[Mlir-commits] [mlir] 9d5239d - [mlir][Linalg] Add fusion of IndexedGenericOp with TensorReshapeOp by expansion.

llvmlistbot at llvm.org llvmlistbot at llvm.org
Tue Oct 27 16:15:50 PDT 2020


Author: MaheshRavishankar
Date: 2020-10-27T16:15:34-07:00
New Revision: 9d5239d39e48b8b171a0fbc47dbbb22381f4d9be

URL: https://github.com/llvm/llvm-project/commit/9d5239d39e48b8b171a0fbc47dbbb22381f4d9be
DIFF: https://github.com/llvm/llvm-project/commit/9d5239d39e48b8b171a0fbc47dbbb22381f4d9be.diff

LOG: [mlir][Linalg] Add fusion of IndexedGenericOp with TensorReshapeOp by expansion.

This patch adds support for fusing linalg.indexed_generic op with
linalg.tensor_reshape op by expansion, i.e.
- linalg.indexed_generic op -> linalg.tensor_reshape op when the
  latter is expanding.
- linalg.tensor_reshape op -> linalg.indexed_generic op when the
  former is folding.

Differential Revision: https://reviews.llvm.org/D90082

Added: 
    

Modified: 
    mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
    mlir/test/Dialect/Linalg/reshape_fusion.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp b/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
index f2a3fb7d7766..59e2d4cc5673 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
@@ -413,13 +413,13 @@ static LinalgOp createLinalgOpOfSameType(LinalgOp op, PatternRewriter &rewriter,
 static bool isFusableWithReshapeByDimExpansion(LinalgOp linalgOp,
                                                unsigned fusedTensorIndex) {
   // Is fusable only if:
-  // - The linalgOp is a generic op.
+  // - The linalgOp is a generic op, or an indexed_generic.
   // - All the indexing maps for operands in linalgOp are projected
   //   permutations.
   // - The indexing map at the position representing the fused tensor is a
   //   permutation.
   // - All the loops in linalgOp are parallel loops.
-  return isa<GenericOp>(linalgOp.getOperation()) &&
+  return isa<GenericOp, IndexedGenericOp>(linalgOp.getOperation()) &&
          linalgOp.hasTensorSemantics() &&
          llvm::all_of(linalgOp.indexing_maps().getValue().take_front(
                           linalgOp.getNumInputs()),
@@ -460,7 +460,7 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, TensorReshapeOp reshapeOp,
   ArrayRef<int64_t> expandedShape = expandedType.getShape();
   SmallVector<unsigned, 4> numFoldedDims(foldedType.getRank(), 0);
   SmallVector<SmallVector<int64_t, 4>, 4> expandedDimsShape(
-      expandedType.getRank());
+      foldedType.getRank());
   auto reassociationMaps = reshapeOp.getReassociationMaps();
   for (auto resultExpr : llvm::enumerate(fusedIndexMap.getResults())) {
     unsigned pos = resultExpr.value().cast<AffineDimExpr>().getPosition();
@@ -472,6 +472,26 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, TensorReshapeOp reshapeOp,
     expandedDimsShape[pos].assign(shape.begin(), shape.end());
   }
 
