[Mlir-commits] [mlir] 313de31 - [mlir][tosa] Split tosa-to-linalg named ops out of pass
Rob Suderman
llvmlistbot at llvm.org
Thu Dec 23 12:24:54 PST 2021
Author: Rob Suderman
Date: 2021-12-23T12:23:19-08:00
New Revision: 313de31fbb757643db13bcb47f8fe515039e298a
URL: https://github.com/llvm/llvm-project/commit/313de31fbb757643db13bcb47f8fe515039e298a
DIFF: https://github.com/llvm/llvm-project/commit/313de31fbb757643db13bcb47f8fe515039e298a.diff
LOG: [mlir][tosa] Split tosa-to-linalg named ops out of pass
Linalg named ops lowering are moved to a separate pass. This allows TOSA
canonicalizers to run between named-ops lowerings and the general TOSA
lowerings. This allows the TOSA canonicalizers to run between lowerings.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D116057
Added:
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamedPass.cpp
mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
Modified:
mlir/include/mlir/Conversion/Passes.td
mlir/include/mlir/Conversion/TosaToLinalg/TosaToLinalg.h
mlir/lib/Conversion/TosaToLinalg/CMakeLists.txt
mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgPass.cpp
mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
Removed:
################################################################################
diff --git a/mlir/include/mlir/Conversion/Passes.td b/mlir/include/mlir/Conversion/Passes.td
index f6e49cc889d15..4d1f383c02294 100644
--- a/mlir/include/mlir/Conversion/Passes.td
+++ b/mlir/include/mlir/Conversion/Passes.td
@@ -645,6 +645,20 @@ def TosaToLinalg : FunctionPass<"tosa-to-linalg"> {
let constructor = "tosa::createTosaToLinalg()";
}
+//===----------------------------------------------------------------------===//
+// TosaToLinalgNamed
+//===----------------------------------------------------------------------===//
+
+def TosaToLinalgNamed : FunctionPass<"tosa-to-linalg-named"> {
+ let summary = "Lower TOSA to LinAlg named operations";
+ let description = [{
+ Pass that converts TOSA operations to the equivalent operations using the
+ Linalg named operations.
+ }];
+
+ let constructor = "tosa::createTosaToLinalgNamed()";
+}
+
//===----------------------------------------------------------------------===//
// TosaToSCF
//===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Conversion/TosaToLinalg/TosaToLinalg.h b/mlir/include/mlir/Conversion/TosaToLinalg/TosaToLinalg.h
index b542833fa0e99..ec44d01065a7a 100644
--- a/mlir/include/mlir/Conversion/TosaToLinalg/TosaToLinalg.h
+++ b/mlir/include/mlir/Conversion/TosaToLinalg/TosaToLinalg.h
@@ -20,6 +20,7 @@ namespace mlir {
namespace tosa {
std::unique_ptr<Pass> createTosaToLinalg();
+std::unique_ptr<Pass> createTosaToLinalgNamed();
/// Populates passes to convert from TOSA to Linalg on buffers. At the end of
/// the pass, the function will only contain linalg ops or standard ops if the
@@ -29,6 +30,9 @@ void addTosaToLinalgPasses(OpPassManager &pm);
/// Populates conversion passes from TOSA dialect to Linalg dialect.
void populateTosaToLinalgConversionPatterns(RewritePatternSet *patterns);
+/// Populates conversion passes from TOSA dialect to Linalg named operations.
+void populateTosaToLinalgNamedConversionPatterns(RewritePatternSet *patterns);
+
} // namespace tosa
} // namespace mlir
diff --git a/mlir/lib/Conversion/TosaToLinalg/CMakeLists.txt b/mlir/lib/Conversion/TosaToLinalg/CMakeLists.txt
index 5617dd3e0ce08..b98afb2aaadc0 100644
--- a/mlir/lib/Conversion/TosaToLinalg/CMakeLists.txt
+++ b/mlir/lib/Conversion/TosaToLinalg/CMakeLists.txt
@@ -1,5 +1,7 @@
add_mlir_conversion_library(MLIRTosaToLinalg
TosaToLinalg.cpp
+ TosaToLinalgNamed.cpp
+ TosaToLinalgNamedPass.cpp
TosaToLinalgPass.cpp
ADDITIONAL_HEADER_DIRS
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index abff8b57ccdc2..04262234ceaad 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -61,37 +61,6 @@ static mlir::SelectOp clampHelper(Location loc, Value arg,
return rewriter.create<mlir::SelectOp>(loc, largerThanMax, max, minOrArg);
}
-static mlir::Value applyPad(Location loc, Value input, ArrayRef<int64_t> pad,
- Attribute padAttr, OpBuilder &rewriter) {
- // Input should be padded if necessary.
- if (llvm::all_of(pad, [](int64_t p) { return p == 0; }))
- return input;
-
- ShapedType inputTy = input.getType().cast<ShapedType>();
- Type inputETy = inputTy.getElementType();
- auto inputShape = inputTy.getShape();
-
- assert((inputShape.size() * 2) == pad.size());
-
- SmallVector<int64_t, 4> paddedShape;
- SmallVector<OpFoldResult, 8> lowIndices;
- SmallVector<OpFoldResult, 8> highIndices;
- for (int i = 0, s = inputShape.size(); i < s; i++) {
- auto lowPad = pad[i * 2];
- auto highPad = pad[i * 2 + 1];
- paddedShape.push_back(inputShape[i] + highPad + lowPad);
- lowIndices.push_back(rewriter.getIndexAttr(lowPad));
- highIndices.push_back(rewriter.getIndexAttr(highPad));
- }
-
- Value padValue = rewriter.create<arith::ConstantOp>(loc, padAttr);
-
- return linalg::PadTensorOp::createPadScalarOp(
- RankedTensorType::get(paddedShape, inputETy), input, padValue,
- lowIndices, highIndices, /*nofold=*/false, loc, rewriter)
- .result();
-}
-
static SmallVector<Value> filterDynamicDims(SmallVector<Value> dynDims) {
SmallVector<Value> filteredDims;
for (auto dim : dynDims)
@@ -1065,510 +1034,6 @@ class PointwiseConverter : public OpRewritePattern<SrcOp> {
}
};
-class ConvConverter : public OpConversionPattern<tosa::Conv2DOp> {
-public:
- using OpConversionPattern<tosa::Conv2DOp>::OpConversionPattern;
- LogicalResult
- matchAndRewrite(tosa::Conv2DOp op, OpAdaptor adaptor,
- ConversionPatternRewriter &rewriter) const final {
- Location loc = op->getLoc();
- Value input = op->getOperand(0);
- Value weight = op->getOperand(1);
- Value bias = op->getOperand(2);
-
- ShapedType inputTy = input.getType().cast<ShapedType>();
- ShapedType weightTy = weight.getType().cast<ShapedType>();
- ShapedType biasTy = bias.getType().cast<ShapedType>();
- ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>();
-
- Type inputETy = inputTy.getElementType();
- Type resultETy = resultTy.getElementType();
-
- auto padAttr = op->getAttr("pad").cast<ArrayAttr>();
- auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>();
- auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>();
- bool isQuantized = op->hasAttr("quantization_info");
-
- if (!inputTy.hasStaticShape() || !weightTy.hasStaticShape() ||
- !biasTy.hasStaticShape() || !resultTy.hasStaticShape())
- return rewriter.notifyMatchFailure(op,
- "tosa.conv ops require static shapes");
-
- if (inputETy.isUnsignedInteger())
- return rewriter.notifyMatchFailure(
- op, "tosa.conv ops does not support unsigned integer input");
-
- auto weightShape = weightTy.getShape();
-
- // Apply padding as necessary.
- Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
- if (isQuantized) {
- auto quantizationInfo =
- op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
- auto iZp = quantizationInfo.input_zp().getValue().getSExtValue();
-
- int64_t intMin =
- APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
- int64_t intMax =
- APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
-
- if (iZp < intMin || iZp > intMax)
- return rewriter.notifyMatchFailure(
- op, "tosa.conv op quantization has zp outside of input range");
-
- zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
- }
-
- llvm::SmallVector<int64_t> pad;
- pad.resize(2, 0);
- getValuesFromIntArrayAttribute(padAttr, pad);
- pad.resize(pad.size() + 2, 0);
- input = applyPad(loc, input, pad, zeroAttr, rewriter);
-
- // Transpose the kernel to match dimension ordering of the linalg
- // convolution operation.
- // TODO(suderman): See if this can be efficiently folded - check whether
- // the input is used anywhere else, if not fold the constant.
- SmallVector<int64_t> weightPerm{1, 2, 3, 0};
- SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[2],
- weightShape[3], weightShape[0]};
- auto weightPermAttr = DenseIntElementsAttr::get(
- RankedTensorType::get({4}, rewriter.getI64Type()), weightPerm);
- Value weightPermValue =
- rewriter.create<arith::ConstantOp>(loc, weightPermAttr);
- Type newWeightTy =
- RankedTensorType::get(newWeightShape, weightTy.getElementType());
- weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight,
- weightPermValue);
-
- Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy);
- Value initTensor = rewriter.create<linalg::InitTensorOp>(
- loc, resultTy.getShape(), resultETy);
- Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
- Value zeroTensor =
- rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
-
- // Extract the attributes for convolution.
- llvm::SmallVector<int64_t> stride, dilation;
- getValuesFromIntArrayAttribute(strideTosaAttr, stride);
- getValuesFromIntArrayAttribute(dilationTosaAttr, dilation);
-
- // Create the convolution op.
- auto strideAttr = DenseIntElementsAttr::get(
- RankedTensorType::get({2}, rewriter.getI64Type()), stride);
- auto dilationAttr = DenseIntElementsAttr::get(
- RankedTensorType::get({2}, rewriter.getI64Type()), dilation);
-
- // Create maps for the bias broadcasting
- SmallVector<AffineMap, 4> indexingMaps;
- indexingMaps.push_back(AffineMap::get(
- /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0,
- {rewriter.getAffineDimExpr(3)}, rewriter.getContext()));
- indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
- indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
-
- Value biasInitTensor = rewriter.create<linalg::InitTensorOp>(
- loc, resultTy.getShape(), resultETy);
-
- if (isQuantized) {
- auto quantizationInfo =
- op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
- auto iZp = rewriter.getI32IntegerAttr(
- quantizationInfo.input_zp().getValue().getSExtValue());
- auto kZp = rewriter.getI32IntegerAttr(
- quantizationInfo.weight_zp().getValue().getSExtValue());
-
- auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
- auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
- Value conv =
- rewriter
- .create<linalg::Conv2DNhwcHwcfQOp>(
- loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal},
- ValueRange{zeroTensor}, strideAttr, dilationAttr)
- ->getResult(0);
-
- Value result =
- rewriter
- .create<linalg::GenericOp>(
- loc, resultTy, ValueRange({bias, conv}), biasInitTensor,
- indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()),
- [&](OpBuilder &nestedBuilder, Location nestedLoc,
- ValueRange args) {
- Value added = nestedBuilder.create<arith::AddIOp>(
- loc, args[0], args[1]);
- nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
- })
- .getResult(0);
- rewriter.replaceOp(op, result);
- return success();
- }
-
- Value conv = rewriter
- .create<linalg::Conv2DNhwcHwcfOp>(
- loc, resultTy, ValueRange{input, weight},
- ValueRange{zeroTensor}, strideAttr, dilationAttr)
- ->getResult(0);
-
- Value result =
- rewriter
- .create<linalg::GenericOp>(
- loc, resultTy, ValueRange({bias, conv}), biasInitTensor,
- indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()),
- [&](OpBuilder &nestedBuilder, Location nestedLoc,
- ValueRange args) {
- Value added = nestedBuilder.create<arith::AddFOp>(
- loc, args[0], args[1]);
- nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
- })
- .getResult(0);
-
- rewriter.replaceOp(op, result);
- return success();
- }
-};
-
-class DepthwiseConvConverter
- : public OpConversionPattern<tosa::DepthwiseConv2DOp> {
-public:
- using OpConversionPattern<tosa::DepthwiseConv2DOp>::OpConversionPattern;
- LogicalResult
- matchAndRewrite(tosa::DepthwiseConv2DOp op, OpAdaptor adaptor,
- ConversionPatternRewriter &rewriter) const final {
- Location loc = op->getLoc();
- Value input = op->getOperand(0);
- Value weight = op->getOperand(1);
- Value bias = op->getOperand(2);
-
- ShapedType inputTy = input.getType().cast<ShapedType>();
- ShapedType weightTy = weight.getType().cast<ShapedType>();
- ShapedType biasTy = bias.getType().cast<ShapedType>();
- ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>();
-
- Type inputETy = inputTy.getElementType();
- Type resultETy = resultTy.getElementType();
-
- auto padAttr = op->getAttr("pad").cast<ArrayAttr>();
- auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>();
- auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>();
-
- bool isQuantized = op->hasAttr("quantization_info");
- IntegerAttr iZp;
- IntegerAttr kZp;
- if (isQuantized) {
- auto quantizationInfo =
- op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
- iZp = rewriter.getI32IntegerAttr(
- quantizationInfo.input_zp().getValue().getSExtValue());
- kZp = rewriter.getI32IntegerAttr(
- quantizationInfo.weight_zp().getValue().getSExtValue());
- }
-
- if (!inputTy.hasStaticShape() || !weightTy.hasStaticShape() ||
- !biasTy.hasStaticShape() || !resultTy.hasStaticShape())
- return rewriter.notifyMatchFailure(op,
- "tosa.conv ops require static shapes");
-
- auto weightShape = weightTy.getShape();
- auto resultShape = resultTy.getShape();
-
- // Apply padding as necessary.
- Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
- if (isQuantized) {
- auto quantizationInfo =
- op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
- auto iZp = quantizationInfo.input_zp().getValue().getSExtValue();
-
- int64_t intMin =
- APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
- int64_t intMax =
- APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
-
- if (iZp < intMin || iZp > intMax)
- return rewriter.notifyMatchFailure(
- op, "tosa.depthwise_conv op quantization has zp outside of input "
- "range");
-
- zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
- }
-
- llvm::SmallVector<int64_t> pad;
- pad.resize(2, 0);
- getValuesFromIntArrayAttribute(padAttr, pad);
- pad.resize(pad.size() + 2, 0);
-
- input = applyPad(loc, input, pad, zeroAttr, rewriter);
-
- // Extract the attributes for convolution.
- llvm::SmallVector<int64_t> stride, dilation;
- getValuesFromIntArrayAttribute(strideTosaAttr, stride);
- getValuesFromIntArrayAttribute(dilationTosaAttr, dilation);
-
- // Create the convolution op.
- auto strideAttr = DenseIntElementsAttr::get(
- RankedTensorType::get({2}, rewriter.getI64Type()), stride);
- auto dilationAttr = DenseIntElementsAttr::get(
- RankedTensorType::get({2}, rewriter.getI64Type()), dilation);
- ShapedType linalgConvTy =
- RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2],
- weightShape[2], weightShape[3]},
- resultETy);
-
- // Broadcast the initial value to the output tensor before convolving.
