[Mlir-commits] [mlir] 312c514 - [mlir][sparse] python driven test for SDDMM

Aart Bik llvmlistbot at llvm.org
Mon Dec 13 12:49:02 PST 2021


Author: Aart Bik
Date: 2021-12-13T12:48:55-08:00
New Revision: 312c51406da68aa512641d444cb7e369b2c4f1cf

URL: https://github.com/llvm/llvm-project/commit/312c51406da68aa512641d444cb7e369b2c4f1cf
DIFF: https://github.com/llvm/llvm-project/commit/312c51406da68aa512641d444cb7e369b2c4f1cf.diff

LOG: [mlir][sparse] python driven test for SDDMM

explores various sparsity combinations of
the SDMM kernel and verifies that the computed
result is the same for all cases

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D115476

Added: 
    mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py

Modified: 
    mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py

Removed: 
    


################################################################################
diff  --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
new file mode 100644
index 000000000000..feeedcc9bc97
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
@@ -0,0 +1,188 @@
+# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \
+# RUN:   %PYTHON %s | FileCheck %s
+
+import ctypes
+import numpy as np
+import os
+
+import mlir.all_passes_registration
+
+from mlir import ir
+from mlir import runtime as rt
+from mlir import execution_engine
+from mlir import passmanager
+
+from mlir.dialects import sparse_tensor as st
+from mlir.dialects import builtin
+from mlir.dialects.linalg.opdsl import lang as dsl
+
+
+ at dsl.linalg_structured_op
+def sddmm_dsl(
+    A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
+    B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
+    S=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N),
+    C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)):
+  C[dsl.D.m,
+    dsl.D.n] += S[dsl.D.m, dsl.D.n] * A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
+
+
+def build_SDDMM(attr: st.EncodingAttr):
+  """Build SDDMM kernel.
+
+  This method generates a linalg op with for matrix multiplication using
+  just the Python API. Effectively, a generic linalg op is constructed
+  that computes C(i,j) += S(i,j) SUM_k A(i,k) B(k,j) for sparse S.
+  """
+  module = ir.Module.create()
+  f64 = ir.F64Type.get()
+  a = ir.RankedTensorType.get([8, 8], f64)
+  b = ir.RankedTensorType.get([8, 8], f64)
+  c = ir.RankedTensorType.get([8, 8], f64)
+  s = ir.RankedTensorType.get([8, 8], f64, attr)
+  arguments = [a, b, s, c]
+  with ir.InsertionPoint(module.body):
+
+    @builtin.FuncOp.from_py_func(*arguments)
+    def sddmm(*args):
+      return sddmm_dsl(args[0], args[1], args[2], outs=[args[3]])
+
+  return module
+
+
+def boilerplate(attr: st.EncodingAttr):
+  """Returns boilerplate code for main driver."""
+  return f"""
+func @main(%a: tensor<8x8xf64>,
+           %b: tensor<8x8xf64>,
+           %c: tensor<8x8xf64>) -> tensor<8x8xf64> attributes {{ llvm.emit_c_interface }} {{
+  %t = arith.constant sparse<[[0,0], [0,2], [4,1]], [1.0, 2.0, 3.0]> : tensor<8x8xf64>
+  %s = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, {attr}>
+  %0 = call @sddmm(%a, %b, %s, %c) : (tensor<8x8xf64>,
+                                      tensor<8x8xf64>,
+                                      tensor<8x8xf64, {attr}>,
+                                      tensor<8x8xf64>) -> tensor<8x8xf64>
+  return %0 : tensor<8x8xf64>
+}}
+"""
+
+
+def build_compile_and_run_SDDMMM(attr: st.EncodingAttr, opt: str,
+                                 support_lib: str, compiler):
+  # Build.
+  module = build_SDDMM(attr)
+  func = str(module.operation.regions[0].blocks[0].operations[0].operation)
+  module = ir.Module.parse(func + boilerplate(attr))
+
+  # Compile.
+  compiler(module)
+  engine = execution_engine.ExecutionEngine(
+      module, opt_level=0, shared_libs=[support_lib])
+
+  # Set up numpy input and buffer for output.
+  a = np.array([[1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1],
+                [1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2],
+                [1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3],
+                [1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4],
+                [1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5],
+                [1.6, 2.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6],