+  if (isa<IndexedGenericOp>(linalgOp.getOperation())) {
+    // For indexed generic op, the region contains arguments that represent the
+    // induction variable value of the loops. In the fused op these values are
+    // obtained by linearizing the expanded dimensions. For now just check that
+    // the extents used in the linearization (all the expanded dims except the
+    // front) are statically know. For dynamic case, we would need shape
+    // information on these dimensions to get these.
+    for (auto &expandedShape : expandedDimsShape) {
+      for (int64_t expandedDimShape : llvm::make_range(
+               std::next(expandedShape.begin()), expandedShape.end())) {
+        if (ShapedType::isDynamic(expandedDimShape)) {
+          linalgOp.emitError(
+              "unable to fuse indexed generic op where the expanded dim is "
+              "dynamic");
+          return llvm::None;
+        }
+      }
+    }
+  }
+
   // The remapping of the indices is then the prefix sum (inclusive) of the
   // numFoldedDims.
   SmallVector<unsigned, 4> remapping(numFoldedDims.size() + 1, 0);
@@ -563,10 +583,56 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, TensorReshapeOp reshapeOp,
       /*outputBuffers=*/ValueRange{},
       /*initTensors=*/ValueRange{}, expandedOpIndexingMaps, iteratorTypes);
   Region &fusedRegion = fusedOp.getOperation()->getRegion(0);
-  // TODO: Add support for indexed generic op, which would need mapping the
-  // expanded dimensions to the original dimension arguments.
-  rewriter.cloneRegionBefore(linalgOp.getOperation()->getRegion(0), fusedRegion,
-                             fusedRegion.begin());
+  Region &originalRegion = linalgOp.getOperation()->getRegion(0);
+
+  if (isa<GenericOp>(linalgOp.getOperation())) {
+    rewriter.cloneRegionBefore(originalRegion, fusedRegion,
+                               fusedRegion.begin());
+  } else {
+    assert(isa<IndexedGenericOp>(linalgOp.getOperation()));
+    // Create an entry block in the fused Region with same number of arguments
+    // as the fused op
+    Block *fusedEntryBlock = new Block;
+    fusedRegion.push_back(fusedEntryBlock);
+    rewriter.cloneRegionBefore(originalRegion, fusedRegion, fusedRegion.end());
+
+    // Merge the entry block of the fused op with the cloned blocks. For this
+    // compute the value for arguments of the region in the original operation
+    // in terms of the arguments of the fused op. Since the original operation
+    // is expanded, the expanded dimensions need to be folded back to get the
+    // replacement value for the arguments corresponding to interation index.
+    // For now this expects that all the loop ranges are constants, which is
+    // true if the shapes are all static. This has already been checked in the
+    // precondition.
+    using namespace edsc::op;
+    using namespace edsc::intrinsics;
+    OpBuilder::InsertionGuard guard(rewriter);
+    SmallVector<Value, 4> argReplacements(originalRegion.getNumArguments());
+    rewriter.setInsertionPointToStart(fusedEntryBlock);
+    edsc::ScopedContext scopedContext(rewriter, fusedOp.getLoc());
+    IndexType indexType = rewriter.getIndexType();
+    for (unsigned i : llvm::seq<unsigned>(0, numFoldedDims.size())) {
+      Value linearizedIndex = fusedEntryBlock->addArgument(indexType);
+      for (unsigned foldedDim = remapping[i] + 1; foldedDim != remapping[i + 1];
+           foldedDim++) {
+        int64_t expandedDimExtent =
+            expandedDimsShape[i][foldedDim - remapping[i]];
+        assert(!ShapedType::isDynamic(expandedDimExtent));
+        linearizedIndex =
+            linearizedIndex * std_constant_index(expandedDimExtent);
+        linearizedIndex =
+            linearizedIndex + fusedEntryBlock->addArgument(indexType);
+      }
+      argReplacements[i] = linearizedIndex;
+    }
+    for (unsigned i :
+         llvm::seq<unsigned>(numFoldedDims.size(), argReplacements.size())) {
+      argReplacements[i] =
+          fusedEntryBlock->addArgument(originalRegion.getArgument(i).getType());
+    }
+    rewriter.mergeBlocks(fusedEntryBlock->getNextNode(), fusedEntryBlock,
+                         argReplacements);
+  }
 
   // Reshape the result values to their original shape if this is a collapsing
   // reshape folded into its consumer.
@@ -670,14 +736,15 @@ struct FoldProducerReshapeOpByLinearization
   }
 };
 
-/// Pattern to fuse a tensor_reshape op with its consumer generic op, when the
-/// reshape op is collapsing dimensions. The dimensionality of the loop in the
-/// consumer generic op is expanded.
+/// Pattern to fuse a tensor_reshape op with its consumer
+/// generic/indexed_generic op, when the reshape op is collapsing
+/// dimensions. The dimensionality of the loop in the consumer is expanded.
+template <typename GenericOpTy>
 struct FoldWithProducerReshapeOpByExpansion
-    : public OpRewritePattern<GenericOp> {
-  using OpRewritePattern<GenericOp>::OpRewritePattern;
+    : public OpRewritePattern<GenericOpTy> {
+  using OpRewritePattern<GenericOpTy>::OpRewritePattern;
 