- SmallVector<AffineMap, 4> indexingMaps;
- indexingMaps.push_back(AffineMap::get(
- /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0,
- {rewriter.getAffineDimExpr(3)}, rewriter.getContext()));
- indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
- indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
-
- Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy);
- Value initTensor = rewriter.create<linalg::InitTensorOp>(
- loc, linalgConvTy.getShape(), resultETy);
- Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
- Value zeroTensor =
- rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
-
- Value biasInitTensor = rewriter.create<linalg::InitTensorOp>(
- loc, resultTy.getShape(), resultETy);
- if (!isQuantized) {
- Value conv = rewriter
- .create<linalg::DepthwiseConv2DNhwcHwcmOp>(
- loc, linalgConvTy, ValueRange{input, weight},
- ValueRange{zeroTensor}, strideAttr, dilationAttr)
- .getResult(0);
- Value convReshape = rewriter.create<tosa::ReshapeOp>(loc, resultTy, conv);
- Value result =
- rewriter
- .create<linalg::GenericOp>(
- loc, resultTy, ValueRange({bias, convReshape}),
- biasInitTensor, indexingMaps,
- getNParallelLoopsAttrs(resultTy.getRank()),
- [&](OpBuilder &nestedBuilder, Location nestedLoc,
- ValueRange args) {
- Value added = nestedBuilder.create<arith::AddFOp>(
- loc, args[0], args[1]);
- nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
- })
- .getResult(0);
- rewriter.replaceOp(op, result);
- } else {
- auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
- auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
- Value conv =
- rewriter
- .create<linalg::DepthwiseConv2DNhwcHwcmQOp>(
- loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal},
- ValueRange{zeroTensor}, strideAttr, dilationAttr)
- .getResult(0);
- Value convReshape = rewriter.create<tosa::ReshapeOp>(loc, resultTy, conv);
- Value result =
- rewriter
- .create<linalg::GenericOp>(
- loc, resultTy, ValueRange({bias, convReshape}),
- biasInitTensor, indexingMaps,
- getNParallelLoopsAttrs(resultTy.getRank()),
- [&](OpBuilder &nestedBuilder, Location nestedLoc,
- ValueRange args) {
- Value added = nestedBuilder.create<arith::AddIOp>(
- loc, args[0], args[1]);
- nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
- })
- .getResult(0);
- rewriter.replaceOp(op, result);
- }
- return success();
- }
-};
-
-class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
-public:
- using OpConversionPattern<tosa::MatMulOp>::OpConversionPattern;
- LogicalResult
- matchAndRewrite(tosa::MatMulOp op, OpAdaptor adaptor,
- ConversionPatternRewriter &rewriter) const final {
- Location loc = op.getLoc();
-
- auto outputTy = op.getType().cast<ShapedType>();
- auto outputElementTy = outputTy.getElementType();
-
- auto firstOperandTy = op->getOperand(0).getType().cast<ShapedType>();
- auto secondOperandTy = op->getOperand(1).getType().cast<ShapedType>();
-
- SmallVector<Value> dynDims;
- dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank());
-
- if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(0)) {
- dynDims[0] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 0);
- }
-
- if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(1)) {
- dynDims[1] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 1);
- }
-
- if (!secondOperandTy.hasRank() || secondOperandTy.isDynamicDim(2)) {
- dynDims[2] = rewriter.create<tensor::DimOp>(loc, op->getOperand(1), 2);
- }
-
- SmallVector<Value> filteredDims = filterDynamicDims(dynDims);
-
- auto zeroAttr = rewriter.getZeroAttr(outputElementTy);
- Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr);
- auto initTensor = rewriter.create<linalg::InitTensorOp>(
- loc, filteredDims, outputTy.getShape(), outputTy.getElementType());
- Value zeroTensor =
- rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
- if (!op.quantization_info()) {
- rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
- op, TypeRange{op.getType()}, ValueRange{adaptor.a(), adaptor.b()},
- ValueRange{zeroTensor});
- return success();
- }
-
- auto quantizationInfo = op.quantization_info().getValue();
- auto aZp = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI32IntegerAttr(
- quantizationInfo.a_zp().getValue().getSExtValue()));
- auto bZp = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI32IntegerAttr(
- quantizationInfo.b_zp().getValue().getSExtValue()));
- rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
- op, TypeRange{op.getType()},
- ValueRange{adaptor.a(), adaptor.b(), aZp, bZp}, zeroTensor);
-
- return success();
- }
-};
-
-class FullyConnectedConverter
- : public OpConversionPattern<tosa::FullyConnectedOp> {
-public:
- using OpConversionPattern<tosa::FullyConnectedOp>::OpConversionPattern;
- LogicalResult
- matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor,
- ConversionPatternRewriter &rewriter) const final {
- Location loc = op.getLoc();
- auto outputTy = op.getType().cast<ShapedType>();
- auto input = op.input();
- auto inputTy = input.getType().cast<ShapedType>();
-
- auto bias = op.bias();
-
- auto weight = op.weight();
- auto weightTy = weight.getType().cast<ShapedType>();
- auto weightShape = weightTy.getShape();
-
- auto outputETy = outputTy.getElementType();
-
- SmallVector<Value> dynDims;
- dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank());
-
- if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) {
- dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0);
- }
-
- if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) {
- dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0);
- }
-
- SmallVector<Value> filteredDims = filterDynamicDims(dynDims);
-
- // Creating maps for the output of MatMul and the bias
- SmallVector<AffineMap, 4> indexingMaps;
-
- // Broadcast the bias.
- indexingMaps.push_back(AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0,
- {rewriter.getAffineDimExpr(1)},
- rewriter.getContext()));
-
- indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank()));
- indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank()));
-
- auto initTensor = rewriter.create<linalg::InitTensorOp>(
- loc, filteredDims, outputTy.getShape(), outputTy.getElementType());
-
- // When quantized, the input elemeny type is not the same as the output
- Attribute resultZeroAttr = rewriter.getZeroAttr(outputETy);
- Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
- Value zeroTensor =
- rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
-
- SmallVector<int64_t> permutation{1, 0};
- auto permutationAttr = DenseIntElementsAttr::get(
- RankedTensorType::get({2}, rewriter.getI64Type()), permutation);
- Value permutationValue =
- rewriter.create<arith::ConstantOp>(loc, permutationAttr);
-
- SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[0]};
- Type newWeightTy =
- RankedTensorType::get(newWeightShape, weightTy.getElementType());
-
- Value transposedWeight = rewriter.create<tosa::TransposeOp>(
- loc, newWeightTy, weight, permutationValue);
-
- auto biasInitTensor =
- rewriter
- .create<linalg::InitTensorOp>(loc, filteredDims,
- outputTy.getShape(), outputETy)
- ->getResults();
-
- if (!op.quantization_info()) {
- Value matmul = rewriter
- .create<linalg::MatmulOp>(
- loc, TypeRange{op.getType()},
- ValueRange{input, transposedWeight}, zeroTensor)
- ->getResult(0);
-
- Value result =
- rewriter
- .create<linalg::GenericOp>(
- loc, outputTy, ValueRange({bias, matmul}), biasInitTensor,
- indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()),
- [&](OpBuilder &nestedBuilder, Location nestedLoc,
- ValueRange args) {
- Value added = nestedBuilder.create<arith::AddFOp>(
- loc, args[0], args[1]);
- nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
- })
- .getResult(0);
- rewriter.replaceOp(op, result);
- return success();
- }
-
- auto quantizationInfo = op.quantization_info().getValue();
- auto inputZp = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI32IntegerAttr(
- quantizationInfo.input_zp().getValue().getSExtValue()));
- auto outputZp = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI32IntegerAttr(
- quantizationInfo.weight_zp().getValue().getSExtValue()));
- Value matmul =
- rewriter
- .create<linalg::QuantizedMatmulOp>(
- loc, TypeRange{op.getType()},
- ValueRange{input, transposedWeight, inputZp, outputZp},
- zeroTensor)
- ->getResult(0);
- Value result =
- rewriter
- .create<linalg::GenericOp>(
- loc, outputTy, ValueRange({bias, matmul}), biasInitTensor,
- indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()),
- [&](OpBuilder &nestedBuilder, Location nestedLoc,
- ValueRange args) {
- Value added = nestedBuilder.create<arith::AddIOp>(
- loc, args[0], args[1]);
- nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
- })
- .getResult(0);
- rewriter.replaceOp(op, result);
- return success();
- }
-};
-
class ReshapeConverterCollapse : public OpConversionPattern<tosa::ReshapeOp> {
public:
using OpConversionPattern<tosa::ReshapeOp>::OpConversionPattern;
@@ -2810,277 +2275,6 @@ class TableConverter : public OpRewritePattern<tosa::TableOp> {
}
};
-class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> {
-public:
- using OpRewritePattern<tosa::MaxPool2dOp>::OpRewritePattern;
-
- LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
- PatternRewriter &rewriter) const final {
- Location loc = op.getLoc();
- Value input = op.input();
- ShapedType inputTy = input.getType().cast<ShapedType>();
-
- ShapedType resultTy = op.getType().template cast<ShapedType>();
- Type resultETy = inputTy.getElementType();
-
- if (!inputTy.hasStaticShape())
- return failure();
-
- // Determine what the initial value needs to be for the max pool op.
- Attribute initialAttr;
- if (resultETy.isF32())
- initialAttr = rewriter.getFloatAttr(
- resultETy,
- APFloat::getLargest(resultETy.cast<FloatType>().getFloatSemantics(),
- true));
-
- if (resultETy.isa<IntegerType>())
- initialAttr = rewriter.getIntegerAttr(
- resultETy,
- APInt::getSignedMinValue(resultETy.getIntOrFloatBitWidth()));
-
- if (!initialAttr)
- return rewriter.notifyMatchFailure(
- op, "Unsupported initial value for tosa.maxpool_2d op");
-
- // Apply padding as necessary.
- llvm::SmallVector<int64_t> pad;
- pad.resize(2, 0);
- getValuesFromIntArrayAttribute(op.pad(), pad);
- pad.resize(pad.size() + 2, 0);
- Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter);
-
- Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
-
- SmallVector<int64_t> kernel, stride;
- getValuesFromIntArrayAttribute(op.kernel(), kernel);
- getValuesFromIntArrayAttribute(op.stride(), stride);
-
- Attribute strideAttr = rewriter.getI64VectorAttr(stride);
- Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
-
- // Create the linalg op that performs pooling.
- Value initTensor = rewriter.create<linalg::InitTensorOp>(
- loc, resultTy.getShape(), resultTy.getElementType());
-
- Value filledInitTensor =
- rewriter.create<linalg::FillOp>(loc, initialValue, initTensor).result();
-
- Value fakeWindowDims =
- rewriter.create<linalg::InitTensorOp>(loc, kernel, resultETy);
-
- rewriter.replaceOpWithNewOp<linalg::PoolingNhwcMaxOp>(
- op, ArrayRef<Type>{resultTy}, ValueRange{paddedInput, fakeWindowDims},
- filledInitTensor, strideAttr, dilationAttr);
- return success();
- }
-};
-
-class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
-public:
- using OpRewritePattern<tosa::AvgPool2dOp>::OpRewritePattern;
-
- LogicalResult matchAndRewrite(tosa::AvgPool2dOp op,
- PatternRewriter &rewriter) const final {
- Location loc = op.getLoc();
- Value input = op.input();
- ShapedType inputTy = input.getType().cast<ShapedType>();
- Type inElementTy = inputTy.getElementType();
-
- ShapedType resultTy = op.getType().template cast<ShapedType>();
- Type resultETy = op.getType().cast<ShapedType>().getElementType();
-
- Type accETy =
- inElementTy.isa<IntegerType>() ? rewriter.getI32Type() : inElementTy;
- ShapedType accTy = resultTy.clone(accETy);
-
- if (!inputTy.hasStaticShape())
- return failure();
-
- // Apply padding as necessary.
- llvm::SmallVector<int64_t> pad;
- pad.resize(2, 0);
- getValuesFromIntArrayAttribute(op.pad(), pad);
- pad.resize(pad.size() + 2, 0);
- Attribute padAttr = rewriter.getZeroAttr(inElementTy);
- Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter);
-
- Attribute initialAttr = rewriter.getZeroAttr(accETy);
- Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
-
- SmallVector<int64_t> kernel, stride;
- getValuesFromIntArrayAttribute(op.kernel(), kernel);
- getValuesFromIntArrayAttribute(op.stride(), stride);
-
- Attribute strideAttr = rewriter.getI64VectorAttr(stride);
- Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
-
- // Create the linalg op that performs pooling.
- Value poolInitTensor =
- rewriter.create<linalg::InitTensorOp>(loc, accTy.getShape(), accETy);
-
- Value filledInitTensor =
- rewriter.create<linalg::FillOp>(loc, initialValue, poolInitTensor)
- .result();
-
- Value fakeWindowDims =
- rewriter.create<linalg::InitTensorOp>(loc, kernel, accETy);
-
- // Sum across the pooled region.
- Value poolingOp = rewriter
- .create<linalg::PoolingNhwcSumOp>(
- loc, ArrayRef<Type>{accTy},
- ValueRange{paddedInput, fakeWindowDims},
- filledInitTensor, strideAttr, dilationAttr)
- .getResult(0);
-
- // Normalize the summed value by the number of elements grouped in each
- // pool.
- auto poolingOpTy = poolingOp.getType().cast<ShapedType>();
- auto affineMap = rewriter.getMultiDimIdentityMap(resultTy.getRank());
-
- Value genericInitTensor = rewriter.create<linalg::InitTensorOp>(
- loc, resultTy.getShape(), resultETy);
-
- auto genericOp = rewriter.create<linalg::GenericOp>(
- loc, ArrayRef<Type>({resultTy}), ValueRange{poolingOp},
- ValueRange{genericInitTensor},
- ArrayRef<AffineMap>({affineMap, affineMap}),
- getNParallelLoopsAttrs(resultTy.getRank()),
- [&](OpBuilder &b, Location loc, ValueRange args) {
- auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
- auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
- auto iH = rewriter.create<arith::ConstantIndexOp>(
- loc, poolingOpTy.getDimSize(1) - 1);
- auto iW = rewriter.create<arith::ConstantIndexOp>(
- loc, poolingOpTy.getDimSize(2) - 1);
-
- // Compute the indices from either end.
- auto y0 = rewriter.create<linalg::IndexOp>(loc, 1);
- auto x0 = rewriter.create<linalg::IndexOp>(loc, 2);
- auto y1 = rewriter.create<arith::SubIOp>(loc, iH, y0);
- auto x1 = rewriter.create<arith::SubIOp>(loc, iW, x0);
-
- // Determines what the portion of valid input is covered by the
- // kernel.
- auto padFn = [&](Value v, Value x, int64_t pad) -> Value {
- if (pad == 0)
- return v;
-
- auto padVal = rewriter.create<arith::ConstantIndexOp>(loc, pad);
- Value dx = rewriter.create<arith::SubIOp>(loc, x, padVal);
-
- Value cmp = rewriter.create<arith::CmpIOp>(
- loc, arith::CmpIPredicate::slt, dx, zero);
- Value offset = rewriter.create<mlir::SelectOp>(loc, cmp, dx, zero);
- return rewriter.create<arith::AddIOp>(loc, v, offset)->getResult(0);
- };
-
- // Compute the vertical component of coverage.
- auto kH0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[0]);
- auto kH1 = padFn(kH0, y0, pad[2]);
- auto kH2 = padFn(kH1, y1, pad[3]);
- auto kHCmp = rewriter.create<arith::CmpIOp>(
- loc, arith::CmpIPredicate::slt, kH2, one);
- auto kH3 = rewriter.create<SelectOp>(loc, kHCmp, one, kH2);
-
- // compute the horizontal component of coverage.
- auto kW0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[1]);
- auto kW1 = padFn(kW0, x0, pad[4]);
- auto kW2 = padFn(kW1, x1, pad[5]);
- auto kWCmp = rewriter.create<arith::CmpIOp>(
- loc, arith::CmpIPredicate::slt, kW2, one);
- auto kW3 = rewriter.create<SelectOp>(loc, kWCmp, one, kW2);
-
- // Compute the total number of elements and normalize.
- Value count = rewriter.create<arith::MulIOp>(loc, kH3, kW3);
- auto countI = rewriter.create<arith::IndexCastOp>(
- loc, rewriter.getI32Type(), count);
-
- // Divide by the number of summed values. For floats this is just
- // a div however for quantized values input normalization had
- // to be applied.
- Value poolVal = args[0];
- if (accETy.isa<FloatType>()) {
- auto countF = rewriter.create<arith::SIToFPOp>(loc, accETy, countI);
- poolVal = rewriter.create<arith::DivFOp>(loc, poolVal, countF)
- ->getResult(0);
- } else {
-
- // If we have quantization information we need to apply an offset
- // for the input zp value.
- if (op.quantization_info()) {
- auto quantizationInfo = op.quantization_info().getValue();
- auto inputZp = rewriter.create<arith::ConstantOp>(
- loc, quantizationInfo.input_zp());
- Value offset =
- rewriter.create<arith::MulIOp>(loc, accETy, countI, inputZp);
- poolVal =
- rewriter.create<arith::SubIOp>(loc, accETy, poolVal, offset);
- }
-
- // Compute the multiplier and shift values for the quantization
- // normalization. Preferably we would want to compute more bits
- // however 32-bits should be enough for compute. Honestly we
- // should probably straight divide.
- int64_t numerator = ((1 << 30) + 1);
- int64_t shift = 30;
-
- Value numeratorVal = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI32IntegerAttr(numerator));
- Value multiplierVal =
- rewriter
- .create<arith::DivUIOp>(loc, rewriter.getI32Type(),
- numeratorVal, countI)
- .getResult();
- Value shiftVal = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI8IntegerAttr(shift));
-
- auto scaled =
- rewriter
- .create<tosa::ApplyScaleOp>(
- loc, rewriter.getI32Type(), poolVal, multiplierVal,
- shiftVal, rewriter.getBoolAttr(false))
- .getResult();
-
- // If we have quantization information we need to apply output
- // zeropoint.
- if (op.quantization_info()) {
- auto quantizationInfo = op.quantization_info().getValue();
- auto outputZp = rewriter.create<arith::ConstantOp>(
- loc, quantizationInfo.output_zp());
- scaled = rewriter.create<arith::AddIOp>(loc, scaled, outputZp)
- .getResult();
- }
-
- // Apply Clip.
