[Mlir-commits] [mlir] 9ac0b31 - [mlir][Linalg] Drop symbol_source abstraction which does not pay for itself.

Nicolas Vasilache llvmlistbot at llvm.org
Mon Nov 23 04:47:26 PST 2020


Author: Nicolas Vasilache
Date: 2020-11-23T12:43:02Z
New Revision: 9ac0b314a431405aa6a681124f83138f7544807e

URL: https://github.com/llvm/llvm-project/commit/9ac0b314a431405aa6a681124f83138f7544807e
DIFF: https://github.com/llvm/llvm-project/commit/9ac0b314a431405aa6a681124f83138f7544807e.diff

LOG: [mlir][Linalg] Drop symbol_source abstraction which does not pay for itself.

Differential Revision: https://reviews.llvm.org/D91956

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
    mlir/include/mlir/Dialect/Linalg/Passes.td
    mlir/include/mlir/Dialect/Utils/StructuredOpsUtils.h
    mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
    mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
    mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
    mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
    mlir/lib/Dialect/Linalg/Transforms/Loops.cpp
    mlir/test/Dialect/Linalg/invalid.mlir
    mlir/test/Dialect/Linalg/loops.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index aba4f9d61fe0..66f39104d7e7 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -503,9 +503,7 @@ class GenericOpBase<string mnemonic> : LinalgStructuredBase_Op<mnemonic, [
                        OptionalAttr<StrAttr>:$doc,
                        OptionalAttr<StrAttr>:$library_call,
                        // ArrayAttr of StrArrayAttr:
-                       OptionalAttr<ArrayAttr>:$sparse,
-                       Confined<OptionalAttr<I64Attr>, [IntMinValue<0>]>
-                         :$symbol_source);
+                       OptionalAttr<ArrayAttr>:$sparse);
   let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
   let regions = (region AnyRegion:$region);
   let extraClassDeclaration = [{
@@ -513,18 +511,13 @@ class GenericOpBase<string mnemonic> : LinalgStructuredBase_Op<mnemonic, [
       return SmallVector<StringRef, 8>{
         getDocAttrName(),
         getIndexingMapsAttrName(), getLibraryCallAttrName(),
-        getIteratorTypesAttrName(), getSymbolSourceAttrName()
+        getIteratorTypesAttrName(),
       };
     }
     std::string getLibraryCallName() {
       return library_call().hasValue() ?
         library_call()->str() : "op_has_no_registered_library_name";
     }
-    llvm::Optional<unsigned> getSymbolSource() {
-      auto ss = symbol_source();
-      return ss.hasValue() ?
-        llvm::Optional<unsigned>(ss.getValue()) : llvm::None;
-    }
 
     static std::function<void(Block &)> getRegionBuilder() {
       return nullptr;
@@ -566,10 +559,6 @@ def GenericOp : GenericOpBase<"generic"> {
           parallel, reduction, window
       - sparse: an optional list with per-dimension sparsity annotations (either
         "D" for dense or "S" for sparse) for each input and output view.
-      - symbol_source: index of the operand whose dimensions will be propagated
-        as symbols to the indexing maps. When specified the number of symbols
-        in each of the indexing maps has to be either 0 or the rank of the
-        specified operand.
 
     Example:
     Defining a #matmul_trait attribute in MLIR can be done as follows:
@@ -646,50 +635,17 @@ def GenericOp : GenericOpBase<"generic"> {
     Tensor values must be legalized by a buffer allocation pass before most
     transformations can be applied. Such legalizations move tensor return values
     into output buffer operands and updates the region arguments accordingly.
-
-    The `symbol_source` attribute allows selecting a particular operand and
-    introducing symbols for each operand dimension. Such symbols can then be
-    used in the indexing maps.
-
-    Example of 1D convolution with symbols:
-    ```mlir
-    #conv_1d_accesses = [
-      affine_map<(m, n)[dimN] -> (m + n - dimN floordiv 2)>, // in
-      affine_map<(m, n)[dimN] -> (n)>, // filter
-      affine_map<(m, n)[dimN] -> (m)> // out
-    ]
-
-    #conv_1d_trait = {
-      doc = "O(m) += I(m + n - size(n) floordiv 2) * K(n)",
-      indexing_maps = #conv_1d_accesses,
-      library_call  = "linalg_conv_1d",
-      iterator_types = ["parallel", "parallel"],
-      symbol_source = 1
-    }
-
-    linalg.generic #conv_1d_trait
-      ins(%in, %filter : memref<?xf32>, memref<?xf32>)
-      outs(%out : memref<?xf32>) {
-      ^bb0(%a: f32, %b: f32, %c: f32) :
-        %d = mulf %a, %b : f32
-        %e = addf %c, %d : f32
-        linalg.yield %e : f32
-    }
-    ```
-    where symbol s0 will be substituted with `dim %filter, %c0` i.e. the first
-    and only dimension of the second operand as specified by the symbol_source
-    attribute.
   }];
 
   let builders = [
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
       "ValueRange":$outputBuffers, "ValueRange":$initTensors,
       "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
-      "StringRef":$doc, "StringRef":$libraryCall, "IntegerAttr":$symbolSource,
+      "StringRef":$doc, "StringRef":$libraryCall,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange)>", "nullptr">)>,
     OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
       "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
-      "StringRef":$doc, "StringRef":$libraryCall, "IntegerAttr":$symbolSource,
+      "StringRef":$doc, "StringRef":$libraryCall,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange)>", "nullptr">)>,
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
       "ValueRange":$outputBuffers, "ValueRange":$initTensors,
@@ -819,51 +775,18 @@ def IndexedGenericOp : GenericOpBase<"indexed_generic"> {
     Tensor values must be legalized by a buffer allocation pass before most
     transformations can be applied. Such legalizations move tensor return values
     into output buffer operands and update the region arguments accordingly.
-
-    The `symbol_source` attribute allows selecting a particular operand and
-    introducing symbols for each operand dimension. Such symbols can then be
-    used in the indexing maps.
-
-    Example of 1D convolution with symbols:
-    ```mlir
-    #conv_1d_accesses = [
-      affine_map<(m, n)[dimN] -> (m + n - dimN floordiv 2)>, // in
-      affine_map<(m, n)[dimN] -> (n)>, // filter
-      affine_map<(m, n)[dimN] -> (m)> // out
-    ]
-
-    #conv_1d_trait = {
-      doc = "O(m) += I(m + n - size(n) floordiv 2) * K(n)",
-      indexing_maps = #conv_1d_accesses,
-      library_call  = "linalg_conv_1d",
-      iterator_types = ["parallel", "parallel"],
-      symbol_source = 1
-    }
-
-    linalg.generic #conv_1d_trait
-      ins(%in, %filter : memref<?xf32>, memref<?xf32>)
-      outs(%out : memref<?xf32>) {
-      ^bb0(%a: f32, %b: f32, %c: f32) :
-        %d = mulf %a, %b : f32
-        %e = addf %c, %d : f32
-        linalg.yield %e : f32
-    }
-    ```
-    where symbol s0 will be substituted with `dim %filter, %c0` i.e. the first
-    and only dimension of the second operand as specified by the symbol_source
-    attribute.
   }];
 
