[Mlir-commits] [mlir] a1f4656 - [mlir][tosa] Add quantized and unquantized versions for tosa.depthwise_conv2d lowering

Rob Suderman llvmlistbot at llvm.org
Tue Aug 10 14:35:32 PDT 2021


Author: natashaknk
Date: 2021-08-10T14:29:26-07:00
New Revision: a1f46569a186cad80ebae87280292ad4cdf703eb

URL: https://github.com/llvm/llvm-project/commit/a1f46569a186cad80ebae87280292ad4cdf703eb
DIFF: https://github.com/llvm/llvm-project/commit/a1f46569a186cad80ebae87280292ad4cdf703eb.diff

LOG: [mlir][tosa] Add quantized and unquantized versions for tosa.depthwise_conv2d lowering

Reviewed By: rsuderman

Differential Revision: https://reviews.llvm.org/D107855

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
    mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
    mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
    mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 6053b0707c962..53b54e1bff9fb 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -905,6 +905,202 @@ structured_op: !LinalgStructuredOpConfig
                 - !ScalarExpression
                   scalar_arg: K
 --- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+  name: depthwise_conv_2D_nchw
+  cpp_class_name: DepthwiseConv2DNchwOp
+  doc: |-
+    Performs depth-wise 2-D convolution.
+
+    Numeric casting is performed on the operands to the inner multiply, promoting
+    them to the same data type as the accumulator/output.
+structured_op: !LinalgStructuredOpConfig
+  args:
+  - !LinalgOperandDefConfig
+    name: I
+    usage: InputOperand
+    type_var: T1
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]
+      -> (s0, s1, s2, s3)>
+  - !LinalgOperandDefConfig
+    name: K
+    usage: InputOperand
+    type_var: T2
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]
+      -> (s4, s5, s3, s6)>
+  - !LinalgOperandDefConfig
+    name: O
+    usage: OutputOperand
+    type_var: U
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]
+      -> (s0, s7, s8, s3, s6)>
+  - !LinalgOperandDefConfig
+    name: strides
+    usage: IndexAttribute
+    type_var: I64
+    attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12] -> (s9, s10)>
+  - !LinalgOperandDefConfig
+    name: dilations
+    usage: IndexAttribute
+    type_var: I64
+    attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12] -> (s11, s12)>
+  indexing_maps: !LinalgIndexingMapsConfig
+    static_indexing_maps:
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> (d0, d1 * s9 + d3 * s11, d2 * s10 + d4 * s12, d5)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> (d3, d4, d5, d6)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> (d0, d1, d2, d5, d6)>
+  iterator_types:
+  - parallel
+  - parallel
+  - parallel
+  - reduction
+  - reduction
+  - parallel
+  - parallel
+  assignments:
+  - !ScalarAssign
+    arg: O
+    value: !ScalarExpression
+      scalar_apply:
+        fn_name: add
+        operands:
+        - !ScalarExpression
+          scalar_arg: O
+        - !ScalarExpression
+          scalar_apply:
+            fn_name: mul
+            operands:
+            - !ScalarExpression
+              symbolic_cast:
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: I
+            - !ScalarExpression
+              symbolic_cast:
+                type_var: U
+                operands:
+                - !ScalarExpression
+                  scalar_arg: K
+--- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+  name: depthwise_conv2D_nchw_q
+  cpp_class_name: DepthwiseConv2DNchwQOp
+  doc: |-
+    Performs depth-wise 2-D convolution.
+
+    Numeric casting is performed on the operands to the inner multiply, promoting
+    them to the same data type as the accumulator/output.
+structured_op: !LinalgStructuredOpConfig
+  args:
+  - !LinalgOperandDefConfig
+    name: I
+    usage: InputOperand
+    type_var: T1
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]
+      -> (s0, s1, s2, s3)>
+  - !LinalgOperandDefConfig
+    name: K
+    usage: InputOperand
+    type_var: T2
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]
+      -> (s4, s5, s3, s6)>
+  - !LinalgOperandDefConfig
+    name: IZp
+    usage: InputOperand
+    type_var: I32
+  - !LinalgOperandDefConfig
+    name: KZp
+    usage: InputOperand
+    type_var: I32
+  - !LinalgOperandDefConfig
+    name: O
+    usage: OutputOperand
+    type_var: U
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]
+      -> (s0, s7, s8, s3, s6)>
+  - !LinalgOperandDefConfig
+    name: strides
+    usage: IndexAttribute
+    type_var: I64
+    attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12] -> (s9, s10)>
+  - !LinalgOperandDefConfig
+    name: dilations
+    usage: IndexAttribute
+    type_var: I64
+    attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
+      s12] -> (s11, s12)>
+  indexing_maps: !LinalgIndexingMapsConfig
+    static_indexing_maps:
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> (d0, d1 * s9 + d3 * s11, d2 * s10 + d4 * s12, d5)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> (d3, d4, d5, d6)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> ()>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> ()>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6)[s0, s1, s2, s3, s4, s5, s6, s7, s8,
+      s9, s10, s11, s12] -> (d0, d1, d2, d5, d6)>
+  iterator_types:
+  - parallel
+  - parallel
+  - parallel
+  - reduction
+  - reduction
+  - parallel
+  - parallel
+  assignments:
+  - !ScalarAssign
+    arg: O
+    value: !ScalarExpression
+      scalar_apply:
+        fn_name: add
+        operands:
+        - !ScalarExpression
+          scalar_arg: O
+        - !ScalarExpression
+          scalar_apply:
+            fn_name: mul
+            operands:
+            - !ScalarExpression
+              scalar_apply:
+                fn_name: sub
+                operands:
+                - !ScalarExpression
+                  symbolic_cast:
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: I
+                - !ScalarExpression
+                  symbolic_cast:
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: IZp
+            - !ScalarExpression
+              scalar_apply:
+                fn_name: sub
+                operands:
+                - !ScalarExpression
+                  symbolic_cast:
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: K
+                - !ScalarExpression
+                  symbolic_cast:
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: KZp
+--- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: conv_2d_nchw
   cpp_class_name: Conv2DNchwOp
@@ -1700,4 +1896,3 @@ structured_op: !LinalgStructuredOpConfig
                     operands:
                     - !ScalarExpression
                       scalar_arg: I
-