-  LogicalResult matchAndRewrite(GenericOp genericOp,
+  LogicalResult matchAndRewrite(GenericOpTy genericOp,
                                 PatternRewriter &rewriter) const override {
     LinalgOp linalgOp = cast<LinalgOp>(genericOp.getOperation());
     for (auto operand : llvm::enumerate(linalgOp.getInputs())) {
@@ -942,7 +1009,9 @@ void mlir::populateFoldReshapeOpsByLinearizationPatterns(
 void mlir::populateFoldReshapeOpsByExpansionPatterns(
     MLIRContext *context, OwningRewritePatternList &patterns) {
   patterns.insert<FoldReshapeWithGenericOpByExpansion,
-                  FoldWithProducerReshapeOpByExpansion>(context);
+                  FoldWithProducerReshapeOpByExpansion<GenericOp>,
+                  FoldWithProducerReshapeOpByExpansion<IndexedGenericOp>>(
+      context);
 }
 
 void mlir::populateLinalgTensorOpsFusionPatterns(

diff  --git a/mlir/test/Dialect/Linalg/reshape_fusion.mlir b/mlir/test/Dialect/Linalg/reshape_fusion.mlir
index 865b10b51696..1f201f78fe74 100644
--- a/mlir/test/Dialect/Linalg/reshape_fusion.mlir
+++ b/mlir/test/Dialect/Linalg/reshape_fusion.mlir
@@ -190,3 +190,157 @@ func @scalar_reshape(%arg0 : tensor<1x10xf32>, %arg1 : tensor<1xf32>)
 // CHECK-SAME:     iterator_types = ["parallel", "parallel"]
 // CHECK-SAME:     ins(%[[T0]] : tensor<f32>)
 //      CHECK:   return %[[T1]] : tensor<1x10xf32>
+
+// -----
+
+#map0 = affine_map<(d0, d1, d2) -> (d2, d0, d1)>
+#map1 = affine_map<(d0, d1, d2) -> (d1, d2, d0)>
+func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x4x?xi32>,
+                                         %arg1 : tensor<?x?x?xi32>) ->
+                                         tensor<?x?x?xi32>
+{
+  %0 = linalg.tensor_reshape %arg0 [affine_map<(i, j, k, l) -> (i)>,
+                                    affine_map<(i, j, k, l) -> (j, k)>,
+                                    affine_map<(i, j, k, l) -> (l)>] :
+    tensor<?x?x4x?xi32> into tensor<?x?x?xi32>
+  %1 = linalg.indexed_generic {
+     indexing_maps = [#map0, #map1, #map1],
+     iterator_types = ["parallel", "parallel", "parallel"]}
+      ins(%0, %arg1 : tensor<?x?x?xi32>, tensor<?x?x?xi32>) {
+    ^bb0(%arg3 : index, %arg4 : index, %arg5 : index, %arg6: i32, %arg7: i32):
+      %1 = muli %arg6, %arg7 : i32
+      %2 = index_cast %arg3 : index to i32
+      %3 = addi %1, %2 : i32
+      %4 = index_cast %arg4 : index to i32
+      %5 = addi %3, %4 : i32
+      %6 = index_cast %arg5 : index to i32
+      %7 = addi %5, %6 : i32
+      linalg.yield %7 : i32
+  } -> tensor<?x?x?xi32>
+  return %1 : tensor<?x?x?xi32>
+}
+
+// The generic op version of the test check for the op structure. Only
+// checking the op body here.
+//       CHECK: #[[MAP:.+]] =  affine_map<(d0, d1) -> (d0 * 4 + d1)>
+//       CHECK: func @indexed_generic_op_reshape_producer_fusion
+//       CHECK:   linalg.indexed_generic
+//       CHECK:   ^{{.*}}(
+//  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: index, %[[ARG3:[a-zA-Z0-9]+]]: index,
+//  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9]+]]: index, %[[ARG5:[a-zA-Z0-9]+]]: index,
+//  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: i32, %[[ARG7:[a-zA-Z0-9]+]]: i32)