   let builders = [
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
       "ValueRange":$outputBuffers, "ValueRange":$initTensors,
       "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
-      "StringRef":$doc, "StringRef":$libraryCall, "IntegerAttr":$symbolSource,
+      "StringRef":$doc, "StringRef":$libraryCall,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>",
            "nullptr">)>,
     OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
       "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
-      "StringRef":$doc, "StringRef":$libraryCall, "IntegerAttr":$symbolSource,
+      "StringRef":$doc, "StringRef":$libraryCall,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>",
            "nullptr">)>,
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,

diff  --git a/mlir/include/mlir/Dialect/Linalg/Passes.td b/mlir/include/mlir/Dialect/Linalg/Passes.td
index aabfd44299d5..14f845589a6f 100644
--- a/mlir/include/mlir/Dialect/Linalg/Passes.td
+++ b/mlir/include/mlir/Dialect/Linalg/Passes.td
@@ -64,7 +64,7 @@ def LinalgLowerToLoops : FunctionPass<"convert-linalg-to-loops"> {
 def LinalgBufferize : Pass<"linalg-bufferize", "FuncOp"> {
   let summary = "Bufferize the linalg dialect";
   let constructor = "mlir::createLinalgBufferizePass()";
-  let dependentDialects = ["linalg::LinalgDialect"];
+  let dependentDialects = ["linalg::LinalgDialect", "AffineDialect"];
 }
 
 def LinalgLowerToParallelLoops

diff  --git a/mlir/include/mlir/Dialect/Utils/StructuredOpsUtils.h b/mlir/include/mlir/Dialect/Utils/StructuredOpsUtils.h
index 21c311ed6d18..b257abe0ef30 100644
--- a/mlir/include/mlir/Dialect/Utils/StructuredOpsUtils.h
+++ b/mlir/include/mlir/Dialect/Utils/StructuredOpsUtils.h
@@ -46,10 +46,6 @@ inline bool isColumnMajorMatmul(ArrayAttr indexingMaps) {
   return indexingMaps == maps;
 }
 
-/// Attribute name for the IntegerAttr which encodes the index of operand
-/// whose dimensions will be propagated as symbols to the indexing maps
-constexpr StringRef getSymbolSourceAttrName() { return "symbol_source"; }
-
 /// Attribute name for the AffineArrayAttr which encodes the relationship
 /// between a structured op iterators' and its operands.
 constexpr StringRef getIndexingMapsAttrName() { return "indexing_maps"; }

diff  --git a/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp b/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
index 11ac845f0ec7..0ae1efe10b7f 100644
--- a/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
+++ b/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
@@ -69,8 +69,7 @@ Operation *mlir::edsc::makeGenericLinalgOp(
               builder.getStrArrayAttr(iteratorStrTypes),
               StringAttr() /*doc*/,
               StringAttr() /*library_call*/,
-              ArrayAttr() /*sparse*/,
-              IntegerAttr() /*symbol_source*/
+              ArrayAttr() /*sparse*/
               /* TODO: other attributes in op */
               )
           .getOperation();

diff  --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 188e00b53940..92668be811f6 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -60,42 +60,17 @@ SmallVector<Value, 4> mlir::linalg::applyMapToValues(OpBuilder &b, Location loc,
 SmallVector<Value, 4> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
                                                             Location loc) {
   SmallVector<Value, 4> res;
-  SmallVector<unsigned, 4> ranks;
   for (Value v : getShapedOperands()) {
     ShapedType t = v.getType().template cast<ShapedType>();
-    ranks.push_back(t.getRank());
-    for (unsigned i = 0; i < t.getRank(); ++i)
+    for (unsigned i = 0, e = t.getRank(); i < e; ++i)
       res.push_back(b.create<DimOp>(loc, v, i));
   }
-
-  // TODO: drop the following once symbol_source is deleted.
-  auto attr = getAttrOfType<IntegerAttr>("symbol_source");
-  if (!attr)
-    return res;
-
-  // Find the correct position for inserting values for symbols.
-  unsigned numSymb = ranks[attr.getInt()], symbolsPos = 0;
-  for (unsigned idx = 0, e = attr.getInt(); idx < e; idx++)
-    symbolsPos += ranks[idx];
-
-  // Append the end of the value list that corresponds to the
-  // values mapping to symbols. Since inside concatenated map symbols
-  // are repeated we have to repeat the sizes as well.
-
-  // Reserve is mandatory to avoid a potential undefined behavior with
-  // pushing back to smallvector from itself.
-  res.reserve(res.size() + ranks.size() * numSymb);
-  for (unsigned idx = 0, s = ranks.size(); idx < s; ++idx)
-    for (unsigned idx2 = 0; idx2 < numSymb; ++idx2)
-      res.push_back(res[symbolsPos + idx2]);
   return res;
 }
 
 SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
   AffineMap map = getLoopsToShapesMap();
   unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
-  // TODO: drop numSym once symbol_source is deleted.
-  unsigned numSym = map.getNumSymbols();
   auto viewSizes = createFlatListOfOperandDims(b, loc);
   SmallVector<Range, 4> res(numDims);
   Value zeroVal = b.create<ConstantIndexOp>(loc, 0);
@@ -107,51 +82,6 @@ SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
         continue;
       res[d.getPosition()] = Range{zeroVal, viewSizes[idx], oneVal};
     }
-
-    // TODO: drop the following once symbol_source is deleted.
-    // If the access pattern is of form (m, n)[s] -> (m + n - s floordiv 2),
-    // then the bounds are:
-    //   (s floordiv 2) <= m <= (size(m) + s floordiv 2 - s + 1).
-    // where size(n) is applied to the symbol s.
-    // This is done statically now.
-    if (auto binOp = result.dyn_cast<AffineBinaryOpExpr>()) {
-      auto lhs = binOp.getLHS().dyn_cast<AffineBinaryOpExpr>();
-      auto rhs = binOp.getRHS().dyn_cast<AffineBinaryOpExpr>();
-      if (!lhs || !rhs || binOp.getKind() != AffineExprKind::Add ||
-          lhs.getKind() != AffineExprKind::Add ||
-          rhs.getKind() != mlir::AffineExprKind::Mul)
-        continue;
-
-      auto m = lhs.getLHS().dyn_cast<AffineDimExpr>();
-      auto n = lhs.getRHS().dyn_cast<AffineDimExpr>();
-      auto fDiv = rhs.getLHS().dyn_cast<AffineBinaryOpExpr>();
-      auto minusOne = rhs.getRHS().dyn_cast<AffineConstantExpr>();
-      if (!m || !n || !fDiv || !minusOne ||
-          fDiv.getKind() != AffineExprKind::FloorDiv ||
-          !fDiv.getLHS().isa<AffineSymbolExpr>() ||
-          !fDiv.getRHS().isa<AffineConstantExpr>())
-        continue;
-
-      auto s = fDiv.getLHS().dyn_cast<AffineSymbolExpr>();
-      if (minusOne.getValue() != -1)
-        continue;
-
-      int mPos = m.getPosition();
-      AffineExpr one = getAffineConstantExpr(1, s.getContext());
-      AffineExpr sizeOfM = getAffineSymbolExpr(numSym, s.getContext());
-      // Construction of upper bound (size(m) + s floordiv 2 - s + 1).
-      AffineExpr upperOffsetExpr = sizeOfM + fDiv + one - s;
-      AffineMap fromMap = AffineMap::get(numDims, numSym + 1, fDiv);
-      AffineMap toMap = AffineMap::get(numDims, numSym + 1, upperOffsetExpr);
-      SmallVector<Value, 8> values(viewSizes.begin(),
-                                   viewSizes.begin() + numDims);
-      values.insert(values.end(), viewSizes.begin() + numRes, viewSizes.end());
-      values.push_back(viewSizes[mPos]);
-      // Construction of the lower bound (s floordiv 2).
-      Value from = applyMapToValues(b, loc, fromMap, values).front();
-      Value to = applyMapToValues(b, loc, toMap, values).front();
-      res[mPos] = Range{from, to, oneVal};
-    }
   }
   return res;
 }
@@ -224,14 +154,14 @@ void GenericOp::build(
     OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
     ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
     ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
-    StringRef doc, StringRef libraryCall, IntegerAttr symbolSource,
+    StringRef doc, StringRef libraryCall,
     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
   build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
         builder.getAffineMapArrayAttr(indexingMaps),
         builder.getStrArrayAttr(iteratorTypes),
         doc.empty() ? StringAttr() : builder.getStringAttr(doc),
         libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall),
-        ArrayAttr(), symbolSource);
+        ArrayAttr());
   if (!bodyBuild)
     return;
 