+                [1.7, 2.7, 3.7, 4.7, 5.7, 6.7, 7.7, 8.7],
+                [1.8, 2.8, 3.8, 4.8, 5.8, 6.8, 7.8, 8.8]], np.float64)
+  b = np.ones((8, 8), np.float64)
+  c = np.zeros((8, 8), np.float64)
+
+  mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
+  mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
+  mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
+
+  # Allocate a MemRefDescriptor to receive the output tensor.
+  # The buffer itself is allocated inside the MLIR code generation.
+  ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
+  mem_out = ctypes.pointer(ctypes.pointer(ref_out))
+
+  # Invoke the kernel and get numpy output.
+  # Built-in bufferization uses in-out buffers.
+  # TODO: replace with inplace comprehensive bufferization.
+  engine.invoke('main', mem_out, mem_a, mem_b, mem_c)
+
+  # Sanity check on computed result. Only a few elements
+  # are sampled from the full dense matrix multiplication.
+  full_matmul = np.matmul(a, b)
+  expected = np.zeros((8, 8), np.float64)
+  expected[0, 0] = 1.0 * full_matmul[0, 0]
+  expected[0, 2] = 2.0 * full_matmul[0, 2]
+  expected[4, 1] = 3.0 * full_matmul[4, 1]
+  c = rt.ranked_memref_to_numpy(mem_out[0])
+  if np.allclose(c, expected):
+    pass
+  else:
+    quit(f'FAILURE')
+
+
+class SparseCompiler:
+  """Sparse compiler passes."""
+
+  def __init__(self, options: str):
+    pipeline = (
+        f'sparsification{{{options}}},'
+        f'sparse-tensor-conversion,'
+        f'builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),'
+        f'convert-scf-to-std,'
+        f'func-bufferize,'
+        f'tensor-constant-bufferize,'
+        f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),'
+        f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},'
+        f'lower-affine,'
+        f'convert-memref-to-llvm,'
+        f'convert-std-to-llvm,'
+        f'reconcile-unrealized-casts')
+    self.pipeline = pipeline
+
+  def __call__(self, module: ir.Module):
+    passmanager.PassManager.parse(self.pipeline).run(module)
+
+
+def main():
+  support_lib = os.getenv('SUPPORT_LIB')
+  assert support_lib is not None, 'SUPPORT_LIB is undefined'
+  if not os.path.exists(support_lib):
+    raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
+                            support_lib)
+
+  # CHECK-LABEL: TEST: testSDDMMM
+  print('\nTEST: testSDDMMM')
+  with ir.Context() as ctx, ir.Location.unknown():
+    count = 0
+    # Loop over various ways to compile and annotate the SDDMM kernel with
+    # a *single* sparse tensor. Note that we deliberate do not exhaustively
+    # search the full state space to reduce runtime of the test. It is
+    # straightforward to adapt the code below to explore more combinations.
+    levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
+              [st.DimLevelType.dense, st.DimLevelType.compressed],
+              [st.DimLevelType.compressed, st.DimLevelType.dense],
+              [st.DimLevelType.compressed, st.DimLevelType.compressed]]
+    orderings = [
+        ir.AffineMap.get_permutation([0, 1]),
+        ir.AffineMap.get_permutation([1, 0])
+    ]
+    for level in levels:
+      for ordering in orderings:
+        for pwidth in [32]:
+          for iwidth in [32]:
+            for par in [0]:
+              for vec in [0, 1]:
+                for e in [True]:
+                  vl = 1 if vec == 0 else 16
+                  attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth)
+                  opt = (f'parallelization-strategy={par} '
+                         f'vectorization-strategy={vec} '
+                         f'vl={vl} enable-simd-index32={e}')
+                  compiler = SparseCompiler(options=opt)
+                  build_compile_and_run_SDDMMM(attr, opt, support_lib, compiler)
+                  count = count + 1
+  # CHECK: Passed 16 tests
+  print('Passed ', count, 'tests')
+
+
+if __name__ == '__main__':
+  main()

diff  --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
index b6a1eaa6bb93..76ff846aeea6 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
@@ -173,5 +173,6 @@ def main():
     # CHECK: Passed 8 tests
     print('Passed ', count, 'tests')
 
+
 if __name__ == '__main__':
   main()


        


More information about the Mlir-commits mailing list