- int64_t outBitwidth = resultETy.getIntOrFloatBitWidth();
-
- auto min = rewriter.create<arith::ConstantIntOp>(
- loc, APInt::getSignedMinValue(outBitwidth).getSExtValue(),
- accETy);
- auto max = rewriter.create<arith::ConstantIntOp>(
- loc, APInt::getSignedMaxValue(outBitwidth).getSExtValue(),
- accETy);
- auto clamp = clampHelper<arith::CmpIOp>(
- loc, scaled, min, max, arith::CmpIPredicate::slt, rewriter);
-
- poolVal = clamp;
- // Convert type.
- if (resultETy != clamp.getType()) {
- poolVal =
- rewriter.create<arith::TruncIOp>(loc, resultETy, poolVal);
- }
- }
-
- rewriter.create<linalg::YieldOp>(loc, poolVal);
- });
-
- rewriter.replaceOp(op, genericOp.getResult(0));
- return success();
- }
-};
-
} // namespace
void mlir::tosa::populateTosaToLinalgConversionPatterns(
@@ -3132,8 +2326,6 @@ void mlir::tosa::populateTosaToLinalgConversionPatterns(
ReduceConverter<tosa::ReduceProdOp>,
ArgMaxConverter,
ConcatConverter,
- ConvConverter,
- DepthwiseConvConverter,
GatherConverter,
PadConverter,
ReshapeConverterCollapse,
@@ -3144,10 +2336,6 @@ void mlir::tosa::populateTosaToLinalgConversionPatterns(
ReverseConverter,
TableConverter,
TileConverter,
- TransposeConverter,
- MatMulConverter,
- MaxPool2dConverter,
- AvgPool2dConverter,
- FullyConnectedConverter>(patterns->getContext());
+ TransposeConverter>(patterns->getContext());
// clang-format on
}
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
new file mode 100644
index 0000000000000..90220ef44e974
--- /dev/null
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -0,0 +1,885 @@
+//===- TosaToLinalgNamed.cpp - Lowering Tosa to Linalg Named Ops ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// These rewriters lower from the Tosa to the Linalg named ops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h"
+#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Math/IR/Math.h"
+#include "mlir/Dialect/SCF/SCF.h"
+#include "mlir/Dialect/StandardOps/IR/Ops.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Tosa/IR/TosaOps.h"
+#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
+#include "mlir/IR/Matchers.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+
+#include <numeric>
+
+using namespace mlir;
+
+static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) {
+ return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName());
+}
+
+template <typename T>
+static void getValuesFromIntArrayAttribute(ArrayAttr attr,
+ SmallVector<T> &arrayValues) {
+ for (Attribute val : attr.getValue()) {
+ arrayValues.push_back(val.cast<IntegerAttr>().getValue().getSExtValue());
+ }
+}
+
+template <typename T, typename P>
+static mlir::SelectOp clampHelper(Location loc, Value arg,
+ arith::ConstantOp min, arith::ConstantOp max,
+ P pred, OpBuilder &rewriter) {
+ auto smallerThanMin = rewriter.create<T>(loc, pred, arg, min);
+ auto minOrArg =
+ rewriter.create<mlir::SelectOp>(loc, smallerThanMin, min, arg);
+ auto largerThanMax = rewriter.create<T>(loc, pred, max, arg);
+ return rewriter.create<mlir::SelectOp>(loc, largerThanMax, max, minOrArg);
+}
+
+static mlir::Value applyPad(Location loc, Value input, ArrayRef<int64_t> pad,
+ Attribute padAttr, OpBuilder &rewriter) {
+ // Input should be padded if necessary.
+ if (llvm::all_of(pad, [](int64_t p) { return p == 0; }))
+ return input;
+
+ ShapedType inputTy = input.getType().cast<ShapedType>();
+ Type inputETy = inputTy.getElementType();
+ auto inputShape = inputTy.getShape();
+
+ assert((inputShape.size() * 2) == pad.size());
+
+ SmallVector<int64_t, 4> paddedShape;
+ SmallVector<OpFoldResult, 8> lowIndices;
+ SmallVector<OpFoldResult, 8> highIndices;
+ for (int i = 0, s = inputShape.size(); i < s; i++) {
+ auto lowPad = pad[i * 2];
+ auto highPad = pad[i * 2 + 1];
+ paddedShape.push_back(inputShape[i] + highPad + lowPad);
+ lowIndices.push_back(rewriter.getIndexAttr(lowPad));
+ highIndices.push_back(rewriter.getIndexAttr(highPad));
+ }
+
+ Value padValue = rewriter.create<arith::ConstantOp>(loc, padAttr);
+
+ return linalg::PadTensorOp::createPadScalarOp(
+ RankedTensorType::get(paddedShape, inputETy), input, padValue,
+ lowIndices, highIndices, /*nofold=*/false, loc, rewriter)
+ .result();
+}
+
+static SmallVector<Value> filterDynamicDims(SmallVector<Value> dynDims) {
+ SmallVector<Value> filteredDims;
+ for (auto dim : dynDims)
+ if (dim)
+ filteredDims.push_back(dim);
+ return filteredDims;
+}
+
+namespace {
+
+class ConvConverter : public OpConversionPattern<tosa::Conv2DOp> {
+public:
+ using OpConversionPattern<tosa::Conv2DOp>::OpConversionPattern;
+ LogicalResult
+ matchAndRewrite(tosa::Conv2DOp op, OpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const final {
+ Location loc = op->getLoc();
+ Value input = op->getOperand(0);
+ Value weight = op->getOperand(1);
+ Value bias = op->getOperand(2);
+
+ ShapedType inputTy = input.getType().cast<ShapedType>();
+ ShapedType weightTy = weight.getType().cast<ShapedType>();
+ ShapedType biasTy = bias.getType().cast<ShapedType>();
+ ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>();
+
+ Type inputETy = inputTy.getElementType();
+ Type resultETy = resultTy.getElementType();
+
+ auto padAttr = op->getAttr("pad").cast<ArrayAttr>();
+ auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>();
+ auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>();
+ bool isQuantized = op->hasAttr("quantization_info");
+
+ if (!inputTy.hasStaticShape() || !weightTy.hasStaticShape() ||
+ !biasTy.hasStaticShape() || !resultTy.hasStaticShape())
+ return rewriter.notifyMatchFailure(op,
+ "tosa.conv ops require static shapes");
+
+ if (inputETy.isUnsignedInteger())
+ return rewriter.notifyMatchFailure(
+ op, "tosa.conv ops does not support unsigned integer input");
+
+ auto weightShape = weightTy.getShape();
+
+ // Apply padding as necessary.
+ Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
+ if (isQuantized) {
+ auto quantizationInfo =
+ op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
+ auto iZp = quantizationInfo.input_zp().getValue().getSExtValue();
+
+ int64_t intMin =
+ APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+ int64_t intMax =
+ APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+
+ if (iZp < intMin || iZp > intMax)
+ return rewriter.notifyMatchFailure(
+ op, "tosa.conv op quantization has zp outside of input range");
+
+ zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
+ }
+
+ llvm::SmallVector<int64_t> pad;
+ pad.resize(2, 0);
+ getValuesFromIntArrayAttribute(padAttr, pad);
+ pad.resize(pad.size() + 2, 0);
+ input = applyPad(loc, input, pad, zeroAttr, rewriter);
+
+ // Transpose the kernel to match dimension ordering of the linalg
+ // convolution operation.
+ // TODO(suderman): See if this can be efficiently folded - check whether
+ // the input is used anywhere else, if not fold the constant.
+ SmallVector<int64_t> weightPerm{1, 2, 3, 0};
+ SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[2],
+ weightShape[3], weightShape[0]};
+ auto weightPermAttr = DenseIntElementsAttr::get(
+ RankedTensorType::get({4}, rewriter.getI64Type()), weightPerm);
+ Value weightPermValue =
+ rewriter.create<arith::ConstantOp>(loc, weightPermAttr);
+ Type newWeightTy =
+ RankedTensorType::get(newWeightShape, weightTy.getElementType());
+ weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight,
+ weightPermValue);
+
+ Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy);
+ Value initTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, resultTy.getShape(), resultETy);
+ Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
+ Value zeroTensor =
+ rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
+
+ // Extract the attributes for convolution.
+ llvm::SmallVector<int64_t> stride, dilation;
+ getValuesFromIntArrayAttribute(strideTosaAttr, stride);
+ getValuesFromIntArrayAttribute(dilationTosaAttr, dilation);
+
+ // Create the convolution op.
+ auto strideAttr = DenseIntElementsAttr::get(
+ RankedTensorType::get({2}, rewriter.getI64Type()), stride);
+ auto dilationAttr = DenseIntElementsAttr::get(
+ RankedTensorType::get({2}, rewriter.getI64Type()), dilation);
+
+ // Create maps for the bias broadcasting
+ SmallVector<AffineMap, 4> indexingMaps;
+ indexingMaps.push_back(AffineMap::get(
+ /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0,
+ {rewriter.getAffineDimExpr(3)}, rewriter.getContext()));
+ indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
+ indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
+
+ Value biasInitTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, resultTy.getShape(), resultETy);
+
+ if (isQuantized) {
+ auto quantizationInfo =
+ op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
+ auto iZp = rewriter.getI32IntegerAttr(
+ quantizationInfo.input_zp().getValue().getSExtValue());
+ auto kZp = rewriter.getI32IntegerAttr(
+ quantizationInfo.weight_zp().getValue().getSExtValue());
+
+ auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
+ auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
+ Value conv =
+ rewriter
+ .create<linalg::Conv2DNhwcHwcfQOp>(
+ loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal},
+ ValueRange{zeroTensor}, strideAttr, dilationAttr)
+ ->getResult(0);
+
+ Value result =
+ rewriter
+ .create<linalg::GenericOp>(
+ loc, resultTy, ValueRange({bias, conv}), biasInitTensor,
+ indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()),
+ [&](OpBuilder &nestedBuilder, Location nestedLoc,
+ ValueRange args) {
+ Value added = nestedBuilder.create<arith::AddIOp>(
+ loc, args[0], args[1]);
+ nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
+ })
+ .getResult(0);
+ rewriter.replaceOp(op, result);
+ return success();
+ }
+
+ Value conv = rewriter
+ .create<linalg::Conv2DNhwcHwcfOp>(
+ loc, resultTy, ValueRange{input, weight},
+ ValueRange{zeroTensor}, strideAttr, dilationAttr)
+ ->getResult(0);
+
+ Value result =
+ rewriter
+ .create<linalg::GenericOp>(
+ loc, resultTy, ValueRange({bias, conv}), biasInitTensor,
+ indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()),
+ [&](OpBuilder &nestedBuilder, Location nestedLoc,
+ ValueRange args) {
+ Value added = nestedBuilder.create<arith::AddFOp>(
+ loc, args[0], args[1]);
+ nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
+ })
+ .getResult(0);
+
+ rewriter.replaceOp(op, result);
+ return success();
+ }
+};
+
+class DepthwiseConvConverter
+ : public OpConversionPattern<tosa::DepthwiseConv2DOp> {
+public:
+ using OpConversionPattern<tosa::DepthwiseConv2DOp>::OpConversionPattern;
+ LogicalResult
+ matchAndRewrite(tosa::DepthwiseConv2DOp op, OpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const final {
+ Location loc = op->getLoc();
+ Value input = op->getOperand(0);
+ Value weight = op->getOperand(1);
+ Value bias = op->getOperand(2);
+
+ ShapedType inputTy = input.getType().cast<ShapedType>();
+ ShapedType weightTy = weight.getType().cast<ShapedType>();
+ ShapedType biasTy = bias.getType().cast<ShapedType>();
+ ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>();
+
+ Type inputETy = inputTy.getElementType();
+ Type resultETy = resultTy.getElementType();
+
+ auto padAttr = op->getAttr("pad").cast<ArrayAttr>();
+ auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>();
+ auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>();
+
+ bool isQuantized = op->hasAttr("quantization_info");
+ IntegerAttr iZp;
+ IntegerAttr kZp;
+ if (isQuantized) {
+ auto quantizationInfo =
+ op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
+ iZp = rewriter.getI32IntegerAttr(
+ quantizationInfo.input_zp().getValue().getSExtValue());
+ kZp = rewriter.getI32IntegerAttr(
+ quantizationInfo.weight_zp().getValue().getSExtValue());
+ }
+
+ if (!inputTy.hasStaticShape() || !weightTy.hasStaticShape() ||
+ !biasTy.hasStaticShape() || !resultTy.hasStaticShape())
+ return rewriter.notifyMatchFailure(op,
+ "tosa.conv ops require static shapes");
+
+ auto weightShape = weightTy.getShape();
+ auto resultShape = resultTy.getShape();
+
+ // Apply padding as necessary.
+ Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
+ if (isQuantized) {
+ auto quantizationInfo =
+ op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
+ auto iZp = quantizationInfo.input_zp().getValue().getSExtValue();
+
+ int64_t intMin =
+ APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+ int64_t intMax =
+ APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+
+ if (iZp < intMin || iZp > intMax)
+ return rewriter.notifyMatchFailure(
+ op, "tosa.depthwise_conv op quantization has zp outside of input "
+ "range");
+
+ zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
+ }
+
+ llvm::SmallVector<int64_t> pad;
+ pad.resize(2, 0);
+ getValuesFromIntArrayAttribute(padAttr, pad);
+ pad.resize(pad.size() + 2, 0);
+
+ input = applyPad(loc, input, pad, zeroAttr, rewriter);
+
+ // Extract the attributes for convolution.
+ llvm::SmallVector<int64_t> stride, dilation;
+ getValuesFromIntArrayAttribute(strideTosaAttr, stride);
+ getValuesFromIntArrayAttribute(dilationTosaAttr, dilation);
+
+ // Create the convolution op.
+ auto strideAttr = DenseIntElementsAttr::get(
+ RankedTensorType::get({2}, rewriter.getI64Type()), stride);
+ auto dilationAttr = DenseIntElementsAttr::get(
+ RankedTensorType::get({2}, rewriter.getI64Type()), dilation);
+ ShapedType linalgConvTy =
+ RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2],
+ weightShape[2], weightShape[3]},
+ resultETy);
+
+ // Broadcast the initial value to the output tensor before convolving.