@@ -250,10 +180,9 @@ void GenericOp::build(
     OpBuilder &builder, OperationState &result, ValueRange inputs,
     ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
     ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
-    IntegerAttr symbolSource,
     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
   build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
-        indexingMaps, iteratorTypes, doc, libraryCall, symbolSource, bodyBuild);
+        indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
 }
 
 void GenericOp::build(
@@ -263,8 +192,7 @@ void GenericOp::build(
     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
   build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
         /*doc=*/"",
-        /*libraryCall=*/"",
-        /*symbolSource=*/IntegerAttr(), bodyBuild);
+        /*libraryCall=*/"", bodyBuild);
 }
 
 void GenericOp::build(
@@ -275,15 +203,13 @@ void GenericOp::build(
   build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
         indexingMaps, iteratorTypes,
         /*doc=*/"",
-        /*libraryCall=*/"",
-        /*symbolSource=*/IntegerAttr(), bodyBuild);
+        /*libraryCall=*/"", bodyBuild);
 }
-
 void IndexedGenericOp::build(
     OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
     ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
     ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
-    StringRef doc, StringRef libraryCall, IntegerAttr symbolSource,
+    StringRef doc, StringRef libraryCall,
     function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
         bodyBuild) {
   build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
@@ -291,7 +217,7 @@ void IndexedGenericOp::build(
         builder.getStrArrayAttr(iteratorTypes),
         doc.empty() ? StringAttr() : builder.getStringAttr(doc),
         libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall),
-        ArrayAttr(), symbolSource);
+        ArrayAttr());
   if (!bodyBuild)
     return;
 
@@ -313,11 +239,10 @@ void IndexedGenericOp::build(
     OpBuilder &builder, OperationState &result, ValueRange inputs,
     ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
     ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
-    IntegerAttr symbolSource,
     function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
         bodyBuild) {
   build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
-        indexingMaps, iteratorTypes, doc, libraryCall, symbolSource, bodyBuild);
+        indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
 }
 
 void IndexedGenericOp::build(
@@ -327,9 +252,7 @@ void IndexedGenericOp::build(
     function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
         bodyBuild) {
   build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
-        /*doc=*/"",
-        /*libraryCall=*/"",
-        /*symbolSource=*/IntegerAttr(), bodyBuild);
+        /*doc=*/"", /*libraryCall=*/"", bodyBuild);
 }
 
 void IndexedGenericOp::build(
@@ -341,8 +264,7 @@ void IndexedGenericOp::build(
   build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
         indexingMaps, iteratorTypes,
         /*doc=*/"",
-        /*libraryCall=*/"",
-        /*symbolSource=*/IntegerAttr(), bodyBuild);
+        /*libraryCall=*/"", bodyBuild);
 }
 
 template <typename GenericOpType>
@@ -588,16 +510,6 @@ static LogicalResult verifyGenericOp(GenericOpType op) {
   if (failed(BlockArgsVerifier<GenericOpType>::verify(op, region.front())))
     return failure();
 
-  auto symbolSourceAttr =
-      op.template getAttrOfType<IntegerAttr>("symbol_source");
-  int64_t expectedNumSymbols = 0;
-  if (symbolSourceAttr) {
-    unsigned index = symbolSourceAttr.getInt();
-    if (index >= op.getNumOperands())
-      return op.emitOpError("symbol_source index out of range");
-    expectedNumSymbols = op.getShapedType(index).getRank();
-  }
-
   if (op.indexing_maps().size() != op.getNumInputsAndOutputs())
     return op.emitOpError("expected the number of indexing_map (")
            << op.indexing_maps().size()
@@ -612,9 +524,8 @@ static LogicalResult verifyGenericOp(GenericOpType op) {
     indexingMaps.push_back(m); // Save reference to map for further checks.
     auto view = op.getShapedType(idx);
 
-    if (m.getNumSymbols() != expectedNumSymbols)
-      return op.emitOpError("expected the number of symbols in indexing_map #")
-             << idx << " to match rank of operand `symbol_source`";
+    if (m.getNumSymbols() != 0)
+      return op.emitOpError("unexpected symbols in indexing_map #") << idx;
 
     if (m.getNumDims() != nLoops)
       return op.emitOpError("expected indexing_map #")
@@ -626,14 +537,7 @@ static LogicalResult verifyGenericOp(GenericOpType op) {
              << idx << " results to match view rank: " << view;
   }
 
-  // TODO: symbol_source prevents us to just write:
-  // if (!op.getShapeToLoopsMap())
-  //   return op.emitOpError("expected the shape-to-loops map to be non-null");
-  //
-  // Update when symbol_source is deleted.
-  auto concatMap = concatAffineMaps(indexingMaps);
-  // TODO: Bound inference for maps with symbols
-  if (!concatMap.getNumSymbols() && !inversePermutation(concatMap))
+  if (!op.getShapesToLoopsMap())
     return op.emitOpError("expected the shape-to-loops map to be non-null");
 
   if (failed(AnnotationsVerifier<GenericOpType>::verify(op)))

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
index d3d0ff40f124..71d8a5b14705 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
@@ -120,8 +120,7 @@ static void finalizeBufferAllocation(ConversionPatternRewriter &rewriter,
       /*outputBuffers=*/outputs,
       /*initTensors=*/llvm::None, genericOp.indexing_maps(),
       genericOp.iterator_types(), genericOp.docAttr(),
-      genericOp.library_callAttr(), genericOp.sparseAttr(),
-      genericOp.symbol_sourceAttr());
+      genericOp.library_callAttr(), genericOp.sparseAttr());
 
   // Create a new block in the region of the new Generic Op.
   Block *oldBlock = genericOp.getBody();
@@ -322,7 +321,7 @@ struct LinalgBufferizePass : public LinalgBufferizeBase<LinalgBufferizePass> {
     BufferizeTypeConverter typeConverter;
 
     // Mark all Standard operations legal.
-    target.addLegalDialect<StandardOpsDialect>();
+    target.addLegalDialect<AffineDialect, StandardOpsDialect>();
     target.addIllegalOp<SubTensorOp, SubTensorInsertOp>();
 
     // Mark all Linalg operations illegal as long as they work on tensors.

