[Mlir-commits] [mlir] 9a82482 - [mlir][linalg] Fix pad tensor cast folding with changed type
Yi Zhang
llvmlistbot at llvm.org
Thu Jul 29 14:51:56 PDT 2021
Author: Yi Zhang
Date: 2021-07-29T17:47:01-04:00
New Revision: 9a824823131600bca71406f533c2ba051c23c7d7
URL: https://github.com/llvm/llvm-project/commit/9a824823131600bca71406f533c2ba051c23c7d7
DIFF: https://github.com/llvm/llvm-project/commit/9a824823131600bca71406f533c2ba051c23c7d7.diff
LOG: [mlir][linalg] Fix pad tensor cast folding with changed type
`PadTensorOp` has verification logic to make sure
result dim must be static if all the padding values are static.
Cast folding might add more static information for the src operand
of `PadTensorOp` which might change a valid operation to be invalid.
Change the canonicalizing pattern to fix this.
Added:
Modified:
mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
mlir/test/Dialect/Linalg/canonicalize.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 5ce4b3d27842f..8b54b6de8f092 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -1229,9 +1229,26 @@ struct FoldSourceTensorCast : public OpRewritePattern<PadTensorOp> {
if (!tensor::canFoldIntoConsumerOp(castOp))
return failure();
- rewriter.updateRootInPlace(padTensorOp, [&]() {
- padTensorOp.sourceMutable().assign(castOp.source());
- });
+ auto newResultType = PadTensorOp::inferResultType(
+ castOp.source().getType().cast<RankedTensorType>(),
+ extractFromI64ArrayAttr(padTensorOp.static_low()),
+ extractFromI64ArrayAttr(padTensorOp.static_high()));
+
+ if (newResultType == padTensorOp.getResultType()) {
+ rewriter.updateRootInPlace(padTensorOp, [&]() {
+ padTensorOp.sourceMutable().assign(castOp.source());
+ });
+ } else {
+ auto newOp = rewriter.create<PadTensorOp>(
+ padTensorOp->getLoc(), newResultType, padTensorOp.source(),
+ padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(),
+ padTensorOp.static_high(), /*output=*/nullptr);
+ BlockAndValueMapping mapper;
+ padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
+
+ rewriter.replaceOpWithNewOp<tensor::CastOp>(
+ padTensorOp, padTensorOp.getResultType(), newOp);
+ }
return success();
}
};
diff --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir
index ee7edbe9010fd..34dacd58a51e5 100644
--- a/mlir/test/Dialect/Linalg/canonicalize.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize.mlir
@@ -627,6 +627,55 @@ func @pad_tensor_same_static_shape(%arg0: tensor<5x6xf32>, %a: index)
} : tensor<5x6xf32> to tensor<5x6xf32>
return %0 : tensor<5x6xf32>
}
+
+// -----
+// CHECK-LABEL: func @pad_tensor_after_cast_
diff ernt_shape(
+// CHECK-SAME: %[[INPUT:.*]]: tensor<?x64x?x?xf32>) -> tensor<?x?x?x?xf32> {
+// CHECK: %[[CST:.*]] = constant 0.000000e+00 : f32
+// CHECK: %[[PADDED:.*]] = linalg.pad_tensor %[[INPUT]]
+// CHECK-SAME: low[0, 0, 1, 1] high[0, 0, 1, 1] {
+// CHECK: ^bb0(%[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index):
+// CHECK: linalg.yield %[[CST]] : f32
+// CHECK: } : tensor<?x64x?x?xf32> to tensor<?x64x?x?xf32>
+// CHECK: %[[DYNAMIC:.*]] = tensor.cast %[[PADDED:.*]] :
+// CHECK-SAME: tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
+// CHECK: return %[[DYNAMIC]] : tensor<?x?x?x?xf32>
+// CHECK: }
+func @pad_tensor_after_cast_
diff ernt_shape(%arg0: tensor<?x64x?x?xf32>)
+ -> tensor<?x?x?x?xf32> {
+ %cst = constant 0.000000e+00 : f32
+ %dynamic = tensor.cast %arg0 : tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
+ %padded = linalg.pad_tensor %dynamic low[0, 0, 1, 1] high[0, 0, 1, 1] {
+ ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): // no predecessors
+ linalg.yield %cst: f32
+ } : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
+ return %padded: tensor<?x?x?x?xf32>
+}
+
+// -----
+// CHECK-LABEL: func @pad_tensor_after_cast_same_shape(
+// CHECK-SAME: %[[INPUT:.*]]: tensor<?x64x?x?xf32>,
+// CHECK-SAME: %[[PADDING:.*]]: index) -> tensor<?x?x?x?xf32> {
+// CHECK: %[[CST:.*]] = constant 0.000000e+00 : f32
+// CHECK: %[[PADDED:.*]] = linalg.pad_tensor %[[INPUT]]
+// CHECK-SAME: low[0, %[[PADDING]], 1, 1] high[0, %[[PADDING]], 1, 1] {
+// CHECK: ^bb0(%[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index):
+// CHECK: linalg.yield %[[CST]] : f32
+// CHECK: } : tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
+// CHECK: return %[[PADDED:.*]] : tensor<?x?x?x?xf32>
+// CHECK: }
+func @pad_tensor_after_cast_same_shape(%arg0: tensor<?x64x?x?xf32>, %padding : index)
+ -> tensor<?x?x?x?xf32> {
+ %cst = constant 0.000000e+00 : f32
+ %dynamic = tensor.cast %arg0 : tensor<?x64x?x?xf32> to tensor<?x?x?x?xf32>
+ %padded = linalg.pad_tensor %dynamic low[0, %padding, 1, 1] high[0, %padding, 1, 1] {
+ ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): // no predecessors
+ linalg.yield %cst: f32
+ } : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
+ return %padded: tensor<?x?x?x?xf32>
+}
+
+// -----
func @propogate_casts(%arg0 : tensor<?x?xf32>, %arg1 : f32, %arg2 : index,
%arg3 : index) -> tensor<?x?xf32> {
%c0 = constant 0 : index
More information about the Mlir-commits
mailing list