[Mlir-commits] [mlir] 24ea94a - [mlir][sparse][python] migrate more code from boilerplate into proper numpy land

Aart Bik llvmlistbot at llvm.org
Fri Aug 20 09:18:32 PDT 2021


Author: Aart Bik
Date: 2021-08-20T09:18:17-07:00
New Revision: 24ea94ad0c1d150a4163577e8f8bd8487edf13ef

URL: https://github.com/llvm/llvm-project/commit/24ea94ad0c1d150a4163577e8f8bd8487edf13ef
DIFF: https://github.com/llvm/llvm-project/commit/24ea94ad0c1d150a4163577e8f8bd8487edf13ef.diff

LOG: [mlir][sparse][python] migrate more code from boilerplate into proper numpy land

The boilerplate was setting up some arrays for testing. To fully illustrate
python - MLIR potential, however, this data should also come from numpy land.

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D108336

Added: 
    

Modified: 
    mlir/test/python/dialects/sparse_tensor/test_SpMM.py

Removed: 
    


################################################################################
diff  --git a/mlir/test/python/dialects/sparse_tensor/test_SpMM.py b/mlir/test/python/dialects/sparse_tensor/test_SpMM.py
index 5b856bacd03a..1c04ce550077 100644
--- a/mlir/test/python/dialects/sparse_tensor/test_SpMM.py
+++ b/mlir/test/python/dialects/sparse_tensor/test_SpMM.py
@@ -55,24 +55,19 @@ def spMxM(*args):
 def boilerplate(attr: st.EncodingAttr):
   """Returns boilerplate main method.
 
-  This method sets up a boilerplate main method that calls the generated
-  sparse kernel. For convenience, this part is purely done as string input.
+  This method sets up a boilerplate main method that takes three tensors
+  (a, b, c), converts the first tensor a into s sparse tensor, and then
+  calls the sparse kernel for matrix multiplication. For convenience,
+  this part is purely done as string input.
   """
   return f"""
-func @main(%c: tensor<3x2xf64>) -> tensor<3x2xf64>
+func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
   attributes {{ llvm.emit_c_interface }} {{
-  %0 = constant dense<[ [ 1.1,  0.0,  0.0,  1.4 ],
-                        [ 0.0,  0.0,  0.0,  0.0 ],
-                        [ 0.0,  0.0,  3.3,  0.0 ]]> : tensor<3x4xf64>
-  %a = sparse_tensor.convert %0 : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
-  %b = constant dense<[ [ 1.0,  2.0 ],
-                        [ 4.0,  3.0 ],
-                        [ 5.0,  6.0 ],
-                        [ 8.0,  7.0 ]]> : tensor<4x2xf64>
-  %1 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
+  %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
+  %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
                                   tensor<4x2xf64>,
                                   tensor<3x2xf64>) -> tensor<3x2xf64>
-  return %1 : tensor<3x2xf64>
+  return %0 : tensor<3x2xf64>
 }}
 """
 
@@ -83,25 +78,34 @@ def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str,
   module = build_SpMM(attr)
   func = str(module.operation.regions[0].blocks[0].operations[0].operation)
   module = ir.Module.parse(func + boilerplate(attr))
+
   # Compile.
   compiler(module)
   engine = execution_engine.ExecutionEngine(
       module, opt_level=0, shared_libs=[support_lib])
-  # Set up numpy input, invoke the kernel, and get numpy output.
+
+  # Set up numpy input and buffer for output.
+  a = np.array(
+      [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]],
+      np.float64)
+  b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
+  c = np.zeros((3, 2), np.float64)
+  out = np.zeros((3, 2), np.float64)
+
+  mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
+  mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
+  mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
+  mem_out = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(out)))
+
+  # Invoke the kernel and get numpy output.
   # Built-in bufferization uses in-out buffers.
   # TODO: replace with inplace comprehensive bufferization.
-  Cin = np.zeros((3, 2), np.double)
-  Cout = np.zeros((3, 2), np.double)
-  Cin_memref_ptr = ctypes.pointer(
-      ctypes.pointer(rt.get_ranked_memref_descriptor(Cin)))
-  Cout_memref_ptr = ctypes.pointer(
-      ctypes.pointer(rt.get_ranked_memref_descriptor(Cout)))
-  engine.invoke('main', Cout_memref_ptr, Cin_memref_ptr)
-  Cresult = rt.ranked_memref_to_numpy(Cout_memref_ptr[0])
+  engine.invoke('main', mem_out, mem_a, mem_b, mem_c)
 
   # Sanity check on computed result.
-  expected = [[12.3, 12.0], [0.0, 0.0], [16.5, 19.8]]
-  if np.allclose(Cresult, expected):
+  expected = np.matmul(a, b);
+  c = rt.ranked_memref_to_numpy(mem_out[0])
+  if np.allclose(c, expected):
     pass
   else:
     quit(f'FAILURE')
@@ -132,7 +136,10 @@ def __call__(self, module: ir.Module):
 # CHECK: Passed 72 tests
 @run
 def testSpMM():
+  # Obtain path to runtime support library.
   support_lib = os.getenv('SUPPORT_LIB')
+  assert os.path.exists(support_lib), f'{support_lib} does not exist'
+
   with ir.Context() as ctx, ir.Location.unknown():
     count = 0
     # Fixed compiler optimization strategy.


        


More information about the Mlir-commits mailing list