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp b/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
index 8e1dbf17d3f1..d2a8a307a5ba 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
@@ -227,8 +227,7 @@ fuseTensorOpsImpl(LinalgOp producer, LinalgOp consumer, unsigned consumerIdx,
                                      consumer.iterator_types(),
                                      /*doc=*/nullptr,
                                      /*library_call=*/nullptr,
-                                     /*sparse=*/nullptr,
-                                     /*symbol_source=*/nullptr)
+                                     /*sparse=*/nullptr)
                   .getOperation();
   } else {
     fusedOp =
@@ -242,8 +241,7 @@ fuseTensorOpsImpl(LinalgOp producer, LinalgOp consumer, unsigned consumerIdx,
                                       consumer.iterator_types(),
                                       /*doc=*/nullptr,
                                       /*library_call=*/nullptr,
-                                      /*sparse=*/nullptr,
-                                      /*symbol_source=*/nullptr)
+                                      /*sparse=*/nullptr)
             .getOperation();
   }
 
@@ -820,8 +818,7 @@ struct FoldConsumerReshapeOpByLinearization
         producer.iterator_types(),
         /*doc=*/nullptr,
         /*library_call=*/nullptr,
-        /*sparse=*/nullptr,
-        /*symbol_source=*/nullptr);
+        /*sparse=*/nullptr);
     auto &fusedRegion = fusedOp.getOperation()->getRegion(0);
     rewriter.cloneRegionBefore(producer.getOperation()->getRegion(0),
                                fusedRegion, fusedRegion.begin());
@@ -904,8 +901,7 @@ struct FoldSplatConstants : public OpRewritePattern<LinalgOpTy> {
           linalgOp.iterator_types(),
           /*doc=*/nullptr,
           /*library_call=*/nullptr,
-          /*sparse=*/nullptr,
-          /*symbol_source=*/nullptr);
+          /*sparse=*/nullptr);
 
       // Map the block argument corresponding to the replaced argument with the
       // scalar constant.

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp b/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp
index c9132e93d13e..3435820aab40 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp
@@ -147,15 +147,7 @@ static void emitScalarImplementation(ArrayRef<Value> allIvs,
   SmallVector<Value, 4> indexedValues;
   indexedValues.reserve(nInputs + nOutputs);
 
-  auto attr = linalgOp.template getAttrOfType<IntegerAttr>("symbol_source");
   auto allIvsPlusDims = SmallVector<Value, 4>(allIvs.begin(), allIvs.end());
-  if (attr) {
-    auto operand = linalgOp.getOperation()->getOperand(attr.getInt());
-    auto shapedType = operand.getType().template cast<ShapedType>();
-    allIvsPlusDims.reserve(allIvs.size() + shapedType.getRank());
-    for (unsigned idx = 0, e = shapedType.getRank(); idx < e; ++idx)
-      allIvsPlusDims.push_back(b.create<DimOp>(loc, operand, idx));
-  }
 
   // TODO: Avoid the loads if the corresponding argument of the
   // region has no uses.

diff  --git a/mlir/test/Dialect/Linalg/invalid.mlir b/mlir/test/Dialect/Linalg/invalid.mlir
index 76cd3470a12a..8e98a80e77b1 100644
--- a/mlir/test/Dialect/Linalg/invalid.mlir
+++ b/mlir/test/Dialect/Linalg/invalid.mlir
@@ -63,33 +63,6 @@ func @generic_mismatched_num_returns(%arg0: memref<f32>) {
 
 // -----
 
-func @generic_symbol_in_map(%arg0: memref<i32>) {
-  // expected-error @+1 {{expected the number of symbols in indexing_map #0 to match rank of operand `symbol_source`}}
-  linalg.generic {
-    indexing_maps =  [ affine_map<()[N] -> (0)> ],
-    iterator_types = ["parallel"]}
-      outs(%arg0 : memref<i32>) {
-    ^bb(%i : i32):
-    linalg.yield %i : i32
-  }
-}
-
-// -----
-
-func @generic_symbol_source_out_of_range(%arg0: memref<i32>) {
-  // expected-error @+1 {{symbol_source index out of range}}
-  linalg.generic {
-    indexing_maps =  [ affine_map<()[N] -> (0)> ],
-    iterator_types = ["parallel"],
-    symbol_source = 1}
-      outs(%arg0 : memref<i32>) {
-    ^bb(%i : i32):
-    linalg.yield %i : i32
-  }
-}
-
-// -----
-
 func @generic_wrong_dim_in_map(%arg0: memref<1xi32>) {
   // expected-error @+1 {{op expected indexing_map #0 to have 1 dim(s) to match the number of loops}}
   linalg.generic {

diff  --git a/mlir/test/Dialect/Linalg/loops.mlir b/mlir/test/Dialect/Linalg/loops.mlir
index bb2eeeb2e88f..5a9d7330f289 100644
--- a/mlir/test/Dialect/Linalg/loops.mlir
+++ b/mlir/test/Dialect/Linalg/loops.mlir
@@ -14,9 +14,6 @@
 // CHECKLOOP-DAG: #[[$stride2Dilation1:.*]] = affine_map<(d0, d1) -> (d0 * 2 + d1)>
 // CHECKLOOP-DAG: #[[$stride2Dilation4:.*]] = affine_map<(d0, d1) -> (d0 * 2 + d1 * 4)>
 // CHECKLOOP-DAG: #[[$stride3Dilation5:.*]] = affine_map<(d0, d1) -> (d0 * 3 + d1 * 5)>
-// CHECKLOOP-DAG: #[[$convLowerBound:.*]] = affine_map<()[s0] -> (s0 floordiv 2)>
-// CHECKLOOP-DAG: #[[$convUpperBound:.*]] = affine_map<()[s0, s1] -> (s1 + s0 floordiv 2 - s0 + 1)>
-// CHECKLOOP-DAG: #[[$convMap:.*]] = affine_map<(d0, d1)[s0] -> (d0 + d1 - s0 floordiv 2)>
 // CHECKLOOP-DAG: #[[$stride1Dilation1Padding1:.*]] = affine_map<(d0, d1) -> (d0 + d1 - 1)>
 // CHECKLOOP-DAG: #[[$stride1Dilation1Padding2:.*]] = affine_map<(d0, d1) -> (d0 + d1 - 2)>
 
@@ -30,9 +27,6 @@
 // CHECKPARALLEL-DAG: #[[$stride2Dilation1:.*]] = affine_map<(d0, d1) -> (d0 * 2 + d1)>
 // CHECKPARALLEL-DAG: #[[$stride2Dilation4:.*]] = affine_map<(d0, d1) -> (d0 * 2 + d1 * 4)>
 // CHECKPARALLEL-DAG: #[[$stride3Dilation5:.*]] = affine_map<(d0, d1) -> (d0 * 3 + d1 * 5)>
-// CHECKPARALLEL-DAG: #[[$convLowerBound:.*]] = affine_map<()[s0] -> (s0 floordiv 2)>
-// CHECKPARALLEL-DAG: #[[$convUpperBound:.*]] = affine_map<()[s0, s1] -> (s1 + s0 floordiv 2 - s0 + 1)>
-// CHECKPARALLEL-DAG: #[[$convMap:.*]] = affine_map<(d0, d1)[s0] -> (d0 + d1 - s0 floordiv 2)>
 // CHECKPARALLEL-DAG: #[[$stride1Dilation1Padding1:.*]] = affine_map<(d0, d1) -> (d0 + d1 - 1)>
 // CHECKPARALLEL-DAG: #[[$stride1Dilation1Padding2:.*]] = affine_map<(d0, d1) -> (d0 + d1 - 2)>
 