+ SmallVector<AffineMap, 4> indexingMaps;
+ indexingMaps.push_back(AffineMap::get(
+ /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0,
+ {rewriter.getAffineDimExpr(3)}, rewriter.getContext()));
+ indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
+ indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
+
+ Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy);
+ Value initTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, linalgConvTy.getShape(), resultETy);
+ Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
+ Value zeroTensor =
+ rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
+
+ Value biasInitTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, resultTy.getShape(), resultETy);
+ if (!isQuantized) {
+ Value conv = rewriter
+ .create<linalg::DepthwiseConv2DNhwcHwcmOp>(
+ loc, linalgConvTy, ValueRange{input, weight},
+ ValueRange{zeroTensor}, strideAttr, dilationAttr)
+ .getResult(0);
+ Value convReshape = rewriter.create<tosa::ReshapeOp>(
+ loc, resultTy, conv, rewriter.getI64ArrayAttr(resultTy.getShape()));
+ Value result =
+ rewriter
+ .create<linalg::GenericOp>(
+ loc, resultTy, ValueRange({bias, convReshape}),
+ biasInitTensor, indexingMaps,
+ getNParallelLoopsAttrs(resultTy.getRank()),
+ [&](OpBuilder &nestedBuilder, Location nestedLoc,
+ ValueRange args) {
+ Value added = nestedBuilder.create<arith::AddFOp>(
+ loc, args[0], args[1]);
+ nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
+ })
+ .getResult(0);
+ rewriter.replaceOp(op, result);
+ } else {
+ auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
+ auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
+ Value conv =
+ rewriter
+ .create<linalg::DepthwiseConv2DNhwcHwcmQOp>(
+ loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal},
+ ValueRange{zeroTensor}, strideAttr, dilationAttr)
+ .getResult(0);
+ Value convReshape = rewriter.create<tosa::ReshapeOp>(
+ loc, resultTy, conv, rewriter.getI64ArrayAttr(resultTy.getShape()));
+ Value result =
+ rewriter
+ .create<linalg::GenericOp>(
+ loc, resultTy, ValueRange({bias, convReshape}),
+ biasInitTensor, indexingMaps,
+ getNParallelLoopsAttrs(resultTy.getRank()),
+ [&](OpBuilder &nestedBuilder, Location nestedLoc,
+ ValueRange args) {
+ Value added = nestedBuilder.create<arith::AddIOp>(
+ loc, args[0], args[1]);
+ nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
+ })
+ .getResult(0);
+ rewriter.replaceOp(op, result);
+ }
+ return success();
+ }
+};
+
+class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
+public:
+ using OpConversionPattern<tosa::MatMulOp>::OpConversionPattern;
+ LogicalResult
+ matchAndRewrite(tosa::MatMulOp op, OpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const final {
+ Location loc = op.getLoc();
+
+ auto outputTy = op.getType().cast<ShapedType>();
+ auto outputElementTy = outputTy.getElementType();
+
+ auto firstOperandTy = op->getOperand(0).getType().cast<ShapedType>();
+ auto secondOperandTy = op->getOperand(1).getType().cast<ShapedType>();
+
+ SmallVector<Value> dynDims;
+ dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank());
+
+ if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(0)) {
+ dynDims[0] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 0);
+ }
+
+ if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(1)) {
+ dynDims[1] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 1);
+ }
+
+ if (!secondOperandTy.hasRank() || secondOperandTy.isDynamicDim(2)) {
+ dynDims[2] = rewriter.create<tensor::DimOp>(loc, op->getOperand(1), 2);
+ }
+
+ SmallVector<Value> filteredDims = filterDynamicDims(dynDims);
+
+ auto zeroAttr = rewriter.getZeroAttr(outputElementTy);
+ Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr);
+ auto initTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, filteredDims, outputTy.getShape(), outputTy.getElementType());
+ Value zeroTensor =
+ rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
+ if (!op.quantization_info()) {
+ rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
+ op, TypeRange{op.getType()}, ValueRange{adaptor.a(), adaptor.b()},
+ ValueRange{zeroTensor});
+ return success();
+ }
+
+ auto quantizationInfo = op.quantization_info().getValue();
+ auto aZp = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getI32IntegerAttr(
+ quantizationInfo.a_zp().getValue().getSExtValue()));
+ auto bZp = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getI32IntegerAttr(
+ quantizationInfo.b_zp().getValue().getSExtValue()));
+ rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
+ op, TypeRange{op.getType()},
+ ValueRange{adaptor.a(), adaptor.b(), aZp, bZp}, zeroTensor);
+
+ return success();
+ }
+};
+
+class FullyConnectedConverter
+ : public OpConversionPattern<tosa::FullyConnectedOp> {
+public:
+ using OpConversionPattern<tosa::FullyConnectedOp>::OpConversionPattern;
+ LogicalResult
+ matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const final {
+ Location loc = op.getLoc();
+ auto outputTy = op.getType().cast<ShapedType>();
+ auto input = op.input();
+ auto inputTy = input.getType().cast<ShapedType>();
+
+ auto bias = op.bias();
+
+ auto weight = op.weight();
+ auto weightTy = weight.getType().cast<ShapedType>();
+ auto weightShape = weightTy.getShape();
+
+ auto outputETy = outputTy.getElementType();
+
+ SmallVector<Value> dynDims;
+ dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank());
+
+ if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) {
+ dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0);
+ }
+
+ if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) {
+ dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0);
+ }
+
+ SmallVector<Value> filteredDims = filterDynamicDims(dynDims);
+
+ // Creating maps for the output of MatMul and the bias
+ SmallVector<AffineMap, 4> indexingMaps;
+
+ // Broadcast the bias.
+ indexingMaps.push_back(AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0,
+ {rewriter.getAffineDimExpr(1)},
+ rewriter.getContext()));
+
+ indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank()));
+ indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank()));
+
+ auto initTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, filteredDims, outputTy.getShape(), outputTy.getElementType());
+
+ // When quantized, the input elemeny type is not the same as the output
+ Attribute resultZeroAttr = rewriter.getZeroAttr(outputETy);
+ Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
+ Value zeroTensor =
+ rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0);
+
+ SmallVector<int64_t> permutation{1, 0};
+ auto permutationAttr = DenseIntElementsAttr::get(
+ RankedTensorType::get({2}, rewriter.getI64Type()), permutation);
+ Value permutationValue =
+ rewriter.create<arith::ConstantOp>(loc, permutationAttr);
+
+ SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[0]};
+ Type newWeightTy =
+ RankedTensorType::get(newWeightShape, weightTy.getElementType());
+
+ Value transposedWeight = rewriter.create<tosa::TransposeOp>(
+ loc, newWeightTy, weight, permutationValue);
+
+ auto biasInitTensor =
+ rewriter
+ .create<linalg::InitTensorOp>(loc, filteredDims,
+ outputTy.getShape(), outputETy)
+ ->getResults();
+
+ if (!op.quantization_info()) {
+ Value matmul = rewriter
+ .create<linalg::MatmulOp>(
+ loc, TypeRange{op.getType()},
+ ValueRange{input, transposedWeight}, zeroTensor)
+ ->getResult(0);
+
+ Value result =
+ rewriter
+ .create<linalg::GenericOp>(
+ loc, outputTy, ValueRange({bias, matmul}), biasInitTensor,
+ indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()),
+ [&](OpBuilder &nestedBuilder, Location nestedLoc,
+ ValueRange args) {
+ Value added = nestedBuilder.create<arith::AddFOp>(
+ loc, args[0], args[1]);
+ nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
+ })
+ .getResult(0);
+ rewriter.replaceOp(op, result);
+ return success();
+ }
+
+ auto quantizationInfo = op.quantization_info().getValue();
+ auto inputZp = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getI32IntegerAttr(
+ quantizationInfo.input_zp().getValue().getSExtValue()));
+ auto outputZp = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getI32IntegerAttr(
+ quantizationInfo.weight_zp().getValue().getSExtValue()));
+ Value matmul =
+ rewriter
+ .create<linalg::QuantizedMatmulOp>(
+ loc, TypeRange{op.getType()},
+ ValueRange{input, transposedWeight, inputZp, outputZp},
+ zeroTensor)
+ ->getResult(0);
+ Value result =
+ rewriter
+ .create<linalg::GenericOp>(
+ loc, outputTy, ValueRange({bias, matmul}), biasInitTensor,
+ indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()),
+ [&](OpBuilder &nestedBuilder, Location nestedLoc,
+ ValueRange args) {
+ Value added = nestedBuilder.create<arith::AddIOp>(
+ loc, args[0], args[1]);
+ nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
+ })
+ .getResult(0);
+ rewriter.replaceOp(op, result);
+ return success();
+ }
+};
+
+class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> {
+public:
+ using OpRewritePattern<tosa::MaxPool2dOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
+ PatternRewriter &rewriter) const final {
+ Location loc = op.getLoc();
+ Value input = op.input();
+ ShapedType inputTy = input.getType().cast<ShapedType>();
+
+ ShapedType resultTy = op.getType().template cast<ShapedType>();
+ Type resultETy = inputTy.getElementType();
+
+ if (!inputTy.hasStaticShape())
+ return failure();
+
+ // Determine what the initial value needs to be for the max pool op.
+ Attribute initialAttr;
+ if (resultETy.isF32())
+ initialAttr = rewriter.getFloatAttr(
+ resultETy,
+ APFloat::getLargest(resultETy.cast<FloatType>().getFloatSemantics(),
+ true));
+
+ if (resultETy.isa<IntegerType>())
+ initialAttr = rewriter.getIntegerAttr(
+ resultETy,
+ APInt::getSignedMinValue(resultETy.getIntOrFloatBitWidth()));
+
+ if (!initialAttr)
+ return rewriter.notifyMatchFailure(
+ op, "Unsupported initial value for tosa.maxpool_2d op");
+
+ // Apply padding as necessary.
+ llvm::SmallVector<int64_t> pad;
+ pad.resize(2, 0);
+ getValuesFromIntArrayAttribute(op.pad(), pad);
+ pad.resize(pad.size() + 2, 0);
+ Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter);
+
+ Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
+
+ SmallVector<int64_t> kernel, stride;
+ getValuesFromIntArrayAttribute(op.kernel(), kernel);
+ getValuesFromIntArrayAttribute(op.stride(), stride);
+
+ Attribute strideAttr = rewriter.getI64VectorAttr(stride);
+ Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
+
+ // Create the linalg op that performs pooling.
+ Value initTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, resultTy.getShape(), resultTy.getElementType());
+
+ Value filledInitTensor =
+ rewriter.create<linalg::FillOp>(loc, initialValue, initTensor).result();
+
+ Value fakeWindowDims =
+ rewriter.create<linalg::InitTensorOp>(loc, kernel, resultETy);
+
+ rewriter.replaceOpWithNewOp<linalg::PoolingNhwcMaxOp>(
+ op, ArrayRef<Type>{resultTy}, ValueRange{paddedInput, fakeWindowDims},
+ filledInitTensor, strideAttr, dilationAttr);
+ return success();
+ }
+};
+
+class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
+public:
+ using OpRewritePattern<tosa::AvgPool2dOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(tosa::AvgPool2dOp op,
+ PatternRewriter &rewriter) const final {
+ Location loc = op.getLoc();
+ Value input = op.input();
+ ShapedType inputTy = input.getType().cast<ShapedType>();
+ Type inElementTy = inputTy.getElementType();
+
+ ShapedType resultTy = op.getType().template cast<ShapedType>();
+ Type resultETy = op.getType().cast<ShapedType>().getElementType();
+
+ Type accETy =
+ inElementTy.isa<IntegerType>() ? rewriter.getI32Type() : inElementTy;
+ ShapedType accTy = resultTy.clone(accETy);
+
+ if (!inputTy.hasStaticShape())
+ return failure();
+
+ // Apply padding as necessary.
+ llvm::SmallVector<int64_t> pad;
+ pad.resize(2, 0);
+ getValuesFromIntArrayAttribute(op.pad(), pad);
+ pad.resize(pad.size() + 2, 0);
+ Attribute padAttr = rewriter.getZeroAttr(inElementTy);
+ Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter);
+
+ Attribute initialAttr = rewriter.getZeroAttr(accETy);
+ Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
+
+ SmallVector<int64_t> kernel, stride;
+ getValuesFromIntArrayAttribute(op.kernel(), kernel);
+ getValuesFromIntArrayAttribute(op.stride(), stride);
+
+ Attribute strideAttr = rewriter.getI64VectorAttr(stride);
+ Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
+
+ // Create the linalg op that performs pooling.
+ Value poolInitTensor =
+ rewriter.create<linalg::InitTensorOp>(loc, accTy.getShape(), accETy);
+
+ Value filledInitTensor =
+ rewriter.create<linalg::FillOp>(loc, initialValue, poolInitTensor)
+ .result();
+
+ Value fakeWindowDims =
+ rewriter.create<linalg::InitTensorOp>(loc, kernel, accETy);
+
+ // Sum across the pooled region.
+ Value poolingOp = rewriter
+ .create<linalg::PoolingNhwcSumOp>(
+ loc, ArrayRef<Type>{accTy},
+ ValueRange{paddedInput, fakeWindowDims},
+ filledInitTensor, strideAttr, dilationAttr)
+ .getResult(0);
+
+ // Normalize the summed value by the number of elements grouped in each
+ // pool.
+ auto poolingOpTy = poolingOp.getType().cast<ShapedType>();
+ auto affineMap = rewriter.getMultiDimIdentityMap(resultTy.getRank());
+
+ Value genericInitTensor = rewriter.create<linalg::InitTensorOp>(
+ loc, resultTy.getShape(), resultETy);
+
+ auto genericOp = rewriter.create<linalg::GenericOp>(
+ loc, ArrayRef<Type>({resultTy}), ValueRange{poolingOp},
+ ValueRange{genericInitTensor},
+ ArrayRef<AffineMap>({affineMap, affineMap}),
+ getNParallelLoopsAttrs(resultTy.getRank()),
+ [&](OpBuilder &b, Location loc, ValueRange args) {
+ auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
+ auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
+ auto iH = rewriter.create<arith::ConstantIndexOp>(
+ loc, poolingOpTy.getDimSize(1) - 1);
+ auto iW = rewriter.create<arith::ConstantIndexOp>(
+ loc, poolingOpTy.getDimSize(2) - 1);
+
+ // Compute the indices from either end.
+ auto y0 = rewriter.create<linalg::IndexOp>(loc, 1);
+ auto x0 = rewriter.create<linalg::IndexOp>(loc, 2);
+ auto y1 = rewriter.create<arith::SubIOp>(loc, iH, y0);
+ auto x1 = rewriter.create<arith::SubIOp>(loc, iW, x0);
+
+ // Determines what the portion of valid input is covered by the
+ // kernel.
+ auto padFn = [&](Value v, Value x, int64_t pad) -> Value {
+ if (pad == 0)
+ return v;
+
+ auto padVal = rewriter.create<arith::ConstantIndexOp>(loc, pad);
+ Value dx = rewriter.create<arith::SubIOp>(loc, x, padVal);
+
+ Value cmp = rewriter.create<arith::CmpIOp>(
+ loc, arith::CmpIPredicate::slt, dx, zero);
+ Value offset = rewriter.create<mlir::SelectOp>(loc, cmp, dx, zero);
+ return rewriter.create<arith::AddIOp>(loc, v, offset)->getResult(0);
+ };
+
+ // Compute the vertical component of coverage.
+ auto kH0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[0]);
+ auto kH1 = padFn(kH0, y0, pad[2]);
+ auto kH2 = padFn(kH1, y1, pad[3]);
+ auto kHCmp = rewriter.create<arith::CmpIOp>(
+ loc, arith::CmpIPredicate::slt, kH2, one);
+ auto kH3 = rewriter.create<SelectOp>(loc, kHCmp, one, kH2);
+
+ // compute the horizontal component of coverage.
+ auto kW0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[1]);
+ auto kW1 = padFn(kW0, x0, pad[4]);
+ auto kW2 = padFn(kW1, x1, pad[5]);
+ auto kWCmp = rewriter.create<arith::CmpIOp>(
+ loc, arith::CmpIPredicate::slt, kW2, one);
+ auto kW3 = rewriter.create<SelectOp>(loc, kWCmp, one, kW2);
+
+ // Compute the total number of elements and normalize.
+ Value count = rewriter.create<arith::MulIOp>(loc, kH3, kW3);
+ auto countI = rewriter.create<arith::IndexCastOp>(
+ loc, rewriter.getI32Type(), count);
+
+ // Divide by the number of summed values. For floats this is just
+ // a div however for quantized values input normalization had
+ // to be applied.
+ Value poolVal = args[0];
+ if (accETy.isa<FloatType>()) {
+ auto countF = rewriter.create<arith::SIToFPOp>(loc, accETy, countI);
+ poolVal = rewriter.create<arith::DivFOp>(loc, poolVal, countF)
+ ->getResult(0);
+ } else {
+
+ // If we have quantization information we need to apply an offset
+ // for the input zp value.
+ if (op.quantization_info()) {
+ auto quantizationInfo = op.quantization_info().getValue();
+ auto inputZp = rewriter.create<arith::ConstantOp>(
+ loc, quantizationInfo.input_zp());
+ Value offset =
+ rewriter.create<arith::MulIOp>(loc, accETy, countI, inputZp);
+ poolVal =
+ rewriter.create<arith::SubIOp>(loc, accETy, poolVal, offset);
+ }
+
+ // Compute the multiplier and shift values for the quantization
+ // normalization. Preferably we would want to compute more bits
+ // however 32-bits should be enough for compute. Honestly we
+ // should probably straight divide.
+ int64_t numerator = ((1 << 30) + 1);
+ int64_t shift = 30;
+
+ Value numeratorVal = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getI32IntegerAttr(numerator));
+ Value multiplierVal =
+ rewriter
+ .create<arith::DivUIOp>(loc, rewriter.getI32Type(),
+ numeratorVal, countI)
+ .getResult();
+ Value shiftVal = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getI8IntegerAttr(shift));
+
+ auto scaled =
+ rewriter
+ .create<tosa::ApplyScaleOp>(
+ loc, rewriter.getI32Type(), poolVal, multiplierVal,
+ shiftVal, rewriter.getBoolAttr(false))
+ .getResult();
+
+ // If we have quantization information we need to apply output
+ // zeropoint.
+ if (op.quantization_info()) {
+ auto quantizationInfo = op.quantization_info().getValue();
+ auto outputZp = rewriter.create<arith::ConstantOp>(
+ loc, quantizationInfo.output_zp());
+ scaled = rewriter.create<arith::AddIOp>(loc, scaled, outputZp)
+ .getResult();
+ }
+
+ // Apply Clip.