+//       CHECK:     %[[T3:.+]] = affine.apply #[[MAP]](%[[ARG2]], %[[ARG3]])
+//       CHECK:     %[[T4:.+]] = muli %[[ARG6]], %[[ARG7]]
+//       CHECK:     %[[T5:.+]] = index_cast %[[T3]]
+//       CHECK:     %[[T6:.+]] = addi %[[T4]], %[[T5]]
+//       CHECK:     %[[T7:.+]] = index_cast %[[ARG4]]
+//       CHECK:     %[[T8:.+]] = addi %[[T6]], %[[T7]]
+//       CHECK:     %[[T9:.+]] = index_cast %[[ARG5]]
+//       CHECK:     %[[T10:.+]] = addi %[[T8]], %[[T9]]
+//       CHECK:     linalg.yield %[[T10]]
+
+// -----
+
+#map0 = affine_map<(d0, d1) -> (d0, d1)>
+func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?xi32>,
+                                         %arg1 : tensor<?x?xi32>) ->
+                                         tensor<?x?x4x5xi32>
+{
+  %0 = linalg.indexed_generic {
+     indexing_maps = [#map0, #map0, #map0],
+     iterator_types = ["parallel", "parallel"]}
+      ins(%arg0, %arg1 : tensor<?x?xi32>, tensor<?x?xi32>) {
+    ^bb0(%arg3 : index, %arg4 : index, %arg5: i32, %arg6: i32):       // no predecessors
+      %1 = muli %arg5, %arg6 : i32
+      %2 = index_cast %arg3 : index to i32
+      %3 = addi %1, %2 : i32
+      %4 = index_cast %arg4 : index to i32
+      %5 = addi %3, %4 : i32
+      linalg.yield %5 : i32
+  } -> tensor<?x?xi32>
+  %1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
+                                 affine_map<(i, j, k, l) -> (j, k, l)>] :
+    tensor<?x?xi32> into tensor<?x?x4x5xi32>
+  return %1 : tensor<?x?x4x5xi32>
+}
+// The generic op version of the test check for the op structure. Only
+// checking the op body here.
+//       CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0 * 20 + d1 * 5 + d2)>
+//       CHECK: func @indexed_generic_op_reshape_consumer_fusion
+//       CHECK:   linalg.indexed_generic
+//       CHECK:   ^{{.*}}(
+//  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: index, %[[ARG3:[a-zA-Z0-9]+]]: index,
+//  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9]+]]: index, %[[ARG5:[a-zA-Z0-9]+]]: index,
+//  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: i32, %[[ARG7:[a-zA-Z0-9]+]]: i32)
+//       CHECK:     %[[T3:.+]] = affine.apply #[[MAP]](%[[ARG3]], %[[ARG4]], %[[ARG5]])
+//       CHECK:     %[[T4:.+]] = muli %[[ARG6]], %[[ARG7]]
+//       CHECK:     %[[T5:.+]] = index_cast %[[ARG2]]
+//       CHECK:     %[[T6:.+]] = addi %[[T4]], %[[T5]]
+//       CHECK:     %[[T7:.+]] = index_cast %[[T3]]
+//       CHECK:     %[[T8:.+]] = addi %[[T6]], %[[T7]]
+//       CHECK:     linalg.yield %[[T8]]
+
+// -----
+
+func @reshape_as_consumer_permutation
+  (%a : tensor<210x6x4xi32>, %b : tensor<210x4xi32>)
+    -> tensor<2x3x4x5x6x7xi32> {
+  %c = linalg.indexed_generic {
+         indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>,
+                          affine_map<(d0, d1, d2) -> (d1, d2)>,
+                          affine_map<(d0, d1, d2) -> (d0, d2, d1)>],
+         iterator_types = ["parallel", "parallel", "parallel"]}
+         ins(%a, %b : tensor<210x6x4xi32>, tensor<210x4xi32>) {
+       ^bb0(%arg0 : index, %arg1 : index, %arg2 : index, %arg3 : i32, %arg4: i32):