@@ -1225,373 +1219,6 @@ func @named_batch_matmul(%A: memref<?x?x?xf32>, %B: memref<?x?x?xf32>, %C: memre
 //       CHECKPARALLEL:       %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
 //       CHECKPARALLEL:       store %[[res]], %[[mC]][%[[b]], %[[m]], %[[n]]] : memref<?x?x?xf32>
 
-#conv_1d_accesses = [
-  affine_map<(m, n)[s0] -> (m + n - s0 floordiv 2)>, // in
-  affine_map<(m, n)[s0] -> (n)>, // filter
-  affine_map<(m, n)[s0] -> (m)> // out
-]
-
-#conv_1d_trait = {
-  args_in = 2,
-  args_out = 1,
-  doc = "C(m) += A(m) * B(n)",
-  indexing_maps = #conv_1d_accesses,
-  library_call  = "linalg_conv_1d",
-  n_views = [2, 1],
-  iterator_types = ["parallel", "parallel"],
-  symbol_source = 1
-}
-
-func @conv1d(%in : memref<?xf32>, %filter : memref<?xf32>, %out :  memref<?xf32>) -> () {
-  linalg.generic #conv_1d_trait
-      ins(%in, %filter : memref<?xf32>, memref<?xf32>)
-     outs(%out : memref<?xf32>) {
-    ^bb0(%a: f32, %b: f32, %c: f32) :
-      %d = mulf %a, %b : f32
-      %e = addf %c, %d : f32
-      linalg.yield %e : f32
-  }
-  return
-}
-
-// CHECKLOOP-LABEL: @conv1d
-//  CHECKLOOP-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?xf32>
-//  CHECKLOOP-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?xf32>
-//  CHECKLOOP-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?xf32>
-//       CHECKLOOP: %[[c0:.*]] = constant 0 : index
-//       CHECKLOOP: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?xf32>
-//       CHECKLOOP: %[[dim1:.*]] = dim %[[arg1]], %[[c0]] : memref<?xf32>
-//       CHECKLOOP: %[[lowerBound:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim1]]]
-//       CHECKLOOP: %[[upperBound:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim1]], %[[dim0]]]
-//       CHECKLOOP: scf.for %[[b:.*]] = %[[lowerBound]] to %[[upperBound]] step %{{.*}} {
-//       CHECKLOOP:   scf.for %[[m:.*]] = %{{.*}} to %[[dim1]] step %{{.*}} {
-//       CHECKLOOP:     %[[dim2:.*]] = dim %[[arg1]], %[[c0]] : memref<?xf32>
-//       CHECKLOOP:     %[[aff:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim2]]]
-//       CHECKLOOP:     %[[va:.*]] = load %[[arg0]][%[[aff]]] : memref<?xf32>
-//       CHECKLOOP:     %[[vb:.*]] = load %[[arg1]][%[[m]]] : memref<?xf32>
-//       CHECKLOOP:     %[[vc:.*]] = load %[[arg2]][%[[b]]] : memref<?xf32>
-//       CHECKLOOP:     %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKLOOP:     %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKLOOP:     store %[[res]], %[[arg2]][%[[b]]] : memref<?xf32>
-
-// CHECKPARALLEL-LABEL: @conv1d
-//  CHECKPARALLEL-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?xf32>
-//  CHECKPARALLEL-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?xf32>
-//  CHECKPARALLEL-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?xf32>
-//       CHECKPARALLEL: %[[c0:.*]] = constant 0 : index
-//       CHECKPARALLEL: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?xf32>
-//       CHECKPARALLEL: %[[dim1:.*]] = dim %[[arg1]], %[[c0]] : memref<?xf32>
-//       CHECKPARALLEL: %[[lowerBound:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim1]]]
-//       CHECKPARALLEL: %[[upperBound:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim1]], %[[dim0]]]
-//       CHECKPARALLEL: scf.parallel (%[[b:.*]], %[[m:.*]]) = (%[[lowerBound]], %{{.*}}) to (%[[upperBound]], %[[dim1]]) step ({{.*}}) {
-//       CHECKPARALLEL:   %[[dim2:.*]] = dim %[[arg1]], %[[c0]] : memref<?xf32>
-//       CHECKPARALLEL:   %[[aff:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim2]]]
-//       CHECKPARALLEL:   %[[va:.*]] = load %[[arg0]][%[[aff]]] : memref<?xf32>
-//       CHECKPARALLEL:   %[[vb:.*]] = load %[[arg1]][%[[m]]] : memref<?xf32>
-//       CHECKPARALLEL:   %[[vc:.*]] = load %[[arg2]][%[[b]]] : memref<?xf32>
-//       CHECKPARALLEL:   %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKPARALLEL:   %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKPARALLEL:   store %[[res]], %[[arg2]][%[[b]]] : memref<?xf32>
-
-#conv_2d_accesses = [
-  affine_map<(m, n, m1, n1)[s0, s1] -> (m + m1 - s0 floordiv 2, n + n1 - s1 floordiv 2)>, // in
-  affine_map<(m, n, m1, n1)[s0, s1] -> (m1, n1)>, // filter
-  affine_map<(m, n, m1, n1)[s0, s1] -> (m, n)> // out
-]
-
-#conv_2d_trait = {
-  args_in = 2,
-  args_out = 1,
-  doc = "C(m,n) += A(m,n) * B(m1,n1)",
-  indexing_maps = #conv_2d_accesses,
-  library_call  = "linalg_conv_2d",
-  n_views = [2, 1],
-  iterator_types = ["parallel", "parallel", "parallel", "parallel"],
-  symbol_source = 1
-}
-
-func @conv2d(%in : memref<?x?xf32>, %filter : memref<?x?xf32>, %out :  memref<?x?xf32>) -> () {
-  linalg.generic #conv_2d_trait
-      ins(%in, %filter : memref<?x?xf32>, memref<?x?xf32>)
-     outs(%out : memref<?x?xf32>) {
-    ^bb0(%a: f32, %b: f32, %c: f32) :
-      %d = mulf %a, %b : f32
-      %e = addf %c, %d : f32
-      linalg.yield %e : f32
-  }
-  return
-}
-
-// CHECKLOOP-LABEL: @conv2d
-//  CHECKLOOP-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?x?xf32>
-//  CHECKLOOP-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?x?xf32>
-//  CHECKLOOP-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?xf32>
-//       CHECKLOOP: %[[c0:.*]] = constant 0 : index
-//       CHECKLOOP: %[[c1:.*]] = constant 1 : index
-//       CHECKLOOP: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?x?xf32>
-//       CHECKLOOP: %[[dim1:.*]] = dim %[[arg0]], %[[c1]] : memref<?x?xf32>
-//       CHECKLOOP: %[[dim2:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?xf32>
-//       CHECKLOOP: %[[dim3:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?xf32>
-//       CHECKLOOP: %[[lowerBound1:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim2]]]
-//       CHECKLOOP: %[[upperBound1:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim2]], %[[dim0]]]
-//       CHECKLOOP: %[[lowerBound2:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim3]]]
-//       CHECKLOOP: %[[upperBound2:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim3]], %[[dim1]]]
-//       CHECKLOOP: scf.for %[[i0:.*]] = %[[lowerBound1]] to %[[upperBound1]] step %{{.*}} {
-//       CHECKLOOP:   scf.for %[[i1:.*]] = %[[lowerBound2]] to %[[upperBound2]] step %{{.*}} {
-//       CHECKLOOP:     scf.for %[[i2:.*]] = %{{.*}} to %[[dim2]] step %{{.*}} {
-//       CHECKLOOP:       scf.for %[[i3:.*]] = %{{.*}} to %[[dim3]] step %{{.*}} {
-//       CHECKLOOP:         %[[dim4:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?xf32>