+ int64_t outBitwidth = resultETy.getIntOrFloatBitWidth();
+
+ auto min = rewriter.create<arith::ConstantIntOp>(
+ loc, APInt::getSignedMinValue(outBitwidth).getSExtValue(),
+ accETy);
+ auto max = rewriter.create<arith::ConstantIntOp>(
+ loc, APInt::getSignedMaxValue(outBitwidth).getSExtValue(),
+ accETy);
+ auto clamp = clampHelper<arith::CmpIOp>(
+ loc, scaled, min, max, arith::CmpIPredicate::slt, rewriter);
+
+ poolVal = clamp;
+ // Convert type.
+ if (resultETy != clamp.getType()) {
+ poolVal =
+ rewriter.create<arith::TruncIOp>(loc, resultETy, poolVal);
+ }
+ }
+
+ rewriter.create<linalg::YieldOp>(loc, poolVal);
+ });
+
+ rewriter.replaceOp(op, genericOp.getResult(0));
+ return success();
+ }
+};
+
+} // namespace
+
+void mlir::tosa::populateTosaToLinalgNamedConversionPatterns(
+ RewritePatternSet *patterns) {
+ patterns->add<
+ // clang-format off
+ ConvConverter,
+ DepthwiseConvConverter,
+ MatMulConverter,
+ MaxPool2dConverter,
+ AvgPool2dConverter,
+ FullyConnectedConverter>(patterns->getContext());
+ // clang-format on
+}
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamedPass.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamedPass.cpp
new file mode 100644
index 0000000000000..f5f6ac1a5469c
--- /dev/null
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamedPass.cpp
@@ -0,0 +1,68 @@
+//===- TosaToLinalgPass.cpp - Lowering Tosa to Linalg Dialect -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation pass legalizes Tosa operations to the Linalg dialect.
+//
+//===----------------------------------------------------------------------===//
+
+#include "../PassDetail.h"
+#include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h"
+#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Math/IR/Math.h"
+#include "mlir/Dialect/SCF/SCF.h"
+#include "mlir/Dialect/StandardOps/IR/Ops.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Tosa/IR/TosaOps.h"
+#include "mlir/Dialect/Tosa/Transforms/PassDetail.h"
+#include "mlir/Dialect/Tosa/Transforms/Passes.h"
+#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/Pass/PassManager.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+
+using namespace mlir;
+
+namespace {
+struct TosaToLinalgNamed : public TosaToLinalgNamedBase<TosaToLinalgNamed> {
+public:
+ void getDependentDialects(DialectRegistry ®istry) const override {
+ registry.insert<arith::ArithmeticDialect, linalg::LinalgDialect,
+ math::MathDialect, StandardOpsDialect,
+ tensor::TensorDialect, scf::SCFDialect>();
+ }
+
+ void runOnFunction() override {
+ RewritePatternSet patterns(&getContext());
+ ConversionTarget target(getContext());
+ target.addLegalDialect<linalg::LinalgDialect, StandardOpsDialect,
+ tosa::TosaDialect, tensor::TensorDialect,
+ scf::SCFDialect>();
+
+ // Not every TOSA op can be legalized to linalg.
+ target.addIllegalOp<tosa::Conv2DOp>();
+ target.addIllegalOp<tosa::DepthwiseConv2DOp>();
+ target.addIllegalOp<tosa::MaxPool2dOp>();
+ target.addIllegalOp<tosa::AvgPool2dOp>();
+ target.addIllegalOp<tosa::MatMulOp>();
+ target.addIllegalOp<tosa::FullyConnectedOp>();
+
+ target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
+
+ FuncOp func = getFunction();
+ mlir::tosa::populateTosaToLinalgNamedConversionPatterns(&patterns);
+ if (failed(applyFullConversion(func, target, std::move(patterns))))
+ signalPassFailure();
+ }
+};
+} // namespace
+
+std::unique_ptr<Pass> mlir::tosa::createTosaToLinalgNamed() {
+ return std::make_unique<TosaToLinalgNamed>();
+}
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgPass.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgPass.cpp
index 8f4f872c88606..3813ba3451374 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgPass.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgPass.cpp
@@ -26,6 +26,7 @@
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "mlir/Transforms/Passes.h"
using namespace mlir;
@@ -67,6 +68,9 @@ std::unique_ptr<Pass> mlir::tosa::createTosaToLinalg() {
}
void mlir::tosa::addTosaToLinalgPasses(OpPassManager &pm) {
+ pm.addNestedPass<FuncOp>(createTosaMakeBroadcastablePass());
+ pm.addNestedPass<FuncOp>(createTosaToLinalgNamed());
+ pm.addNestedPass<FuncOp>(mlir::createCanonicalizerPass());
pm.addNestedPass<FuncOp>(createTosaMakeBroadcastablePass());
pm.addNestedPass<FuncOp>(createTosaToLinalg());
}
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
new file mode 100644
index 0000000000000..f5814883cc49c
--- /dev/null
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -0,0 +1,448 @@
+// RUN: mlir-opt --split-input-file --tosa-to-linalg-named %s -verify-diagnostics -o -| FileCheck %s
+
+// CHECK-LABEL: @matmul
+func @matmul(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x3x6xf32>) -> (tensor<1x5x6xf32>) {
+ // CHECK: [[C0:%.+]] = arith.constant 0
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 6]
+ // CHECK: [[FILLED:%.+]] = linalg.fill([[C0]], [[INIT]]) : f32, tensor<1x5x6xf32> -> tensor<1x5x6xf32>
+ // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x6xf32>) outs([[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
+ %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<1x5x3xf32>, tensor<1x3x6xf32>) -> (tensor<1x5x6xf32>)
+ return %0 : tensor<1x5x6xf32>
+}
+
+// -----
+
+
+// CHECK-LABEL: @matmul_quantized
+func @matmul_quantized(%arg0: tensor<1x5x3xi8>, %arg1: tensor<1x3x6xi8>) -> (tensor<1x5x6xi32>) {
+ // CHECK: [[C0:%.+]] = arith.constant 0
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 6]
+ // CHECK: [[FILLED:%.+]] = linalg.fill([[C0]], [[INIT]]) : i32, tensor<1x5x6xi32> -> tensor<1x5x6xi32>
+ // CHECK: [[ONE:%.+]] = arith.constant 1
+ // CHECK: [[TWO:%.+]] = arith.constant 2
+ // CHECK: linalg.quantized_batch_matmul ins(%arg0, %arg1, [[ONE]], [[TWO]] : tensor<1x5x3xi8>, tensor<1x3x6xi8>, i32, i32) outs([[FILLED]] : tensor<1x5x6xi32>) -> tensor<1x5x6xi32>
+ %0 = "tosa.matmul"(%arg0, %arg1) {quantization_info = {a_zp = 1 : i32, b_zp = 2 : i32}} : (tensor<1x5x3xi8>, tensor<1x3x6xi8>) -> (tensor<1x5x6xi32>)
+ return %0 : tensor<1x5x6xi32>
+}
+
+// -----
+
+// CHECK-LABEL: @matmul_dyn_batch
+func @matmul_dyn_batch(%arg0: tensor<?x5x3xf32>, %arg1: tensor<?x3x6xf32>) -> (tensor<?x5x6xf32>) {
+ // CHECK: %[[C0:.+]] = arith.constant 0
+ // CHECK: %[[DIM:.+]] = tensor.dim %arg0, %[[C0]]
+ // CHECK: %[[C0_0:.+]] = arith.constant 0
+ // CHECK: %[[INIT:.+]] = linalg.init_tensor [%[[DIM]], 5, 6]
+ // CHECK: %[[FILLED:.+]] = linalg.fill(%[[C0_0]], %[[INIT]]) : f32, tensor<?x5x6xf32> -> tensor<?x5x6xf32>
+ // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x5x3xf32>, tensor<?x3x6xf32>) outs(%[[FILLED]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
+ %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<?x5x3xf32>, tensor<?x3x6xf32>) -> (tensor<?x5x6xf32>)
+ return %0 : tensor<?x5x6xf32>
+}
+
+// -----
+
+// CHECK-LABEL: @matmul_dyn_independent_dim
+func @matmul_dyn_independent_dim(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x3x?xf32>) -> (tensor<1x5x?xf32>) {
+ // CHECK: %[[C2:.+]] = arith.constant 2
+ // CHECK: %[[DIM:.+]] = tensor.dim %arg1, %[[C2]]
+ // CHECK: %[[C0:.+]] = arith.constant 0
+ // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 5, %[[DIM]]]
+ // CHECK: %[[FILLED:.+]] = linalg.fill(%[[C0]], %[[INIT]]) : f32, tensor<1x5x?xf32> -> tensor<1x5x?xf32>
+ // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x?xf32>) outs(%[[FILLED]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
+ %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<1x5x3xf32>, tensor<1x3x?xf32>) -> (tensor<1x5x?xf32>)
+ return %0 : tensor<1x5x?xf32>
+}
+
+// -----
+
+// CHECK-LABEL: @matmul_dyn_independent_dim
+func @matmul_dyn_independent_dim(%arg0: tensor<1x5x?xf32>, %arg1: tensor<1x?x6xf32>) -> (tensor<1x5x6xf32>) {
+ // CHECK: %[[C0:.+]] = arith.constant 0
+ // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 5, 6]
+ // CHECK: %[[FILLED:.+]] = linalg.fill(%[[C0]], %[[INIT]]) : f32, tensor<1x5x6xf32> -> tensor<1x5x6xf32>
+ // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x?xf32>, tensor<1x?x6xf32>) outs(%[[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
+ %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<1x5x?xf32>, tensor<1x?x6xf32>) -> (tensor<1x5x6xf32>)
+ return %0 : tensor<1x5x6xf32>
+}
+
+// -----
+
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
+// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+
+// CHECK-LABEL: @fully_connected
+func @fully_connected(%arg0: tensor<5x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<5x6xf32>) {
+ // CHECK: [[INITT:%.+]] = linalg.init_tensor [5, 6]
+ // CHECK: [[ZERO:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill([[ZERO]], [[INITT]])
+ // CHECK: [[PERM:%.+]] = arith.constant dense<[1, 0]>
+ // CHECK: [[TRANSPOSE:%.+]] = "tosa.transpose"(%arg1, [[PERM]])
+ // CHECK: [[INITB:%.+]] = linalg.init_tensor [5, 6]
+ // CHECK: [[MATMUL:%.+]] = linalg.matmul ins(%arg0, [[TRANSPOSE]] : tensor<5x3xf32>, tensor<3x6xf32>) outs([[FILL]] : tensor<5x6xf32>) -> tensor<5x6xf32>
+ // CHECK: [[ADDED:%.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel"]} ins(%arg2, [[MATMUL]] : tensor<6xf32>, tensor<5x6xf32>) outs([[INITB]] : tensor<5x6xf32>) {
+ // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
+ // CHECK: [[ADD:%.+]] = arith.addf %arg3, %arg4 : f32
+ // CHECK: linalg.yield [[ADD]] : f32
+
+ %0 = "tosa.fully_connected"(%arg0, %arg1, %arg2) : (tensor<5x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> (tensor<5x6xf32>)
+ return %0 : tensor<5x6xf32>
+}
+
+// -----
+
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
+// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+
+// CHECK-LABEL: @quantized_fully_connected
+func @quantized_fully_connected(%arg0: tensor<5x3xi8>, %arg1: tensor<6x3xi8>, %arg2: tensor<6xi32>) -> (tensor<5x6xi32>) {
+ // CHECK: [[INITT:%.+]] = linalg.init_tensor [5, 6]
+ // CHECK: [[ZERO:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill([[ZERO]], [[INITT]])
+ // CHECK: [[PERM:%.+]] = arith.constant dense<[1, 0]>
+ // CHECK: [[TRANSPOSE:%.+]] = "tosa.transpose"(%arg1, [[PERM]])
+ // CHECK: [[INITB:%.+]] = linalg.init_tensor [5, 6]
+ // CHECK: [[ONE:%.+]] = arith.constant 1
+ // CHECK: [[TWO:%.+]] = arith.constant 2
+ // CHECK: [[MATMUL:%.+]] = linalg.quantized_matmul ins(%arg0, [[TRANSPOSE]], [[ONE]], [[TWO]] : tensor<5x3xi8>, tensor<3x6xi8>, i32, i32) outs([[FILL]] : tensor<5x6xi32>) -> tensor<5x6xi32>
+ // CHECK: [[ADDED:%.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel"]} ins(%arg2, [[MATMUL]] : tensor<6xi32>, tensor<5x6xi32>) outs([[INITB]]
+ // CHECK: ^bb0([[IN1:%.+]]: i32, [[IN2:%.+]]: i32, [[UNUSED:%.+]]: i32):
+ // CHECK: [[ADD:%.+]] = arith.addi
+ // CHECK: linalg.yield [[ADD]] : i32
+ %0 = "tosa.fully_connected"(%arg0, %arg1, %arg2) {quantization_info = {input_zp = 1:i32, weight_zp = 2:i32}} : (tensor<5x3xi8>, tensor<6x3xi8>, tensor<6xi32>) -> (tensor<5x6xi32>)
+ return %0 : tensor<5x6xi32>
+}
+
+// -----
+
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
+// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+
+// CHECK-LABEL: @fully_connected_dyn
+func @fully_connected_dyn(%arg0: tensor<?x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<?x6xf32>) {
+ // CHECK: %[[C0:.+]] = arith.constant 0
+ // CHECK: %[[DIM:.+]] = tensor.dim %arg0, %[[C0]]
+ // CHECK: %[[INITT:.+]] = linalg.init_tensor [%[[DIM]], 6]
+ // CHECK: %[[ZERO:.+]] = arith.constant 0
+ // CHECK: %[[FILL:.+]] = linalg.fill(%[[ZERO]], %[[INITT]])
+ // CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]>
+ // CHECK: %[[TRANSPOSE:.+]] = "tosa.transpose"(%arg1, %[[PERM]])
+ // CHECK: %[[INITB:.+]] = linalg.init_tensor [%[[DIM]], 6]
+ // CHECK: %[[MATMUL:.+]] = linalg.matmul ins(%arg0, %[[TRANSPOSE]] : tensor<?x3xf32>, tensor<3x6xf32>) outs(%[[FILL]] : tensor<?x6xf32>) -> tensor<?x6xf32>
+ // CHECK: %[[ADDED:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel"]} ins(%arg2, %[[MATMUL]] : tensor<6xf32>, tensor<?x6xf32>) outs(%[[INITB]] : tensor<?x6xf32>) {
+ // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
+ // CHECK: %[[ADD:.+]] = arith.addf %arg3, %arg4 : f32
+ // CHECK: linalg.yield %[[ADD]] : f32
+
+ %0 = "tosa.fully_connected"(%arg0, %arg1, %arg2) : (tensor<?x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> (tensor<?x6xf32>)
+ return %0 : tensor<?x6xf32>
+}
+
+// -----
+
+// CHECK-LABEL: @max_pool
+func @max_pool(%arg0: tensor<1x6x34x62xf32>) -> () {
+ // CHECK-DAG: [[CONST:%.+]] = arith.constant -3.40282347E+38
+ // CHECK-DAG: [[INIT:%.+]] = linalg.init_tensor [1, 4, 32, 62]
+ // CHECK-DAG: [[FILL:%.+]] = linalg.fill([[CONST]], [[INIT]])
+ // CHECK-DAG: [[KERNEL:%.+]] = linalg.init_tensor [3, 3]
+ // CHECK: linalg.pooling_nhwc_max {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%arg0, [[KERNEL]] : tensor<1x6x34x62xf32>, tensor<3x3xf32>) outs([[FILL]] : tensor<1x4x32x62xf32>)
+ %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xf32>) -> (tensor<1x4x32x62xf32>)
+ return
+}
+
+// CHECK-LABEL: @max_pool_padded
+func @max_pool_padded(%arg0: tensor<1x6x34x62xf32>) -> () {
+ // CHECK-DAG: [[CONST:%.+]] = arith.constant -3.40282347E+38 : f32
+ // CHECK-DAG: [[PAD:%.+]] = linalg.pad_tensor %arg0 low[0, 0, 0, 0] high[0, 0, 1, 0]
+ // CHECK-DAG: linalg.yield [[CONST]]
+ // CHECK-DAG: [[INITVAL:%.+]] = arith.constant -3.40282347E+38 : f32
+ // CHECK-DAG: [[INIT:%.+]] = linalg.init_tensor [1, 4, 33, 62]
+ // CHECK-DAG: [[FILL:%.+]] = linalg.fill([[INITVAL]], [[INIT]])
+ // CHECK-DAG: [[KERNEL:%.+]] = linalg.init_tensor [3, 3]
+ // CHECK: linalg.pooling_nhwc_max {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins([[PAD]], [[KERNEL]] : tensor<1x6x35x62xf32>, tensor<3x3xf32>) outs([[FILL]] : tensor<1x4x33x62xf32>)
+ %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 1], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xf32>) -> (tensor<1x4x33x62xf32>)
+ return
+}
+
+// CHECK-LABEL: @max_pool_i8
+func @max_pool_i8(%arg0: tensor<1x6x34x62xi8>) -> () {
+ // CHECK: arith.constant -128
+ // CHECK: linalg.pooling_nhwc_max
+ %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xi8>) -> (tensor<1x4x32x62xi8>)
+ return
+}
+
+// CHECK-LABEL: @max_pool_i16
+func @max_pool_i16(%arg0: tensor<1x6x34x62xi16>) -> () {
+ // CHECK: arith.constant -32768
+ // CHECK: linalg.pooling_nhwc_max
+ %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xi16>) -> (tensor<1x4x32x62xi16>)
+ return
+}
+
+// CHECK-LABEL: @max_pool_i32
+func @max_pool_i32(%arg0: tensor<1x6x34x62xi32>) -> () {
+ // CHECK: arith.constant -2147483648
+ // CHECK: linalg.pooling_nhwc_max
+ %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xi32>) -> (tensor<1x4x32x62xi32>)
+ return
+}
+// -----
+
+// CHECK-LABEL: @avg_pool
+func @avg_pool(%arg0: tensor<1x6x34x62xf32>) -> (tensor<1x5x33x62xf32>) {
+ // Initial piece computes the sum of the pooling region, with appropriate padding.