diff  --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index ea3fe0aec59fd..d0b6274ddc0a1 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -946,7 +946,7 @@ convolutionMatchAndRewriterHelper(Operation *op,
     return success();
   }
 
-  if (isa<tosa::DepthwiseConv2DOp>(op) && !isQuantized) {
+  if (isa<tosa::DepthwiseConv2DOp>(op)) {
     ShapedType linalgConvTy =
         RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2],
                                weightShape[2], weightShape[3]},
@@ -954,11 +954,23 @@ convolutionMatchAndRewriterHelper(Operation *op,
 
     Value biasReshape =
         rewriter.create<tosa::ReshapeOp>(loc, linalgConvTy, biasBroadcast);
-    Value conv = rewriter
-                     .create<linalg::DepthwiseConvInputNHWCFilterHWCFOp>(
-                         loc, linalgConvTy, ValueRange{input, weight},
-                         ValueRange{biasReshape}, dilationAttr, strideAttr)
-                     .getResult(0);
+    Value conv;
+    if (!isQuantized) {
+      conv = rewriter
+                 .create<linalg::DepthwiseConv2DNchwOp>(
+                     loc, linalgConvTy, ValueRange{input, weight},
+                     ValueRange{biasReshape}, dilationAttr, strideAttr)
+                 .getResult(0);
+    } else {
+      auto iZpVal = rewriter.create<ConstantOp>(loc, iZp);
+      auto kZpVal = rewriter.create<ConstantOp>(loc, kZp);
+      conv =
+          rewriter
+              .create<linalg::DepthwiseConv2DNchwQOp>(
+                  loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal},
+                  ValueRange{biasReshape}, dilationAttr, strideAttr)
+              .getResult(0);
+    }
 
     Value reshape = rewriter.create<tosa::ReshapeOp>(loc, resultTy, conv);
     rewriter.replaceOp(op, reshape);

diff  --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index 11fcf9033b487..fc92c196a059b 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -223,6 +223,43 @@ def conv_2d_nchw(
            ]) * cast(U, K[D.f, D.c, D.kh, D.kw])
 
 
+def depthwise_conv2D_nchw(  #TODO: Fix name
+    I=TensorDef(T1, S.N, S.IH, S.IW, S.IC),
+    K=TensorDef(T2, S.KH, S.KW, S.IC, S.CM),
+    O=TensorDef(U, S.N, S.OH, S.OW, S.IC, S.CM, output=True),
+    strides=AttributeDef(S.SH, S.SW),
+    dilations=AttributeDef(S.DH, S.DW)):
+  """Performs depth-wise 2-D convolution.
+
+  Numeric casting is performed on the operands to the inner multiply, promoting
+  them to the same data type as the accumulator/output.
+  """
+  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.ic, D.cm)
+  O[D.n, D.oh, D.ow, D.ic, D.cm] += cast(
+      U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
+           D.ic]) * cast(U, K[D.kh, D.kw, D.ic, D.cm])
+
+
+def depthwise_conv2D_nchw_q(  #TODO: Fix name
+    I=TensorDef(T1, S.N, S.IH, S.IW, S.IC),
+    K=TensorDef(T2, S.KH, S.KW, S.IC, S.CM),
+    IZp=ScalarDef(I32),
+    KZp=ScalarDef(I32),
+    O=TensorDef(U, S.N, S.OH, S.OW, S.IC, S.CM, output=True),
+    strides=AttributeDef(S.SH, S.SW),
+    dilations=AttributeDef(S.DH, S.DW)):
+  """Performs depth-wise 2-D convolution.
+
+  Numeric casting is performed on the operands to the inner multiply, promoting
+  them to the same data type as the accumulator/output.
+  """
+  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.ic, D.cm)
+  O[D.n, D.oh, D.ow, D.ic, D.cm] += (
+      (cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
+                 D.ic]) - cast(U, IZp)) *
+      (cast(U, K[D.kh, D.kw, D.ic, D.cm]) - cast(U, KZp)))
+
+
 @linalg_structured_op
 def pooling_nhwc_sum(
     I=TensorDef(T1, S.N, S.H, S.W, S.C),