-//       CHECKLOOP:         %[[dim5:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?xf32>
-//       CHECKLOOP:         %[[aff1:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim4]]]
-//       CHECKLOOP:         %[[aff2:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim5]]]
-//       CHECKLOOP:         %[[va:.*]] = load %[[arg0]][%[[aff1]], %[[aff2]]] : memref<?x?xf32>
-//       CHECKLOOP:         %[[vb:.*]] = load %[[arg1]][%[[i2]], %[[i3]]] : memref<?x?xf32>
-//       CHECKLOOP:         %[[vc:.*]] = load %[[arg2]][%[[i0]], %[[i1]]] : memref<?x?xf32>
-//       CHECKLOOP:         %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKLOOP:         %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKLOOP:         store %[[res]], %[[arg2]][%[[i0]], %[[i1]]] : memref<?x?xf32>
-
-// CHECKPARALLEL-LABEL: @conv2d
-//  CHECKPARALLEL-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?x?xf32>
-//  CHECKPARALLEL-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?x?xf32>
-//  CHECKPARALLEL-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?xf32>
-//       CHECKPARALLEL: %[[c0:.*]] = constant 0 : index
-//       CHECKPARALLEL: %[[c1:.*]] = constant 1 : index
-//       CHECKPARALLEL: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?x?xf32>
-//       CHECKPARALLEL: %[[dim1:.*]] = dim %[[arg0]], %[[c1]] : memref<?x?xf32>
-//       CHECKPARALLEL: %[[dim2:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?xf32>
-//       CHECKPARALLEL: %[[dim3:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?xf32>
-//       CHECKPARALLEL: %[[lowerBound1:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim2]]]
-//       CHECKPARALLEL: %[[upperBound1:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim2]], %[[dim0]]]
-//       CHECKPARALLEL: %[[lowerBound2:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim3]]]
-//       CHECKPARALLEL: %[[upperBound2:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim3]], %[[dim1]]]
-//       CHECKPARALLEL: scf.parallel (%[[i0:.*]], %[[i1:.*]], %[[i2:.*]], %[[i3:.*]]) = (%[[lowerBound1]], %[[lowerBound2]], %{{.*}}, %{{.*}}) to (%[[upperBound1]], %[[upperBound2]], %[[dim2]], %[[dim3]]) step ({{.*}}) {
-//       CHECKPARALLEL:   %[[dim4:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?xf32>
-//       CHECKPARALLEL:   %[[dim5:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?xf32>
-//       CHECKPARALLEL:   %[[aff1:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim4]]]
-//       CHECKPARALLEL:   %[[aff2:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim5]]]
-//       CHECKPARALLEL:   %[[va:.*]] = load %[[arg0]][%[[aff1]], %[[aff2]]] : memref<?x?xf32>
-//       CHECKPARALLEL:   %[[vb:.*]] = load %[[arg1]][%[[i2]], %[[i3]]] : memref<?x?xf32>
-//       CHECKPARALLEL:   %[[vc:.*]] = load %[[arg2]][%[[i0]], %[[i1]]] : memref<?x?xf32>
-//       CHECKPARALLEL:   %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKPARALLEL:   %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKPARALLEL:   store %[[res]], %[[arg2]][%[[i0]], %[[i1]]] : memref<?x?xf32>
-
-#conv_3d_accesses = [
-  affine_map<(m, n, k, m1, n1, k1)[s0, s1, s2] -> (m + m1 - s0 floordiv 2, n + n1 - s1 floordiv 2, k + k1 - s2 floordiv 2)>, // in
-  affine_map<(m, n, k, m1, n1, k1)[s0, s1, s2] -> (m1, n1, k1)>, // filter
-  affine_map<(m, n, k, m1, n1, k1)[s0, s1, s2] -> (m, n, k)> // out
-]
-
-#conv_3d_trait = {
-  args_in = 2,
-  args_out = 1,
-  doc = "C(m,n,k) += A(m,n,k) * B(m1,n1,k1)",
-  indexing_maps = #conv_3d_accesses,
-  library_call  = "linalg_conv_3d",
-  n_views = [2, 1],
-  iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel"],
-  symbol_source = 1
-}
-
-func @conv3d(%in : memref<?x?x?xf32>, %filter : memref<?x?x?xf32>, %out :  memref<?x?x?xf32>) -> () {
-  linalg.generic #conv_3d_trait
-      ins(%in, %filter : memref<?x?x?xf32>, memref<?x?x?xf32>)
-     outs(%out : memref<?x?x?xf32>) {
-    ^bb0(%a: f32, %b: f32, %c: f32) :
-      %d = mulf %a, %b : f32
-      %e = addf %c, %d : f32
-      linalg.yield %e : f32
-  }
-  return
-}
-
-// CHECKLOOP-LABEL: @conv3d
-//  CHECKLOOP-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
-//  CHECKLOOP-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
-//  CHECKLOOP-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
-//       CHECKLOOP: %[[c0:.*]] = constant 0 : index
-//       CHECKLOOP: %[[c1:.*]] = constant 1 : index
-//       CHECKLOOP: %[[c2:.*]] = constant 2 : index
-//       CHECKLOOP: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?x?x?xf32>
-//       CHECKLOOP: %[[dim1:.*]] = dim %[[arg0]], %[[c1]] : memref<?x?x?xf32>
-//       CHECKLOOP: %[[dim2:.*]] = dim %[[arg0]], %[[c2]] : memref<?x?x?xf32>
-//       CHECKLOOP: %[[dim3:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?xf32>
-//       CHECKLOOP: %[[dim4:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?xf32>
-//       CHECKLOOP: %[[dim5:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?xf32>
-//       CHECKLOOP: %[[lowerBound1:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim3]]]
-//       CHECKLOOP: %[[upperBound1:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim3]], %[[dim0]]]
-//       CHECKLOOP: %[[lowerBound2:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim4]]]
-//       CHECKLOOP: %[[upperBound2:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim4]], %[[dim1]]]
-//       CHECKLOOP: %[[lowerBound3:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim5]]]
-//       CHECKLOOP: %[[upperBound3:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim5]], %[[dim2]]]
-//       CHECKLOOP: scf.for %[[i0:.*]] = %[[lowerBound1]] to %[[upperBound1]] step %{{.*}} {
-//       CHECKLOOP:   scf.for %[[i1:.*]] = %[[lowerBound2]] to %[[upperBound2]] step %{{.*}} {
-//       CHECKLOOP:     scf.for %[[i2:.*]] = %[[lowerBound3]] to %[[upperBound3]] step %{{.*}} {
-//       CHECKLOOP:       scf.for %[[i3:.*]] = %{{.*}} to %[[dim3]] step %{{.*}} {
-//       CHECKLOOP:         scf.for %[[i4:.*]] = %{{.*}} to %[[dim4]] step %{{.*}} {
-//       CHECKLOOP:           scf.for %[[i5:.*]] = %{{.*}} to %[[dim5]] step %{{.*}} {
-//       CHECKLOOP:             %[[dim6:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?xf32>
-//       CHECKLOOP:             %[[dim7:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?xf32>
-//       CHECKLOOP:             %[[dim8:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?xf32>