+         %1 = addi %arg3, %arg4 : i32
+         %2 = index_cast %arg0 : index to i32
+         %3 = addi %1, %2 : i32
+         %4 = index_cast %arg1 : index to i32
+         %5 = addi %3, %4 : i32
+         %6 = index_cast %arg2 : index to i32
+         %7 = addi %5, %6 : i32
+	 linalg.yield %7 : i32
+       } -> tensor<6x4x210xi32>
+  %d = linalg.tensor_reshape %c
+         [affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1)>,
+          affine_map<(d0, d1, d2, d3, d4, d5) -> (d2)>,
+          affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4, d5)>]
+       : tensor<6x4x210xi32> into tensor<2x3x4x5x6x7xi32>
+  return %d : tensor<2x3x4x5x6x7xi32>
+}
+
+
+//   CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2)>
+//   CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4)>
+//   CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d5)>
+//   CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
+//   CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+//   CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0, d1) -> (d0 * 3 + d1)>
+//   CHECK-DAG: #[[MAP6:.+]] = affine_map<(d0, d1, d2) -> (d0 * 42 + d1 * 7 + d2)>
+//   CHECK-DAG: #[[MAP7:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d0, d1, d5)>
+//   CHECK-DAG: #[[MAP8:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d5)>
+//   CHECK-DAG: #[[MAP9:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d5, d2, d3, d4)>
+//       CHECK: func @reshape_as_consumer_permutation
+//  CHECK-SAME:   %[[ARG0:.+]]: tensor<210x6x4xi32>
+//  CHECK-SAME:   %[[ARG1:.+]]: tensor<210x4xi32>
+//   CHECK-DAG:   %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
+//  CHECK-SAME:     [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
+//   CHECK-DAG:   %[[T1:.+]] = linalg.tensor_reshape %[[ARG1]]
+//  CHECK-SAME:     [#[[MAP3]], #[[MAP4]]]
+//       CHECK:   %[[T2:.+]] = linalg.indexed_generic
+//  CHECK-SAME:     indexing_maps = [#[[MAP7]], #[[MAP8]], #[[MAP9]]]
+//  CHECK-SAME:     ins(%[[T0]], %[[T1]] : tensor<{{.+}}>, tensor<{{.+}}>)
+//       CHECK:   ^{{.+}}(
+//  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: index, %[[ARG3:[a-zA-Z0-9]+]]: index,
+//  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9]+]]: index, %[[ARG5:[a-zA-Z0-9]+]]: index,
+//  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: index, %[[ARG7:[a-zA-Z0-9]+]]: index,
+//  CHECK-SAME:     %[[ARG8:[a-zA-Z0-9]+]]: i32, %[[ARG9:[a-zA-Z0-9]+]]: i32)
+//   CHECK-DAG:       %[[T3:.+]] = affine.apply #[[MAP5]](%[[ARG2]], %[[ARG3]])
+//   CHECK-DAG:       %[[T4:.+]] = affine.apply #[[MAP6]](%[[ARG4]], %[[ARG5]], %[[ARG6]])
+//   CHECK-DAG:       %[[T5:.+]] = addi %[[ARG8]], %[[ARG9]]
+//       CHECK:       %[[T6:.+]] = index_cast %[[T3]]
+//       CHECK:       %[[T7:.+]] = addi %[[T5]], %[[T6]]
+//       CHECK:       %[[T8:.+]] = index_cast %[[T4]]
+//       CHECK:       %[[T9:.+]] = addi %[[T7]], %[[T8]]
+//       CHECK:       %[[T10:.+]] = index_cast %[[ARG7]]
+//       CHECK:       %[[T11:.+]] = addi %[[T9]], %[[T10]]


        


More information about the Mlir-commits mailing list