+ // CHECK: [[CONST:%.+]] = arith.constant 0
+ // CHECK: [[PAD:%.+]] = linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
+ // CHECK: [[CONST:%.+]] = arith.constant 0
+ // CHECK: [[POOLINIT:%.+]] = linalg.init_tensor [1, 5, 33, 62]
+ // CHECK: [[FILL:%.+]] = linalg.fill([[CONST]], [[POOLINIT]])
+ // CHECK: [[KERNEL:%.+]] = linalg.init_tensor [4, 4]
+ // CHECK: [[POOL:%.+]] = linalg.pooling_nhwc_sum {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins([[PAD]], [[KERNEL]] : tensor<1x8x36x62xf32>, tensor<4x4xf32>) outs([[FILL]] : tensor<1x5x33x62xf32>)
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 33, 62]
+ // CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins([[POOL]] : tensor<1x5x33x62xf32>) outs([[INIT]] : tensor<1x5x33x62xf32>)
+ // CHECK: [[ZERO:%.0]] = arith.constant 0
+ // CHECK: [[ONE:%.+]] = arith.constant 1
+ // CHECK: [[HEIGHT:%.+]] = arith.constant 4
+ // CHECK: [[WIDTH:%.+]] = arith.constant 32
+ // CHECK: [[IDX1:%.+]] = linalg.index 1
+ // CHECK: [[IDX2:%.+]] = linalg.index 2
+
+ // The large block below computes what portion of the kernel is within non-padded input.
+ // CHECK: [[NY:%.+]] = arith.subi [[HEIGHT]], [[IDX1]]
+ // CHECK: [[NX:%.+]] = arith.subi [[WIDTH]], [[IDX2]]
+ // CHECK: [[KH:%.+]] = arith.constant 4
+ // CHECK: [[PAD0:%.+]] = arith.constant 1
+ // CHECK: [[SUBP0:%.+]] = arith.subi [[IDX1]], [[PAD0]]
+ // CHECK: [[P0CMP:%.+]] = arith.cmpi slt, [[SUBP0]], [[ZERO]]
+ // CHECK: [[SELP0:%.+]] = select [[P0CMP]], [[SUBP0]], [[ZERO]]
+ // CHECK: [[ADDP0:%.+]] = arith.addi [[KH]], [[SELP0]]
+ // CHECK: [[PAD1:%.+]] = arith.constant 1
+ // CHECK: [[SUBP1:%.+]] = arith.subi [[NY]], [[PAD1]]
+ // CHECK: [[P1CMP:%.+]] = arith.cmpi slt, [[SUBP1]], [[ZERO]]
+ // CHECK: [[SELP1:%.+]] = select [[P1CMP]], [[SUBP1]], [[ZERO]]
+ // CHECK: [[ADDP1:%.+]] = arith.addi [[ADDP0]], [[SELP1]]
+ // CHECK: [[YCMP:%.+]] = arith.cmpi slt, [[ADDP1]], [[ONE]]
+ // CHECK: [[YSEL:%.+]] = select [[YCMP]], [[ONE]], [[ADDP1]]
+ // CHECK: [[KW:%.+]] = arith.constant 4 : index
+ // CHECK: [[PAD2:%.+]] = arith.constant 1 : index
+ // CHECK: [[SUBP2:%.+]] = arith.subi [[IDX2]], [[PAD2]]
+ // CHECK: [[P2CMP:%.+]] = arith.cmpi slt, [[SUBP2]], [[ZERO]]
+ // CHECK: [[SELP2:%.+]] = select [[P2CMP]], [[SUBP2]], [[ZERO]]
+ // CHECK: [[ADDP2:%.+]] = arith.addi [[KW]], [[SELP2]]
+ // CHECK: [[PAD3:%.+]] = arith.constant 1 : index
+ // CHECK: [[SUBP3:%.+]] = arith.subi [[NX]], [[PAD3]]
+ // CHECK: [[P3CMP:%.+]] = arith.cmpi slt, [[SUBP3]], [[ZERO]]
+ // CHECK: [[SELP3:%.+]] = select [[P3CMP]], [[SUBP3]], [[ZERO]]
+ // CHECK: [[ADDP3:%.+]] = arith.addi [[ADDP2]], [[SELP3]]
+ // CHECK: [[XCMP:%.+]] = arith.cmpi slt, [[ADDP3]], [[ONE]]
+ // CHECK: [[XSEL:%.+]] = select [[XCMP]], [[ONE]], [[ADDP3]]
+
+ // Given the valid coverage of the pooling region, normalize the summation.
+ // CHECK: [[C:%.+]] = arith.muli [[YSEL]], [[XSEL]]
+ // CHECK: [[CI:%.+]] = arith.index_cast [[C]]
+ // CHECK: [[CF:%.+]] = arith.sitofp [[CI]]
+ // CHECK: [[RESULT:%.+]] = arith.divf %arg1, [[CF]]
+ // CHECK: linalg.yield [[RESULT]]
+ %0 = "tosa.avg_pool2d"(%arg0) {pad = [1, 1, 1, 1], kernel = [4, 4], stride = [1, 1]} : (tensor<1x6x34x62xf32>) -> (tensor<1x5x33x62xf32>)
+ return %0 : tensor<1x5x33x62xf32>
+}
+
+// -----
+
+// CHECK-LABEL: @avg_pool_i8
+func @avg_pool_i8(%arg0 : tensor<1x128x128x2xi8>) -> () {
+
+ // CHECK: linalg.pooling_nhwc_sum
+ // CHECK: linalg.generic
+
+ // CHECK: %[[INZP:.+]] = arith.constant -128
+ // CHECK: %[[INZP_OFF:.+]] = arith.muli %{{.+}}, %[[INZP]]
+ // CHECK: %[[OFFSETED:.+]] = arith.subi %arg1, %[[INZP_OFF]]
+ // CHECK: %[[NUMERATOR:.+]] = arith.constant 1073741825
+ // CHECK: %[[MULTIPLIER:.+]] = arith.divui %[[NUMERATOR]], %{{.+}}
+ // CHECK: %[[SHIFT:.+]] = arith.constant 30
+ // CHECK: %[[SCALE:.+]] = "tosa.apply_scale"(%{{.+}}, %[[MULTIPLIER]], %[[SHIFT]]) {double_round = false}
+ // CHECK: %[[OUTZP:.+]] = arith.constant -128
+ // CHECK: %[[OUT:.+]] = arith.addi %[[SCALE]], %[[OUTZP]]
+ // CHECK: %[[MIN:.+]] = arith.constant -128
+ // CHECK: %[[MAX:.+]] = arith.constant 127
+ // CHECK: %[[CMP_MIN:.+]] = arith.cmpi slt, %[[OUT]], %[[MIN]]
+ // CHECK: %[[CLMP_MIN:.+]] = select %[[CMP_MIN]], %[[MIN]], %[[OUT]]
+ // CHECK: %[[CMP_MAX:.+]] = arith.cmpi slt, %[[MAX]], %[[OUT]]
+ // CHECK: %[[CLMP_MAX:.+]] = select %[[CMP_MAX]], %[[MAX]], %[[CLMP_MIN]]
+ // CHECK: %[[TRUNC:.+]] = arith.trunci %[[CLMP_MAX]]
+ // CHECK: linalg.yield %[[TRUNC]]
+ %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 4], pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, output_zp = -128 : i32}, stride = [4, 4]} : (tensor<1x128x128x2xi8>) -> tensor<1x32x32x2xi8>
+ return
+}
+
+// -----
+
+// CHECK-LABEL: @avg_pool_i16
+func @avg_pool_i16(%arg0 : tensor<1x128x128x2xi16>) -> () {
+
+ // CHECK: linalg.pooling_nhwc_sum
+ // CHECK: linalg.generic
+
+ // CHECK: %[[INZP:.+]] = arith.constant -128
+ // CHECK: %[[INZP_OFF:.+]] = arith.muli %{{.+}}, %[[INZP]]
+ // CHECK: %[[OFFSETED:.+]] = arith.subi %arg1, %[[INZP_OFF]]
+ // CHECK: %[[NUMERATOR:.+]] = arith.constant 1073741825
+ // CHECK: %[[MULTIPLIER:.+]] = arith.divui %[[NUMERATOR]], %{{.+}}
+ // CHECK: %[[SHIFT:.+]] = arith.constant 30
+ // CHECK: %[[SCALE:.+]] = "tosa.apply_scale"(%{{.+}}, %[[MULTIPLIER]], %[[SHIFT]]) {double_round = false}
+ // CHECK: %[[OUTZP:.+]] = arith.constant -128
+ // CHECK: %[[OUT:.+]] = arith.addi %[[SCALE]], %[[OUTZP]]
+ // CHECK: %[[MIN:.+]] = arith.constant -32768
+ // CHECK: %[[MAX:.+]] = arith.constant 32767
+ // CHECK: %[[CMP_MIN:.+]] = arith.cmpi slt, %[[OUT]], %[[MIN]]
+ // CHECK: %[[CLMP_MIN:.+]] = select %[[CMP_MIN]], %[[MIN]], %[[OUT]]
+ // CHECK: %[[CMP_MAX:.+]] = arith.cmpi slt, %[[MAX]], %[[OUT]]
+ // CHECK: %[[CLMP_MAX:.+]] = select %[[CMP_MAX]], %[[MAX]], %[[CLMP_MIN]]
+ // CHECK: %[[TRUNC:.+]] = arith.trunci %[[CLMP_MAX]]
+ // CHECK: linalg.yield %[[TRUNC]]
+ %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 4], pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, output_zp = -128 : i32}, stride = [4, 4]} : (tensor<1x128x128x2xi16>) -> tensor<1x32x32x2xi16>
+ return
+}
+
+// -----
+
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @conv2d_f32
+func @conv2d_f32(%input: tensor<1x49x42x27xf32>, %weights: tensor<28x3x3x27xf32>, %bias: tensor<28xf32>) -> () {
+ // CHECK: %[[PERM:.+]] = arith.constant dense<[1, 2, 3, 0]>
+ // CHECK: %[[W:.+]] = "tosa.transpose"(%arg1, %[[PERM]])
+ // CHECK: %[[M_IN:.+]] = linalg.init_tensor [1, 45, 40, 28]
+ // CHECK: %[[CST:.+]] = arith.constant 0
+ // CHECK: %[[FILL:.+]] = linalg.fill
+ // CHECK: %[[B_IN:.+]] = linalg.init_tensor [1, 45, 40, 28]
+ // CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[W]] : tensor<1x49x42x27xf32>, tensor<3x3x27x28xf32>) outs(%[[FILL]] : tensor<1x45x40x28xf32>)
+ // CHECK: %[[B:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, %[[CONV]] : tensor<28xf32>, tensor<1x45x40x28xf32>) outs(%[[B_IN]] : tensor<1x45x40x28xf32>)
+ // CHECK: arith.addf
+ // CHECK: linalg.yield
+ %0 = "tosa.conv2d"(%input, %weights, %bias) {pad = [0, 0, 0, 0], stride = [1, 1], dilation = [2, 1]} : (tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>) -> (tensor<1x45x40x28xf32>)
+ return
+}
+
+// -----
+
+// CHECK-LABEL: @conv2d_padded_f32
+func @conv2d_padded_f32(%input: tensor<1x47x40x28xf32>, %weights: tensor<28x3x3x28xf32>, %bias: tensor<28xf32>) -> () {
+ // CHECK: %[[C0:.+]] = arith.constant 0
+ // CHECK: linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
+ // CHECK: linalg.yield %[[C0]]
+ // CHECK: linalg.conv_2d_nhwc_hwcf
+ %0 = "tosa.conv2d"(%input, %weights, %bias) {pad = [1, 1, 1, 1], stride = [1, 1], dilation = [2, 1]} : (tensor<1x47x40x28xf32>, tensor<28x3x3x28xf32>, tensor<28xf32>) -> (tensor<1x45x40x28xf32>)
+ return
+}
+
+// -----
+
+// CHECK-LABEL: @conv2d_quant
+func @conv2d_quant(%arg0 : tensor<1x12x12x1xi8>, %arg1 : tensor<1024x3x3x1xi8>, %arg2 : tensor<1024xi32>) -> () {
+ // CHECK: %[[C22:.+]] = arith.constant -22
+ // CHECK: linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
+ // CHECK: linalg.yield %[[C22]]
+ // CHECK: linalg.conv_2d_nhwc_hwcf_q
+ %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = [1, 1], pad = [1, 1, 1, 1], quantization_info = {input_zp = -22 : i32, weight_zp = 42 : i32}, stride = [1, 1]} : (tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, tensor<1024xi32>) -> tensor<1x12x12x1024xi32>
+ return
+}
+
+// -----
+
+// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @depthwise_conv
+func @depthwise_conv(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tensor<3x1x3x11xf32>, %arg2 : tensor<33xf32>) -> () {
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 5, 3, 11]
+ // CHECK: [[CST0:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
+ // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33]
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
+ // CHECK: [[COLLAPSED:%.+]] = "tosa.reshape"([[DEPTH]]) {new_shape = [1, 5, 5, 33]}
+ // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) {
+ // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
+ // CHECK: [[ADD:%.+]] = arith.addf %arg3, %arg4 : f32
+ // CHECK: linalg.yield [[ADD]] : f32
+ // CHECK: } -> tensor<1x5x5x33xf32>
+ %2 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) { pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1] } : (tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>) -> (tensor<1x5x5x33xf32>)
+ return
+}
+
+// -----
+
+// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @depthwise_conv_strides
+func @depthwise_conv_strides(%arg0 : tensor<1x11x9x3xf32>, %arg1 : tensor<3x1x3x11xf32>, %arg2 : tensor<33xf32>) -> () {
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 5, 3, 11]
+ // CHECK: [[CST0:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
+ // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33]
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
+ // CHECK: [[COLLAPSED:%.+]] = "tosa.reshape"([[DEPTH]]) {new_shape = [1, 5, 5, 33]}
+ // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) {
+ // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
+ // CHECK: [[ADD:%.+]] = arith.addf %arg3, %arg4 : f32
+ // CHECK: linalg.yield [[ADD]] : f32
+ // CHECK: } -> tensor<1x5x5x33xf32>
+ %2 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) { pad = [0, 0, 0, 0], stride = [2, 2], dilation = [1, 1] } : (tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>) -> (tensor<1x5x5x33xf32>)
+ return
+}
+
+// -----
+
+// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @depthwise_conv_quant
+func @depthwise_conv_quant(%arg0 : tensor<1x12x12x4xi8>, %arg1 : tensor<3x3x4x128xi8>, %arg2 : tensor<512xi32>) -> () {
+ // CHECK: [[PADV:%.+]] = arith.constant -128
+ // CHECK: [[PAD:%.+]] = linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
+ // CHECK: linalg.yield [[PADV]]
+
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 12, 12, 4, 128]
+ // CHECK: [[CST0:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
+ // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 12, 12, 512]
+ // CHECK: [[C128:%.+]] = arith.constant -128
+ // CHECK: [[C42:%.+]] = arith.constant 42
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins([[PAD]], %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x12x12x4x128xi32>)
+ // CHECK: [[COLLAPSED:%.+]] = "tosa.reshape"([[DEPTH]]) {new_shape = [1, 12, 12, 512]}
+ // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x12x12x512xi32>) outs([[OUT]] : tensor<1x12x12x512xi32>) {
+ // CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors
+ // CHECK: [[ADD:%.+]] = arith.addi %arg3, %arg4 : i32
+ // CHECK: linalg.yield [[ADD]] : i32
+ // CHECK: } -> tensor<1x12x12x512xi32>
+ %0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [1, 1, 1, 1], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1], dilation = [1, 1] } : (tensor<1x12x12x4xi8>, tensor<3x3x4x128xi8>, tensor<512xi32>) -> tensor<1x12x12x512xi32>
+ return
+}
+
+// -----
+
+// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @depthwise_conv_quant_dilations
+func @depthwise_conv_quant_dilations(%arg0 : tensor<1x14x14x4xi8>, %arg1 : tensor<3x3x4x128xi8>, %arg2 : tensor<512xi32>) -> () {
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 10, 10, 4, 128]
+ // CHECK: [[CST0:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
+ // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 10, 10, 512]
+ // CHECK: [[C128:%.+]] = arith.constant -128
+ // CHECK: [[C42:%.+]] = arith.constant 42
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x10x10x4x128xi32>)
+ // CHECK: [[COLLAPSED:%.+]] = "tosa.reshape"([[DEPTH]]) {new_shape = [1, 10, 10, 512]}
+ // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x10x10x512xi32>) outs([[OUT]] : tensor<1x10x10x512xi32>) {
+ // CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors
+ // CHECK: [[ADD:%.+]] = arith.addi %arg3, %arg4 : i32
+ // CHECK: linalg.yield [[ADD]] : i32
+ // CHECK: } -> tensor<1x10x10x512xi32>
+ %0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1], dilation = [2, 2] } : (tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, tensor<512xi32>) -> tensor<1x10x10x512xi32>
+ return
+}
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
index f8dc2e0bbd08d..e68e76c67ef98 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
@@ -1064,154 +1064,6 @@ func @tile(%arg0 : tensor<2x3xi8>) -> () {
// -----
-
-// CHECK-LABEL: @matmul
-func @matmul(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x3x6xf32>) -> (tensor<1x5x6xf32>) {
- // CHECK: [[C0:%.+]] = arith.constant 0
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 6]
- // CHECK: [[FILLED:%.+]] = linalg.fill([[C0]], [[INIT]]) : f32, tensor<1x5x6xf32> -> tensor<1x5x6xf32>
- // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x6xf32>) outs([[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
- %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<1x5x3xf32>, tensor<1x3x6xf32>) -> (tensor<1x5x6xf32>)
- return %0 : tensor<1x5x6xf32>
-}
-
-// -----
-
-
-// CHECK-LABEL: @matmul_quantized
-func @matmul_quantized(%arg0: tensor<1x5x3xi8>, %arg1: tensor<1x3x6xi8>) -> (tensor<1x5x6xi32>) {
- // CHECK: [[C0:%.+]] = arith.constant 0
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 6]
- // CHECK: [[FILLED:%.+]] = linalg.fill([[C0]], [[INIT]]) : i32, tensor<1x5x6xi32> -> tensor<1x5x6xi32>
- // CHECK: [[ONE:%.+]] = arith.constant 1
- // CHECK: [[TWO:%.+]] = arith.constant 2
- // CHECK: linalg.quantized_batch_matmul ins(%arg0, %arg1, [[ONE]], [[TWO]] : tensor<1x5x3xi8>, tensor<1x3x6xi8>, i32, i32) outs([[FILLED]] : tensor<1x5x6xi32>) -> tensor<1x5x6xi32>
- %0 = "tosa.matmul"(%arg0, %arg1) {quantization_info = {a_zp = 1 : i32, b_zp = 2 : i32}} : (tensor<1x5x3xi8>, tensor<1x3x6xi8>) -> (tensor<1x5x6xi32>)
- return %0 : tensor<1x5x6xi32>
-}
-
-// -----
-
-// CHECK-LABEL: @matmul_dyn_batch
-func @matmul_dyn_batch(%arg0: tensor<?x5x3xf32>, %arg1: tensor<?x3x6xf32>) -> (tensor<?x5x6xf32>) {
- // CHECK: %[[C0:.+]] = arith.constant 0
- // CHECK: %[[DIM:.+]] = tensor.dim %arg0, %[[C0]]
- // CHECK: %[[C0_0:.+]] = arith.constant 0
- // CHECK: %[[INIT:.+]] = linalg.init_tensor [%[[DIM]], 5, 6]
- // CHECK: %[[FILLED:.+]] = linalg.fill(%[[C0_0]], %[[INIT]]) : f32, tensor<?x5x6xf32> -> tensor<?x5x6xf32>
- // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x5x3xf32>, tensor<?x3x6xf32>) outs(%[[FILLED]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
- %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<?x5x3xf32>, tensor<?x3x6xf32>) -> (tensor<?x5x6xf32>)
- return %0 : tensor<?x5x6xf32>
-}
-
-// -----
-
-// CHECK-LABEL: @matmul_dyn_independent_dim
-func @matmul_dyn_independent_dim(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x3x?xf32>) -> (tensor<1x5x?xf32>) {
- // CHECK: %[[C2:.+]] = arith.constant 2
- // CHECK: %[[DIM:.+]] = tensor.dim %arg1, %[[C2]]
- // CHECK: %[[C0:.+]] = arith.constant 0
- // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 5, %[[DIM]]]
- // CHECK: %[[FILLED:.+]] = linalg.fill(%[[C0]], %[[INIT]]) : f32, tensor<1x5x?xf32> -> tensor<1x5x?xf32>
- // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x?xf32>) outs(%[[FILLED]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
- %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<1x5x3xf32>, tensor<1x3x?xf32>) -> (tensor<1x5x?xf32>)
- return %0 : tensor<1x5x?xf32>
-}
-
-// -----
-
-// CHECK-LABEL: @matmul_dyn_independent_dim
-func @matmul_dyn_independent_dim(%arg0: tensor<1x5x?xf32>, %arg1: tensor<1x?x6xf32>) -> (tensor<1x5x6xf32>) {
- // CHECK: %[[C0:.+]] = arith.constant 0
- // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 5, 6]
- // CHECK: %[[FILLED:.+]] = linalg.fill(%[[C0]], %[[INIT]]) : f32, tensor<1x5x6xf32> -> tensor<1x5x6xf32>
- // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x?xf32>, tensor<1x?x6xf32>) outs(%[[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
- %0 = "tosa.matmul"(%arg0, %arg1) : (tensor<1x5x?xf32>, tensor<1x?x6xf32>) -> (tensor<1x5x6xf32>)
- return %0 : tensor<1x5x6xf32>
-}
-
-// -----
-
-// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d1, d0)>
-// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0, d1)>
-// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d1)>
-
-// CHECK-LABEL: @fully_connected
-func @fully_connected(%arg0: tensor<5x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<5x6xf32>) {
- // CHECK: [[INITT:%.+]] = linalg.init_tensor [5, 6]
- // CHECK: [[ZERO:%.+]] = arith.constant 0
- // CHECK: [[FILL:%.+]] = linalg.fill([[ZERO]], [[INITT]])
- // CHECK: [[PERM:%.+]] = arith.constant dense<[1, 0]>
- // CHECK: [[INITT:%.+]] = linalg.init_tensor [3, 6]
- // CHECK: [[TRANSPOSE:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg1 : tensor<6x3xf32>) outs([[INITT]] : tensor<3x6xf32>) {
- // CHECK: ^bb0([[IN:%.+]]: f32, [[UNUSED:%.+]]: f32):
- // CHECK: linalg.yield [[IN]] : f32
- // CHECK: [[INITB:%.+]] = linalg.init_tensor [5, 6]
- // CHECK: [[MATMUL:%.+]] = linalg.matmul ins(%arg0, [[TRANSPOSE]] : tensor<5x3xf32>, tensor<3x6xf32>) outs([[FILL]] : tensor<5x6xf32>) -> tensor<5x6xf32>
- // CHECK: [[ADDED:%.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2, [[MATMUL]] : tensor<6xf32>, tensor<5x6xf32>) outs([[INITB]] : tensor<5x6xf32>) {
- // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
- // CHECK: [[ADD:%.+]] = arith.addf %arg3, %arg4 : f32
- // CHECK: linalg.yield [[ADD]] : f32
-
- %0 = "tosa.fully_connected"(%arg0, %arg1, %arg2) : (tensor<5x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> (tensor<5x6xf32>)
- return %0 : tensor<5x6xf32>
-}
-
-// -----
-
-// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d1, d0)>
-// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0, d1)>
-// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d1)>
-
-// CHECK-LABEL: @quantized_fully_connected
-func @quantized_fully_connected(%arg0: tensor<5x3xi8>, %arg1: tensor<6x3xi8>, %arg2: tensor<6xi32>) -> (tensor<5x6xi32>) {
- // CHECK: [[INITT:%.+]] = linalg.init_tensor [5, 6]
- // CHECK: [[ZERO:%.+]] = arith.constant 0
- // CHECK: [[FILL:%.+]] = linalg.fill([[ZERO]], [[INITT]])
- // CHECK: [[PERM:%.+]] = arith.constant dense<[1, 0]>
- // CHECK: [[INITT:%.+]] = linalg.init_tensor [3, 6]
- // CHECK: [[TRANSPOSE:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg1 : tensor<6x3xi8>) outs([[INITT]] : tensor<3x6xi8>) {
- // CHECK: ^bb0([[IN:%.+]]: i8, [[UNUSED:%.+]]: i8):
- // CHECK: linalg.yield [[IN]] : i8
- // CHECK: [[INITB:%.+]] = linalg.init_tensor [5, 6]
- // CHECK: [[ONE:%.+]] = arith.constant 1
- // CHECK: [[TWO:%.+]] = arith.constant 2
- // CHECK: [[MATMUL:%.+]] = linalg.quantized_matmul ins(%arg0, [[TRANSPOSE]], [[ONE]], [[TWO]] : tensor<5x3xi8>, tensor<3x6xi8>, i32, i32) outs([[FILL]] : tensor<5x6xi32>) -> tensor<5x6xi32>
- // CHECK: [[ADDED:%.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2, [[MATMUL]] : tensor<6xi32>, tensor<5x6xi32>) outs([[INITB]]
- // CHECK: ^bb0([[IN1:%.+]]: i32, [[IN2:%.+]]: i32, [[UNUSED:%.+]]: i32):
- // CHECK: [[ADD:%.+]] = arith.addi
- // CHECK: linalg.yield [[ADD]] : i32
- %0 = "tosa.fully_connected"(%arg0, %arg1, %arg2) {quantization_info = {input_zp = 1:i32, weight_zp = 2:i32}} : (tensor<5x3xi8>, tensor<6x3xi8>, tensor<6xi32>) -> (tensor<5x6xi32>)
- return %0 : tensor<5x6xi32>
-}
-
-// -----
-
-// CHECK-LABEL: @fully_connected_dyn
-func @fully_connected_dyn(%arg0: tensor<?x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<?x6xf32>) {
- // CHECK: %[[C0:.+]] = arith.constant 0
- // CHECK: %[[DIM:.+]] = tensor.dim %arg0, %[[C0]]
- // CHECK: %[[INITT:.+]] = linalg.init_tensor [%[[DIM]], 6]
- // CHECK: %[[ZERO:.+]] = arith.constant 0
- // CHECK: %[[FILL:.+]] = linalg.fill(%[[ZERO]], %[[INITT]])
- // CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]>
- // CHECK: %[[INITT:.+]] = linalg.init_tensor [3, 6]
- // CHECK: %[[TRANSPOSE:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg1 : tensor<6x3xf32>) outs(%[[INITT]] : tensor<3x6xf32>) {
- // CHECK: ^bb0(%[[IN:.+]]: f32, %[[UNUSED:.+]]: f32):
- // CHECK: linalg.yield %[[IN]] : f32
- // CHECK: %[[INITB:.+]] = linalg.init_tensor [%[[DIM]], 6]
- // CHECK: %[[MATMUL:.+]] = linalg.matmul ins(%arg0, %[[TRANSPOSE]] : tensor<?x3xf32>, tensor<3x6xf32>) outs(%[[FILL]] : tensor<?x6xf32>) -> tensor<?x6xf32>
- // CHECK: %[[ADDED:.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2, %[[MATMUL]] : tensor<6xf32>, tensor<?x6xf32>) outs(%[[INITB]] : tensor<?x6xf32>) {
- // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
- // CHECK: %[[ADD:.+]] = arith.addf %arg3, %arg4 : f32
- // CHECK: linalg.yield %[[ADD]] : f32
-
- %0 = "tosa.fully_connected"(%arg0, %arg1, %arg2) : (tensor<?x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> (tensor<?x6xf32>)
- return %0 : tensor<?x6xf32>
-}
-
-// -----
-
func @pad_float(%arg0 : tensor<1x2xf32>) -> (tensor<4x9xf32>) {
%0 = arith.constant dense<[[1, 2], [3, 4]]> : tensor<2x2xi32>
// TODO: Output contains multiple "arith.constant 1 : index".
@@ -1395,318 +1247,6 @@ func @table16(%arg0: tensor<6xi16>, %arg1: tensor<513xi16>) -> () {
// -----
-// CHECK-LABEL: @max_pool
-func @max_pool(%arg0: tensor<1x6x34x62xf32>) -> () {
- // CHECK-DAG: [[CONST:%.+]] = arith.constant -3.40282347E+38
- // CHECK-DAG: [[INIT:%.+]] = linalg.init_tensor [1, 4, 32, 62]
- // CHECK-DAG: [[FILL:%.+]] = linalg.fill([[CONST]], [[INIT]])
- // CHECK-DAG: [[KERNEL:%.+]] = linalg.init_tensor [3, 3]
- // CHECK: linalg.pooling_nhwc_max {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%arg0, [[KERNEL]] : tensor<1x6x34x62xf32>, tensor<3x3xf32>) outs([[FILL]] : tensor<1x4x32x62xf32>)
- %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xf32>) -> (tensor<1x4x32x62xf32>)
- return
-}
-
-// CHECK-LABEL: @max_pool_padded
-func @max_pool_padded(%arg0: tensor<1x6x34x62xf32>) -> () {
- // CHECK-DAG: [[CONST:%.+]] = arith.constant -3.40282347E+38 : f32
- // CHECK-DAG: [[PAD:%.+]] = linalg.pad_tensor %arg0 low[0, 0, 0, 0] high[0, 0, 1, 0]
- // CHECK-DAG: linalg.yield [[CONST]]
- // CHECK-DAG: [[INITVAL:%.+]] = arith.constant -3.40282347E+38 : f32
- // CHECK-DAG: [[INIT:%.+]] = linalg.init_tensor [1, 4, 33, 62]
- // CHECK-DAG: [[FILL:%.+]] = linalg.fill([[INITVAL]], [[INIT]])
- // CHECK-DAG: [[KERNEL:%.+]] = linalg.init_tensor [3, 3]
- // CHECK: linalg.pooling_nhwc_max {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins([[PAD]], [[KERNEL]] : tensor<1x6x35x62xf32>, tensor<3x3xf32>) outs([[FILL]] : tensor<1x4x33x62xf32>)
- %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 1], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xf32>) -> (tensor<1x4x33x62xf32>)
- return
-}
-
-// CHECK-LABEL: @max_pool_i8
-func @max_pool_i8(%arg0: tensor<1x6x34x62xi8>) -> () {
- // CHECK: arith.constant -128
- // CHECK: linalg.pooling_nhwc_max
- %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xi8>) -> (tensor<1x4x32x62xi8>)
- return
-}
-
-// CHECK-LABEL: @max_pool_i16
-func @max_pool_i16(%arg0: tensor<1x6x34x62xi16>) -> () {
- // CHECK: arith.constant -32768
- // CHECK: linalg.pooling_nhwc_max
- %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xi16>) -> (tensor<1x4x32x62xi16>)
- return
-}
-
-// CHECK-LABEL: @max_pool_i32
-func @max_pool_i32(%arg0: tensor<1x6x34x62xi32>) -> () {
- // CHECK: arith.constant -2147483648
- // CHECK: linalg.pooling_nhwc_max
- %0 = "tosa.max_pool2d"(%arg0) {pad = [0, 0, 0, 0], kernel = [3, 3], stride = [1, 1]} : (tensor<1x6x34x62xi32>) -> (tensor<1x4x32x62xi32>)
- return
-}
-// -----
-
-// CHECK-LABEL: @avg_pool
-func @avg_pool(%arg0: tensor<1x6x34x62xf32>) -> (tensor<1x5x33x62xf32>) {
- // Initial piece computes the sum of the pooling region, with appropriate padding.