-//       CHECKLOOP:             %[[aff1:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim6]]]
-//       CHECKLOOP:             %[[aff2:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim7]]]
-//       CHECKLOOP:             %[[aff3:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim8]]]
-//       CHECKLOOP:             %[[va:.*]] = load %[[arg0]][%[[aff1]], %[[aff2]], %[[aff3]]] : memref<?x?x?xf32>
-//       CHECKLOOP:             %[[vb:.*]] = load %[[arg1]][%[[i3]], %[[i4]], %[[i5]]] : memref<?x?x?xf32>
-//       CHECKLOOP:             %[[vc:.*]] = load %[[arg2]][%[[i0]], %[[i1]], %[[i2]]] : memref<?x?x?xf32>
-//       CHECKLOOP:             %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKLOOP:             %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKLOOP:             store %[[res]], %[[arg2]][%[[i0]], %[[i1]], %[[i2]]] : memref<?x?x?xf32>
-
-// CHECKPARALLEL-LABEL: @conv3d
-//  CHECKPARALLEL-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
-//  CHECKPARALLEL-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
-//  CHECKPARALLEL-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
-//       CHECKPARALLEL: %[[c0:.*]] = constant 0 : index
-//       CHECKPARALLEL: %[[c1:.*]] = constant 1 : index
-//       CHECKPARALLEL: %[[c2:.*]] = constant 2 : index
-//       CHECKPARALLEL: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?x?x?xf32>
-//       CHECKPARALLEL: %[[dim1:.*]] = dim %[[arg0]], %[[c1]] : memref<?x?x?xf32>
-//       CHECKPARALLEL: %[[dim2:.*]] = dim %[[arg0]], %[[c2]] : memref<?x?x?xf32>
-//       CHECKPARALLEL: %[[dim3:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?xf32>
-//       CHECKPARALLEL: %[[dim4:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?xf32>
-//       CHECKPARALLEL: %[[dim5:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?xf32>
-//       CHECKPARALLEL: %[[lowerBound1:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim3]]]
-//       CHECKPARALLEL: %[[upperBound1:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim3]], %[[dim0]]]
-//       CHECKPARALLEL: %[[lowerBound2:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim4]]]
-//       CHECKPARALLEL: %[[upperBound2:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim4]], %[[dim1]]]
-//       CHECKPARALLEL: %[[lowerBound3:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim5]]]
-//       CHECKPARALLEL: %[[upperBound3:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim5]], %[[dim2]]]
-//       CHECKPARALLEL: scf.parallel (%[[i0:.*]], %[[i1:.*]], %[[i2:.*]], %[[i3:.*]], %[[i4:.*]], %[[i5:.*]]) = (%[[lowerBound1]], %[[lowerBound2]], %[[lowerBound3]], %{{.*}}, %{{.*}}, %{{.*}}) to (%[[upperBound1]], %[[upperBound2]], %[[upperBound3]], %[[dim3]], %[[dim4]], %[[dim5]]) step ({{.*}}) {
-//       CHECKPARALLEL:   %[[dim6:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?xf32>
-//       CHECKPARALLEL:   %[[dim7:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?xf32>
-//       CHECKPARALLEL:   %[[dim8:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?xf32>
-//       CHECKPARALLEL:   %[[aff1:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim6]]]
-//       CHECKPARALLEL:   %[[aff2:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim7]]]
-//       CHECKPARALLEL:   %[[aff3:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim8]]]
-//       CHECKPARALLEL:   %[[va:.*]] = load %[[arg0]][%[[aff1]], %[[aff2]], %[[aff3]]] : memref<?x?x?xf32>
-//       CHECKPARALLEL:   %[[vb:.*]] = load %[[arg1]][%[[i3]], %[[i4]], %[[i5]]] : memref<?x?x?xf32>
-//       CHECKPARALLEL:   %[[vc:.*]] = load %[[arg2]][%[[i0]], %[[i1]], %[[i2]]] : memref<?x?x?xf32>
-//       CHECKPARALLEL:   %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKPARALLEL:   %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKPARALLEL:   store %[[res]], %[[arg2]][%[[i0]], %[[i1]], %[[i2]]] : memref<?x?x?xf32>
-
-#conv_4d_accesses = [
-  affine_map<(m, n, k, l, m1, n1, k1, l1)[s0, s1, s2, s3] -> (m + m1 - s0 floordiv 2, n + n1 - s1 floordiv 2, k + k1 - s2 floordiv 2, l + l1 - s3 floordiv 2)>, // in
-  affine_map<(m, n, k, l, m1, n1, k1, l1)[s0, s1, s2, s3] -> (m1, n1, k1, l1)>, // filter
-  affine_map<(m, n, k, l, m1, n1, k1, l1)[s0, s1, s2, s3] -> (m, n, k, l)> // out
-]
-
-#conv_4d_trait = {
-  args_in = 2,
-  args_out = 1,
-  doc = "C(m,n,k,l) += A(m,n,k,l) * B(m1,n1,k1,l1)",
-  indexing_maps = #conv_4d_accesses,
-  library_call  = "linalg_conv_4d",
-  n_views = [2, 1],
-  iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel"],
-  symbol_source = 1
-}
-
-func @conv4d(%in : memref<?x?x?x?xf32>, %filter : memref<?x?x?x?xf32>, %out :  memref<?x?x?x?xf32>) -> () {
-  linalg.generic #conv_4d_trait
-      ins(%in, %filter : memref<?x?x?x?xf32>, memref<?x?x?x?xf32>)
-     outs(%out : memref<?x?x?x?xf32>) {
-    ^bb0(%a: f32, %b: f32, %c: f32) :
-      %d = mulf %a, %b : f32
-      %e = addf %c, %d : f32
-      linalg.yield %e : f32
-  }
-  return
-}
-
-// CHECKLOOP-LABEL: @conv4d
-//  CHECKLOOP-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32>
-//  CHECKLOOP-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32>
-//  CHECKLOOP-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[c0:.*]] = constant 0 : index
-//       CHECKLOOP: %[[c1:.*]] = constant 1 : index
-//       CHECKLOOP: %[[c2:.*]] = constant 2 : index
-//       CHECKLOOP: %[[c3:.*]] = constant 3 : index
-//       CHECKLOOP: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[dim1:.*]] = dim %[[arg0]], %[[c1]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[dim2:.*]] = dim %[[arg0]], %[[c2]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[dim3:.*]] = dim %[[arg0]], %[[c3]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[dim4:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[dim5:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[dim6:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[dim7:.*]] = dim %[[arg1]], %[[c3]] : memref<?x?x?x?xf32>
-//       CHECKLOOP: %[[lowerBound1:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim4]]]
-//       CHECKLOOP: %[[upperBound1:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim4]], %[[dim0]]]
-//       CHECKLOOP: %[[lowerBound2:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim5]]]
-//       CHECKLOOP: %[[upperBound2:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim5]], %[[dim1]]]
-//       CHECKLOOP: %[[lowerBound3:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim6]]]
