFINITE]] : i1
+// CHECK: %[[RHS_REAL_IS_INF:.*]] = select %[[RHS_REAL_INFINITE]], %[[ONE]], %[[ZERO]] : f32
+// CHECK: %[[RHS_REAL_IS_INF_WITH_SIGN:.*]] = copysign %[[RHS_REAL_IS_INF]], %[[RHS_REAL]] : f32
+// CHECK: %[[RHS_IMAG_IS_INF:.*]] = select %[[RHS_IMAG_INFINITE]], %[[ONE]], %[[ZERO]] : f32
+// CHECK: %[[RHS_IMAG_IS_INF_WITH_SIGN:.*]] = copysign %[[RHS_IMAG_IS_INF]], %[[RHS_IMAG]] : f32
+// CHECK: %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_REAL:.*]] = mulf %[[LHS_REAL]], %[[RHS_REAL_IS_INF_WITH_SIGN]] : f32
+// CHECK: %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_IMAG:.*]] = mulf %[[LHS_IMAG]], %[[RHS_IMAG_IS_INF_WITH_SIGN]] : f32
+// CHECK: %[[ZERO_MULTIPLICATOR_1:.*]] = addf %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_REAL]], %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_IMAG]] : f32
+// CHECK: %[[RESULT_REAL_4:.*]] = mulf %[[ZERO]], %[[ZERO_MULTIPLICATOR_1]] : f32
+// CHECK: %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_IMAG:.*]] = mulf %[[LHS_IMAG]], %[[RHS_REAL_IS_INF_WITH_SIGN]] : f32
+// CHECK: %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_REAL:.*]] = mulf %[[LHS_REAL]], %[[RHS_IMAG_IS_INF_WITH_SIGN]] : f32
+// CHECK: %[[ZERO_MULTIPLICATOR_2:.*]] = subf %[[RHS_REAL_IS_INF_WITH_SIGN_TIMES_LHS_IMAG]], %[[RHS_IMAG_IS_INF_WITH_SIGN_TIMES_LHS_REAL]] : f32
+// CHECK: %[[RESULT_IMAG_4:.*]] = mulf %[[ZERO]], %[[ZERO_MULTIPLICATOR_2]] : f32
+
+// CHECK: %[[REAL_ABS_SMALLER_THAN_IMAG_ABS:.*]] = cmpf olt, %[[RHS_REAL_ABS]], %[[RHS_IMAG_ABS]] : f32
+// CHECK: %[[RESULT_REAL:.*]] = select %[[REAL_ABS_SMALLER_THAN_IMAG_ABS]], %[[RESULT_REAL_1]], %[[RESULT_REAL_2]] : f32
+// CHECK: %[[RESULT_IMAG:.*]] = select %[[REAL_ABS_SMALLER_THAN_IMAG_ABS]], %[[RESULT_IMAG_1]], %[[RESULT_IMAG_2]] : f32
+// CHECK: %[[RESULT_REAL_SPECIAL_CASE_3:.*]] = select %[[FINITE_NUM_INFINITE_DENOM]], %[[RESULT_REAL_4]], %[[RESULT_REAL]] : f32
+// CHECK: %[[RESULT_IMAG_SPECIAL_CASE_3:.*]] = select %[[FINITE_NUM_INFINITE_DENOM]], %[[RESULT_IMAG_4]], %[[RESULT_IMAG]] : f32
+// CHECK: %[[RESULT_REAL_SPECIAL_CASE_2:.*]] = select %[[INF_NUM_FINITE_DENOM]], %[[RESULT_REAL_3]], %[[RESULT_REAL_SPECIAL_CASE_3]] : f32
+// CHECK: %[[RESULT_IMAG_SPECIAL_CASE_2:.*]] = select %[[INF_NUM_FINITE_DENOM]], %[[RESULT_IMAG_3]], %[[RESULT_IMAG_SPECIAL_CASE_3]] : f32
+// CHECK: %[[RESULT_REAL_SPECIAL_CASE_1:.*]] = select %[[RESULT_IS_INFINITY]], %[[INFINITY_RESULT_REAL]], %[[RESULT_REAL_SPECIAL_CASE_2]] : f32
+// CHECK: %[[RESULT_IMAG_SPECIAL_CASE_1:.*]] = select %[[RESULT_IS_INFINITY]], %[[INFINITY_RESULT_IMAG]], %[[RESULT_IMAG_SPECIAL_CASE_2]] : f32
+// CHECK: %[[RESULT_REAL_IS_NAN:.*]] = cmpf uno, %[[RESULT_REAL]], %[[ZERO]] : f32
+// CHECK: %[[RESULT_IMAG_IS_NAN:.*]] = cmpf uno, %[[RESULT_IMAG]], %[[ZERO]] : f32
+// CHECK: %[[RESULT_IS_NAN:.*]] = and %[[RESULT_REAL_IS_NAN]], %[[RESULT_IMAG_IS_NAN]] : i1
+// CHECK: %[[RESULT_REAL_WITH_SPECIAL_CASES:.*]] = select %[[RESULT_IS_NAN]], %[[RESULT_REAL_SPECIAL_CASE_1]], %[[RESULT_REAL]] : f32
+// CHECK: %[[RESULT_IMAG_WITH_SPECIAL_CASES:.*]] = select %[[RESULT_IS_NAN]], %[[RESULT_IMAG_SPECIAL_CASE_1]], %[[RESULT_IMAG]] : f32
+// CHECK: %[[RESULT:.*]] = complex.create %[[RESULT_REAL_WITH_SPECIAL_CASES]], %[[RESULT_IMAG_WITH_SPECIAL_CASES]] : complex<f32>
+// CHECK: return %[[RESULT]] : complex<f32>
+
 // CHECK-LABEL: func @complex_eq
 // CHECK-SAME: %[[LHS:.*]]: complex<f32>, %[[RHS:.*]]: complex<f32>
 func @complex_eq(%lhs: complex<f32>, %rhs: complex<f32>) -> i1 {


        


More information about the Mlir-commits mailing list