[Mlir-commits] [mlir] 19a906f - [mlir][sparse][python] make imports more selective
Aart Bik
llvmlistbot at llvm.org
Mon Aug 16 11:53:38 PDT 2021
Author: Aart Bik
Date: 2021-08-16T11:53:29-07:00
New Revision: 19a906f372226e2ef491a355306afe6a2c35b354
URL: https://github.com/llvm/llvm-project/commit/19a906f372226e2ef491a355306afe6a2c35b354
DIFF: https://github.com/llvm/llvm-project/commit/19a906f372226e2ef491a355306afe6a2c35b354.diff
LOG: [mlir][sparse][python] make imports more selective
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D108055
Added:
Modified:
mlir/test/python/dialects/sparse_tensor/test_SpMM.py
Removed:
################################################################################
diff --git a/mlir/test/python/dialects/sparse_tensor/test_SpMM.py b/mlir/test/python/dialects/sparse_tensor/test_SpMM.py
index 17ed92cb092ce..5b856bacd03a1 100644
--- a/mlir/test/python/dialects/sparse_tensor/test_SpMM.py
+++ b/mlir/test/python/dialects/sparse_tensor/test_SpMM.py
@@ -1,17 +1,19 @@
# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
-import os
import ctypes
-import mlir.all_passes_registration
import numpy as np
+import os
+
+import mlir.all_passes_registration
+
+from mlir import ir
+from mlir import runtime as rt
+from mlir import execution_engine
+from mlir import passmanager
+from mlir.dialects import sparse_tensor as st
from mlir.dialects import builtin
-from mlir.dialects.linalg.opdsl.lang import *
-from mlir.dialects.sparse_tensor import *
-from mlir.execution_engine import *
-from mlir.ir import *
-from mlir.passmanager import *
-from mlir.runtime import *
+from mlir.dialects.linalg.opdsl import lang as dsl
def run(f):
@@ -20,28 +22,28 @@ def run(f):
return f
- at linalg_structured_op
+ at dsl.linalg_structured_op
def matmul_dsl(
- A=TensorDef(T, S.M, S.K),
- B=TensorDef(T, S.K, S.N),
- C=TensorDef(T, S.M, S.N, output=True)):
- C[D.m, D.n] += A[D.m, D.k] * B[D.k, D.n]
+ A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
+ B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
+ C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)):
+ C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
-def build_SpMM(attr: EncodingAttr):
+def build_SpMM(attr: st.EncodingAttr):
"""Build SpMM kernel.
This method generates a linalg op with for matrix multiplication using
just the Python API. Effectively, a generic linalg op is constructed
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
"""
- module = Module.create()
+ module = ir.Module.create()
f64 = ir.F64Type.get()
- a = RankedTensorType.get([3, 4], f64, attr)
- b = RankedTensorType.get([4, 2], f64)
- c = RankedTensorType.get([3, 2], f64)
+ a = ir.RankedTensorType.get([3, 4], f64, attr)
+ b = ir.RankedTensorType.get([4, 2], f64)
+ c = ir.RankedTensorType.get([3, 2], f64)
arguments = [a, b, c]
- with InsertionPoint(module.body):
+ with ir.InsertionPoint(module.body):
@builtin.FuncOp.from_py_func(*arguments)
def spMxM(*args):
@@ -50,7 +52,7 @@ def spMxM(*args):
return module
-def boilerplate(attr: EncodingAttr):
+def boilerplate(attr: st.EncodingAttr):
"""Returns boilerplate main method.
This method sets up a boilerplate main method that calls the generated
@@ -75,14 +77,15 @@ def boilerplate(attr: EncodingAttr):
"""
-def build_compile_and_run_SpMM(attr: EncodingAttr, support_lib: str, compiler):
+def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str,
+ compiler):
# Build.
module = build_SpMM(attr)
func = str(module.operation.regions[0].blocks[0].operations[0].operation)
- module = Module.parse(func + boilerplate(attr))
+ module = ir.Module.parse(func + boilerplate(attr))
# Compile.
compiler(module)
- execution_engine = ExecutionEngine(
+ engine = execution_engine.ExecutionEngine(
module, opt_level=0, shared_libs=[support_lib])
# Set up numpy input, invoke the kernel, and get numpy output.
# Built-in bufferization uses in-out buffers.
@@ -90,11 +93,11 @@ def build_compile_and_run_SpMM(attr: EncodingAttr, support_lib: str, compiler):
Cin = np.zeros((3, 2), np.double)
Cout = np.zeros((3, 2), np.double)
Cin_memref_ptr = ctypes.pointer(
- ctypes.pointer(get_ranked_memref_descriptor(Cin)))
+ ctypes.pointer(rt.get_ranked_memref_descriptor(Cin)))
Cout_memref_ptr = ctypes.pointer(
- ctypes.pointer(get_ranked_memref_descriptor(Cout)))
- execution_engine.invoke('main', Cout_memref_ptr, Cin_memref_ptr)
- Cresult = ranked_memref_to_numpy(Cout_memref_ptr[0])
+ ctypes.pointer(rt.get_ranked_memref_descriptor(Cout)))
+ engine.invoke('main', Cout_memref_ptr, Cin_memref_ptr)
+ Cresult = rt.ranked_memref_to_numpy(Cout_memref_ptr[0])
# Sanity check on computed result.
expected = [[12.3, 12.0], [0.0, 0.0], [16.5, 19.8]]
@@ -121,8 +124,8 @@ def __init__(self, options: str):
f'convert-std-to-llvm')
self.pipeline = pipeline
- def __call__(self, module: Module):
- PassManager.parse(self.pipeline).run(module)
+ def __call__(self, module: ir.Module):
+ passmanager.PassManager.parse(self.pipeline).run(module)
# CHECK-LABEL: TEST: testSpMM
@@ -130,7 +133,7 @@ def __call__(self, module: Module):
@run
def testSpMM():
support_lib = os.getenv('SUPPORT_LIB')
- with Context() as ctx, Location.unknown():
+ with ir.Context() as ctx, ir.Location.unknown():
count = 0
# Fixed compiler optimization strategy.
# TODO: explore state space here too
@@ -144,20 +147,20 @@ def testSpMM():
# Exhaustive loop over various ways to annotate a kernel with
# a *single* sparse tensor. Even this subset already gives
# quite a large state space!
- levels = [[DimLevelType.dense, DimLevelType.dense],
- [DimLevelType.dense, DimLevelType.compressed],
- [DimLevelType.compressed, DimLevelType.dense],
- [DimLevelType.compressed, DimLevelType.compressed]]
+ levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
+ [st.DimLevelType.dense, st.DimLevelType.compressed],
+ [st.DimLevelType.compressed, st.DimLevelType.dense],
+ [st.DimLevelType.compressed, st.DimLevelType.compressed]]
orderings = [
- AffineMap.get_permutation([0, 1]),
- AffineMap.get_permutation([1, 0])
+ ir.AffineMap.get_permutation([0, 1]),
+ ir.AffineMap.get_permutation([1, 0])
]
bitwidths = [0, 8, 32]
- for levels in levels:
+ for level in levels:
for ordering in orderings:
for pwidth in bitwidths:
for iwidth in bitwidths:
- attr = EncodingAttr.get(levels, ordering, pwidth, iwidth)
+ attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth)
compiler = SparseCompiler(options=opt)
build_compile_and_run_SpMM(attr, support_lib, compiler)
count = count + 1
More information about the Mlir-commits
mailing list