- // CHECK: [[CONST:%.+]] = arith.constant 0
- // CHECK: [[PAD:%.+]] = linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
- // CHECK: [[CONST:%.+]] = arith.constant 0
- // CHECK: [[POOLINIT:%.+]] = linalg.init_tensor [1, 5, 33, 62]
- // CHECK: [[FILL:%.+]] = linalg.fill([[CONST]], [[POOLINIT]])
- // CHECK: [[KERNEL:%.+]] = linalg.init_tensor [4, 4]
- // CHECK: [[POOL:%.+]] = linalg.pooling_nhwc_sum {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins([[PAD]], [[KERNEL]] : tensor<1x8x36x62xf32>, tensor<4x4xf32>) outs([[FILL]] : tensor<1x5x33x62xf32>)
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 33, 62]
- // CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins([[POOL]] : tensor<1x5x33x62xf32>) outs([[INIT]] : tensor<1x5x33x62xf32>)
- // CHECK: [[ZERO:%.0]] = arith.constant 0
- // CHECK: [[ONE:%.+]] = arith.constant 1
- // CHECK: [[HEIGHT:%.+]] = arith.constant 4
- // CHECK: [[WIDTH:%.+]] = arith.constant 32
- // CHECK: [[IDX1:%.+]] = linalg.index 1
- // CHECK: [[IDX2:%.+]] = linalg.index 2
-
- // The large block below computes what portion of the kernel is within non-padded input.
- // CHECK: [[NY:%.+]] = arith.subi [[HEIGHT]], [[IDX1]]
- // CHECK: [[NX:%.+]] = arith.subi [[WIDTH]], [[IDX2]]
- // CHECK: [[KH:%.+]] = arith.constant 4
- // CHECK: [[PAD0:%.+]] = arith.constant 1
- // CHECK: [[SUBP0:%.+]] = arith.subi [[IDX1]], [[PAD0]]
- // CHECK: [[P0CMP:%.+]] = arith.cmpi slt, [[SUBP0]], [[ZERO]]
- // CHECK: [[SELP0:%.+]] = select [[P0CMP]], [[SUBP0]], [[ZERO]]
- // CHECK: [[ADDP0:%.+]] = arith.addi [[KH]], [[SELP0]]
- // CHECK: [[PAD1:%.+]] = arith.constant 1
- // CHECK: [[SUBP1:%.+]] = arith.subi [[NY]], [[PAD1]]
- // CHECK: [[P1CMP:%.+]] = arith.cmpi slt, [[SUBP1]], [[ZERO]]
- // CHECK: [[SELP1:%.+]] = select [[P1CMP]], [[SUBP1]], [[ZERO]]
- // CHECK: [[ADDP1:%.+]] = arith.addi [[ADDP0]], [[SELP1]]
- // CHECK: [[YCMP:%.+]] = arith.cmpi slt, [[ADDP1]], [[ONE]]
- // CHECK: [[YSEL:%.+]] = select [[YCMP]], [[ONE]], [[ADDP1]]
- // CHECK: [[KW:%.+]] = arith.constant 4 : index
- // CHECK: [[PAD2:%.+]] = arith.constant 1 : index
- // CHECK: [[SUBP2:%.+]] = arith.subi [[IDX2]], [[PAD2]]
- // CHECK: [[P2CMP:%.+]] = arith.cmpi slt, [[SUBP2]], [[ZERO]]
- // CHECK: [[SELP2:%.+]] = select [[P2CMP]], [[SUBP2]], [[ZERO]]
- // CHECK: [[ADDP2:%.+]] = arith.addi [[KW]], [[SELP2]]
- // CHECK: [[PAD3:%.+]] = arith.constant 1 : index
- // CHECK: [[SUBP3:%.+]] = arith.subi [[NX]], [[PAD3]]
- // CHECK: [[P3CMP:%.+]] = arith.cmpi slt, [[SUBP3]], [[ZERO]]
- // CHECK: [[SELP3:%.+]] = select [[P3CMP]], [[SUBP3]], [[ZERO]]
- // CHECK: [[ADDP3:%.+]] = arith.addi [[ADDP2]], [[SELP3]]
- // CHECK: [[XCMP:%.+]] = arith.cmpi slt, [[ADDP3]], [[ONE]]
- // CHECK: [[XSEL:%.+]] = select [[XCMP]], [[ONE]], [[ADDP3]]
-
- // Given the valid coverage of the pooling region, normalize the summation.
- // CHECK: [[C:%.+]] = arith.muli [[YSEL]], [[XSEL]]
- // CHECK: [[CI:%.+]] = arith.index_cast [[C]]
- // CHECK: [[CF:%.+]] = arith.sitofp [[CI]]
- // CHECK: [[RESULT:%.+]] = arith.divf %arg1, [[CF]]
- // CHECK: linalg.yield [[RESULT]]
- %0 = "tosa.avg_pool2d"(%arg0) {pad = [1, 1, 1, 1], kernel = [4, 4], stride = [1, 1]} : (tensor<1x6x34x62xf32>) -> (tensor<1x5x33x62xf32>)
- return %0 : tensor<1x5x33x62xf32>
-}
-
-// -----
-
-// CHECK-LABEL: @avg_pool_i8
-func @avg_pool_i8(%arg0 : tensor<1x128x128x2xi8>) -> () {
-
- // CHECK: linalg.pooling_nhwc_sum
- // CHECK: linalg.generic
-
- // CHECK: %[[INZP:.+]] = arith.constant -128
- // CHECK: %[[INZP_OFF:.+]] = arith.muli %{{.+}}, %[[INZP]]
- // CHECK: %[[OFFSETED:.+]] = arith.subi %arg1, %[[INZP_OFF]]
- // CHECK: %[[NUMERATOR:.+]] = arith.constant 1073741825
- // CHECK: %[[MULTIPLIER:.+]] = arith.divui %[[NUMERATOR]], %{{.+}}
- // CHECK: %[[SHIFT:.+]] = arith.constant 30
- // CHECK: %[[SCALE:.+]] = "tosa.apply_scale"(%{{.+}}, %[[MULTIPLIER]], %[[SHIFT]]) {double_round = false}
- // CHECK: %[[OUTZP:.+]] = arith.constant -128
- // CHECK: %[[OUT:.+]] = arith.addi %[[SCALE]], %[[OUTZP]]
- // CHECK: %[[MIN:.+]] = arith.constant -128
- // CHECK: %[[MAX:.+]] = arith.constant 127
- // CHECK: %[[CMP_MIN:.+]] = arith.cmpi slt, %[[OUT]], %[[MIN]]
- // CHECK: %[[CLMP_MIN:.+]] = select %[[CMP_MIN]], %[[MIN]], %[[OUT]]
- // CHECK: %[[CMP_MAX:.+]] = arith.cmpi slt, %[[MAX]], %[[OUT]]
- // CHECK: %[[CLMP_MAX:.+]] = select %[[CMP_MAX]], %[[MAX]], %[[CLMP_MIN]]
- // CHECK: %[[TRUNC:.+]] = arith.trunci %[[CLMP_MAX]]
- // CHECK: linalg.yield %[[TRUNC]]
- %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 4], pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, output_zp = -128 : i32}, stride = [4, 4]} : (tensor<1x128x128x2xi8>) -> tensor<1x32x32x2xi8>
- return
-}
-
-// -----
-
-// CHECK-LABEL: @avg_pool_i16
-func @avg_pool_i16(%arg0 : tensor<1x128x128x2xi16>) -> () {
-
- // CHECK: linalg.pooling_nhwc_sum
- // CHECK: linalg.generic
-
- // CHECK: %[[INZP:.+]] = arith.constant -128
- // CHECK: %[[INZP_OFF:.+]] = arith.muli %{{.+}}, %[[INZP]]
- // CHECK: %[[OFFSETED:.+]] = arith.subi %arg1, %[[INZP_OFF]]
- // CHECK: %[[NUMERATOR:.+]] = arith.constant 1073741825
- // CHECK: %[[MULTIPLIER:.+]] = arith.divui %[[NUMERATOR]], %{{.+}}
- // CHECK: %[[SHIFT:.+]] = arith.constant 30
- // CHECK: %[[SCALE:.+]] = "tosa.apply_scale"(%{{.+}}, %[[MULTIPLIER]], %[[SHIFT]]) {double_round = false}
- // CHECK: %[[OUTZP:.+]] = arith.constant -128
- // CHECK: %[[OUT:.+]] = arith.addi %[[SCALE]], %[[OUTZP]]
- // CHECK: %[[MIN:.+]] = arith.constant -32768
- // CHECK: %[[MAX:.+]] = arith.constant 32767
- // CHECK: %[[CMP_MIN:.+]] = arith.cmpi slt, %[[OUT]], %[[MIN]]
- // CHECK: %[[CLMP_MIN:.+]] = select %[[CMP_MIN]], %[[MIN]], %[[OUT]]
- // CHECK: %[[CMP_MAX:.+]] = arith.cmpi slt, %[[MAX]], %[[OUT]]
- // CHECK: %[[CLMP_MAX:.+]] = select %[[CMP_MAX]], %[[MAX]], %[[CLMP_MIN]]
- // CHECK: %[[TRUNC:.+]] = arith.trunci %[[CLMP_MAX]]
- // CHECK: linalg.yield %[[TRUNC]]
- %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 4], pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, output_zp = -128 : i32}, stride = [4, 4]} : (tensor<1x128x128x2xi16>) -> tensor<1x32x32x2xi16>
- return
-}
-
-// -----
-
-// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d1, d2)>
-// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)>
-
-// CHECK-LABEL: @conv2d_f32
-func @conv2d_f32(%input: tensor<1x49x42x27xf32>, %weights: tensor<28x3x3x27xf32>, %bias: tensor<28xf32>) -> () {
- // CHECK: %[[W_IN:.+]] = linalg.init_tensor [3, 3, 27, 28]
- // CHECK: %[[W:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg1 : tensor<28x3x3x27xf32>) outs(%[[W_IN]] : tensor<3x3x27x28xf32>)
- // CHECK: linalg.yield %arg3 : f32
- // CHECK: %[[M_IN:.+]] = linalg.init_tensor [1, 45, 40, 28]
- // CHECK: %[[CST:.+]] = arith.constant 0
- // CHECK: %[[FILL:.+]] = linalg.fill
- // CHECK: %[[B_IN:.+]] = linalg.init_tensor [1, 45, 40, 28]
- // CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[W]] : tensor<1x49x42x27xf32>, tensor<3x3x27x28xf32>) outs(%[[FILL]] : tensor<1x45x40x28xf32>)
- // CHECK: %[[B:.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, %[[CONV]] : tensor<28xf32>, tensor<1x45x40x28xf32>) outs(%[[B_IN]] : tensor<1x45x40x28xf32>)
- // CHECK: arith.addf
- // CHECK: linalg.yield %7 : f32
- %0 = "tosa.conv2d"(%input, %weights, %bias) {pad = [0, 0, 0, 0], stride = [1, 1], dilation = [2, 1]} : (tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>) -> (tensor<1x45x40x28xf32>)
- return
-}
-
-// -----
-
-// CHECK-LABEL: @conv2d_padded_f32
-func @conv2d_padded_f32(%input: tensor<1x47x40x28xf32>, %weights: tensor<28x3x3x28xf32>, %bias: tensor<28xf32>) -> () {
- // CHECK: %[[C0:.+]] = arith.constant 0
- // CHECK: linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
- // CHECK: linalg.yield %[[C0]]
- // CHECK: linalg.conv_2d_nhwc_hwcf
- %0 = "tosa.conv2d"(%input, %weights, %bias) {pad = [1, 1, 1, 1], stride = [1, 1], dilation = [2, 1]} : (tensor<1x47x40x28xf32>, tensor<28x3x3x28xf32>, tensor<28xf32>) -> (tensor<1x45x40x28xf32>)
- return
-}
-
-// -----
-
-// CHECK-LABEL: @conv2d_quant
-func @conv2d_quant(%arg0 : tensor<1x12x12x1xi8>, %arg1 : tensor<1024x3x3x1xi8>, %arg2 : tensor<1024xi32>) -> () {
- // CHECK: %[[C22:.+]] = arith.constant -22
- // CHECK: linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
- // CHECK: linalg.yield %[[C22]]
- // CHECK: linalg.conv_2d_nhwc_hwcf_q
- %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = [1, 1], pad = [1, 1, 1, 1], quantization_info = {input_zp = -22 : i32, weight_zp = 42 : i32}, stride = [1, 1]} : (tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, tensor<1024xi32>) -> tensor<1x12x12x1024xi32>
- return
-}
-
-// -----
-
-// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
-// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-
-// CHECK-LABEL: @depthwise_conv
-func @depthwise_conv(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tensor<3x1x3x11xf32>, %arg2 : tensor<33xf32>) -> () {
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 5, 3, 11]
- // CHECK: [[CST0:%.+]] = arith.constant 0
- // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
- // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33]
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
- // CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
- // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) {
- // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
- // CHECK: [[ADD:%.+]] = arith.addf %arg3, %arg4 : f32
- // CHECK: linalg.yield [[ADD]] : f32
- // CHECK: } -> tensor<1x5x5x33xf32>
- %2 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) { pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1] } : (tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>) -> (tensor<1x5x5x33xf32>)
- return
-}
-
-// -----
-
-// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
-// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-
-// CHECK-LABEL: @depthwise_conv_strides
-func @depthwise_conv_strides(%arg0 : tensor<1x11x9x3xf32>, %arg1 : tensor<3x1x3x11xf32>, %arg2 : tensor<33xf32>) -> () {
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 5, 5, 3, 11]
- // CHECK: [[CST0:%.+]] = arith.constant 0
- // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
- // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33]
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
- // CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
- // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) {
- // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
- // CHECK: [[ADD:%.+]] = arith.addf %arg3, %arg4 : f32
- // CHECK: linalg.yield [[ADD]] : f32
- // CHECK: } -> tensor<1x5x5x33xf32>
- %2 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) { pad = [0, 0, 0, 0], stride = [2, 2], dilation = [1, 1] } : (tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>) -> (tensor<1x5x5x33xf32>)
- return
-}
-
-// -----
-
-// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
-// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-
-// CHECK-LABEL: @depthwise_conv_quant
-func @depthwise_conv_quant(%arg0 : tensor<1x12x12x4xi8>, %arg1 : tensor<3x3x4x128xi8>, %arg2 : tensor<512xi32>) -> () {
- // CHECK: [[PADV:%.+]] = arith.constant -128
- // CHECK: [[PAD:%.+]] = linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
- // CHECK: linalg.yield [[PADV]]
-
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 12, 12, 4, 128]
- // CHECK: [[CST0:%.+]] = arith.constant 0
- // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
- // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 12, 12, 512]
- // CHECK: [[C128:%.+]] = arith.constant -128
- // CHECK: [[C42:%.+]] = arith.constant 42
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins([[PAD]], %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x12x12x4x128xi32>)
- // CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
- // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x12x12x512xi32>) outs([[OUT]] : tensor<1x12x12x512xi32>) {
- // CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors
- // CHECK: [[ADD:%.+]] = arith.addi %arg3, %arg4 : i32
- // CHECK: linalg.yield [[ADD]] : i32
- // CHECK: } -> tensor<1x12x12x512xi32>
- %0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [1, 1, 1, 1], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1], dilation = [1, 1] } : (tensor<1x12x12x4xi8>, tensor<3x3x4x128xi8>, tensor<512xi32>) -> tensor<1x12x12x512xi32>
- return
-}
-
-// -----
-
-// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
-// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-
-// CHECK-LABEL: @depthwise_conv_quant_dilations
-func @depthwise_conv_quant_dilations(%arg0 : tensor<1x14x14x4xi8>, %arg1 : tensor<3x3x4x128xi8>, %arg2 : tensor<512xi32>) -> () {
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 10, 10, 4, 128]
- // CHECK: [[CST0:%.+]] = arith.constant 0
- // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
- // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 10, 10, 512]
- // CHECK: [[C128:%.+]] = arith.constant -128
- // CHECK: [[C42:%.+]] = arith.constant 42
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x10x10x4x128xi32>)
- // CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
- // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x10x10x512xi32>) outs([[OUT]] : tensor<1x10x10x512xi32>) {
- // CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors
- // CHECK: [[ADD:%.+]] = arith.addi %arg3, %arg4 : i32
- // CHECK: linalg.yield [[ADD]] : i32
- // CHECK: } -> tensor<1x10x10x512xi32>
- %0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1], dilation = [2, 2] } : (tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, tensor<512xi32>) -> tensor<1x10x10x512xi32>
- return
-}
-
-// -----
-
// CHECK-LABEL: @resize_nearest
func @resize_nearest(%input: tensor<1x2x2x1xf32>) -> () {
// CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 4, 4, 1]
More information about the Mlir-commits
mailing list