-//       CHECKLOOP: %[[upperBound3:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim6]], %[[dim2]]]
-//       CHECKLOOP: %[[lowerBound4:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim7]]]
-//       CHECKLOOP: %[[upperBound4:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim7]], %[[dim3]]]
-//       CHECKLOOP: scf.for %[[i0:.*]] = %[[lowerBound1]] to %[[upperBound1]] step %{{.*}} {
-//       CHECKLOOP:   scf.for %[[i1:.*]] = %[[lowerBound2]] to %[[upperBound2]] step %{{.*}} {
-//       CHECKLOOP:     scf.for %[[i2:.*]] = %[[lowerBound3]] to %[[upperBound3]] step %{{.*}} {
-//       CHECKLOOP:       scf.for %[[i3:.*]] = %[[lowerBound4]] to %[[upperBound4]] step %{{.*}} {
-//       CHECKLOOP:         scf.for %[[i4:.*]] = %{{.*}} to %[[dim4]] step %{{.*}} {
-//       CHECKLOOP:           scf.for %[[i5:.*]] = %{{.*}} to %[[dim5]] step %{{.*}} {
-//       CHECKLOOP:             scf.for %[[i6:.*]] = %{{.*}} to %[[dim6]] step %{{.*}} {
-//       CHECKLOOP:               scf.for %[[i7:.*]] = %{{.*}} to %[[dim7]] step %{{.*}} {
-//       CHECKLOOP:                 %[[dim8:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?x?xf32>
-//       CHECKLOOP:                 %[[dim9:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?x?xf32>
-//       CHECKLOOP:                 %[[dim10:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?x?xf32>
-//       CHECKLOOP:                 %[[dim11:.*]] = dim %[[arg1]], %[[c3]] : memref<?x?x?x?xf32>
-//       CHECKLOOP:                 %[[aff1:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim8]]]
-//       CHECKLOOP:                 %[[aff2:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim9]]]
-//       CHECKLOOP:                 %[[aff3:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim10]]]
-//       CHECKLOOP:                 %[[aff4:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim11]]]
-//       CHECKLOOP:                 %[[va:.*]] = load %[[arg0]][%[[aff1]], %[[aff2]], %[[aff3]], %[[aff4]]] : memref<?x?x?x?xf32>
-//       CHECKLOOP:                 %[[vb:.*]] = load %[[arg1]][%[[i4]], %[[i5]], %[[i6]], %[[i7]]] : memref<?x?x?x?xf32>
-//       CHECKLOOP:                 %[[vc:.*]] = load %[[arg2]][%[[i0]], %[[i1]], %[[i2]], %[[i3]]] : memref<?x?x?x?xf32>
-//       CHECKLOOP:                 %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKLOOP:                 %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKLOOP:                 store %[[res]], %[[arg2]][%[[i0]], %[[i1]], %[[i2]], %[[i3]]] : memref<?x?x?x?xf32>
-
-// CHECKPARALLEL-LABEL: @conv4d
-//  CHECKPARALLEL-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32>
-//  CHECKPARALLEL-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32>
-//  CHECKPARALLEL-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[c0:.*]] = constant 0 : index
-//       CHECKPARALLEL: %[[c1:.*]] = constant 1 : index
-//       CHECKPARALLEL: %[[c2:.*]] = constant 2 : index
-//       CHECKPARALLEL: %[[c3:.*]] = constant 3 : index
-//       CHECKPARALLEL: %[[dim0:.*]] = dim %[[arg0]], %[[c0]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[dim1:.*]] = dim %[[arg0]], %[[c1]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[dim2:.*]] = dim %[[arg0]], %[[c2]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[dim3:.*]] = dim %[[arg0]], %[[c3]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[dim4:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[dim5:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[dim6:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[dim7:.*]] = dim %[[arg1]], %[[c3]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL: %[[lowerBound1:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim4]]]
-//       CHECKPARALLEL: %[[upperBound1:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim4]], %[[dim0]]]
-//       CHECKPARALLEL: %[[lowerBound2:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim5]]]
-//       CHECKPARALLEL: %[[upperBound2:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim5]], %[[dim1]]]
-//       CHECKPARALLEL: %[[lowerBound3:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim6]]]
-//       CHECKPARALLEL: %[[upperBound3:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim6]], %[[dim2]]]
-//       CHECKPARALLEL: %[[lowerBound4:.*]] = affine.apply #[[$convLowerBound]]()[%[[dim7]]]
-//       CHECKPARALLEL: %[[upperBound4:.*]] = affine.apply #[[$convUpperBound]]()[%[[dim7]], %[[dim3]]]
-//       CHECKPARALLEL: scf.parallel (%[[i0:.*]], %[[i1:.*]], %[[i2:.*]], %[[i3:.*]], %[[i4:.*]], %[[i5:.*]], %[[i6:.*]], %[[i7:.*]]) = (%[[lowerBound1]], %[[lowerBound2]], %[[lowerBound3]], %[[lowerBound4]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) to (%[[upperBound1]], %[[upperBound2]], %[[upperBound3]], %[[upperBound4]], %[[dim4]], %[[dim5]], %[[dim6]], %[[dim7]]) step ({{.*}}) {
-//       CHECKPARALLEL:   %[[dim8:.*]] = dim %[[arg1]], %[[c0]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL:   %[[dim9:.*]] = dim %[[arg1]], %[[c1]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL:   %[[dim10:.*]] = dim %[[arg1]], %[[c2]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL:   %[[dim11:.*]] = dim %[[arg1]], %[[c3]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL:   %[[aff1:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim8]]]
-//       CHECKPARALLEL:   %[[aff2:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim9]]]
-//       CHECKPARALLEL:   %[[aff3:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim10]]]
-//       CHECKPARALLEL:   %[[aff4:.*]] = affine.apply #[[$convMap]](%{{.*}}, %{{.*}})[%[[dim11]]]
-//       CHECKPARALLEL:   %[[va:.*]] = load %[[arg0]][%[[aff1]], %[[aff2]], %[[aff3]], %[[aff4]]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL:   %[[vb:.*]] = load %[[arg1]][%[[i4]], %[[i5]], %[[i6]], %[[i7]]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL:   %[[vc:.*]] = load %[[arg2]][%[[i0]], %[[i1]], %[[i2]], %[[i3]]] : memref<?x?x?x?xf32>
-//       CHECKPARALLEL:   %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
-//       CHECKPARALLEL:   %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
-//       CHECKPARALLEL:   store %[[res]], %[[arg2]][%[[i0]], %[[i1]], %[[i2]], %[[i3]]] : memref<?x?x?x?xf32>
 
 func @conv1d_no_symbols(%in : memref<?xf32>, %filter : memref<?xf32>, %out : memref<?xf32>) -> () {
   linalg.conv_1d ins(%in, %filter : memref<?xf32>, memref<?xf32>)


        


More information about the Mlir-commits mailing list