diff  --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
index 59454f2328a59..554fa2d4ff151 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
@@ -1219,7 +1219,7 @@ func @conv2d_quant(%arg0 : tensor<1x12x12x1xi8>, %arg1 : tensor<1024x3x3x1xi8>,
   // CHECK:     linalg.yield %arg3 : i32
   // CHECK:   %[[C128:.+]] = constant -128 
   // CHECK:   %[[C42:.+]] = constant 42 
-  // CHECK:   linalg.conv_2d_input_nhwc_filter_ohwi_poly_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %[[C128]], %[[C42]] : tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, i32, i32) outs(%1 : tensor<1x10x10x1024xi32>) 
+  // CHECK:   linalg.conv_2d_input_nhwc_filter_ohwi_poly_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %[[C128]], %[[C42]] : tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, i32, i32) outs(%1 : tensor<1x10x10x1024xi32>)
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = [1, 1], pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1]} : (tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, tensor<1024xi32>) -> tensor<1x10x10x1024xi32>
   return
 }
@@ -1237,7 +1237,7 @@ func @depthwise_conv(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tensor<3x1x3x11xf32>,
   // CHECK:   linalg.yield %arg3 : f32
   // CHECK: } -> tensor<1x5x5x33xf32>
   // CHECK: [[DBIAS:%.+]] = linalg.tensor_expand_shape [[BIAS]] {{\[}}[0], [1], [2], [3, 4]]
-  // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[DBIAS]] : tensor<1x5x5x3x11xf32>)
+  // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2D_nchw {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[DBIAS]] : tensor<1x5x5x3x11xf32>)
   // CHECK: linalg.tensor_collapse_shape %3 {{\[}}[0], [1], [2], [3, 4]]
   %2 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) { pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1] } : (tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>)  -> (tensor<1x5x5x33xf32>)
   return
@@ -1245,6 +1245,27 @@ func @depthwise_conv(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tensor<3x1x3x11xf32>,
 
 // -----
 
+// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @depthwise_conv_quant
+func @depthwise_conv_quant(%arg0 : tensor<1x12x12x4xi8>, %arg1 : tensor<3x3x4x128xi8>, %arg2 : tensor<512xi32>) -> () {
+  // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 10, 10, 512]
+  // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<512xi32>) outs([[INIT]] : tensor<1x10x10x512xi32>) {
+  // CHECK: ^bb0(%arg3: i32, %arg4: i32):  // no predecessors
+  // CHECK:   linalg.yield %arg3 : i32
+  // CHECK: } -> tensor<1x10x10x512xi32>
+  // CHECK: [[DBIAS:%.+]] = linalg.tensor_expand_shape [[BIAS]] {{\[}}[0], [1], [2], [3, 4]]
+  // CHECK: %[[C128:.+]] = constant -128
+  // CHECK: %[[C42:.+]] = constant 42
+  // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nchw_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %[[C128]], %[[C42]] : tensor<1x12x12x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[DBIAS]] : tensor<1x10x10x4x128xi32>)
+  // CHECK: linalg.tensor_collapse_shape %3 {{\[}}[0], [1], [2], [3, 4]]
+  %0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1], dilation = [1, 1] } : (tensor<1x12x12x4xi8>, tensor<3x3x4x128xi8>, tensor<512xi32>)  -> tensor<1x10x10x512xi32>
+  return
+}
+
+// -----
+
 // CHECK-LABEL: @transpose_conv
 func @transpose_conv(%arg0 : tensor<1x12x12x2xf32>, %arg1 : tensor<4x3x3x2xf32>, %arg2 : tensor<4xf32>) -> () {
   // CHECK: [[PAD:%.+]] = linalg.pad_tensor %arg0 low[0, 2, 2, 0] high[0, 2, 2, 0]


        


More information about the Mlir-commits mailing list