[Mlir-commits] [mlir] 8c2025c - [MLIR] Refactor memref type -> LLVM Type conversion
Rahul Joshi
llvmlistbot at llvm.org
Wed Nov 4 10:33:31 PST 2020
Author: Rahul Joshi
Date: 2020-11-04T10:32:56-08:00
New Revision: 8c2025cc617aa0413dee269084b4a66bcb7de4d5
URL: https://github.com/llvm/llvm-project/commit/8c2025cc617aa0413dee269084b4a66bcb7de4d5
DIFF: https://github.com/llvm/llvm-project/commit/8c2025cc617aa0413dee269084b4a66bcb7de4d5.diff
LOG: [MLIR] Refactor memref type -> LLVM Type conversion
- Eliminate duplicated information about mapping from memref -> its descriptor fields
by consolidating that mapping in two functions: getMemRefDescriptorFields and
getUnrankedMemRefDescriptorFields.
- Change convertMemRefType() and convertUnrankedMemRefType() to use these
functions.
- Remove convertMemrefSignature and convertUnrankedMemrefSignature.
Differential Revision: https://reviews.llvm.org/D90707
Added:
Modified:
mlir/include/mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h
mlir/lib/Conversion/StandardToLLVM/StandardToLLVM.cpp
Removed:
################################################################################
diff --git a/mlir/include/mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h b/mlir/include/mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h
index c52de63224b1..e7aa9d5ae516 100644
--- a/mlir/include/mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h
+++ b/mlir/include/mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h
@@ -164,12 +164,20 @@ class LLVMTypeConverter : public TypeConverter {
/// Convert a memref type into an LLVM type that captures the relevant data.
Type convertMemRefType(MemRefType type);
- /// Convert a memref type into a list of non-aggregate LLVM IR types that
- /// contain all the relevant data. In particular, the list will contain:
+ /// Convert a memref type into a list of LLVM IR types that will form the
+ /// memref descriptor. If `unpackAggregates` is true the `sizes` and `strides`
+ /// arrays in the descriptors are unpacked to individual index-typed elements,
+ /// else they are are kept as rank-sized arrays of index type. In particular,
+ /// the list will contain:
/// - two pointers to the memref element type, followed by
- /// - an integer offset, followed by
- /// - one integer size per dimension of the memref, followed by
- /// - one integer stride per dimension of the memref.
+ /// - an index-typed offset, followed by
+ /// - (if unpackAggregates = true)
+ /// - one index-typed size per dimension of the memref, followed by
+ /// - one index-typed stride per dimension of the memref.
+ /// - (if unpackArrregates = false)
+ /// - one rank-sized array of index-type for the size of each dimension
+ /// - one rank-sized array of index-type for the stride of each dimension
+ ///
/// For example, memref<?x?xf32> is converted to the following list:
/// - `!llvm<"float*">` (allocated pointer),
/// - `!llvm<"float*">` (aligned pointer),
@@ -177,17 +185,19 @@ class LLVMTypeConverter : public TypeConverter {
/// - `!llvm.i64`, `!llvm.i64` (sizes),
/// - `!llvm.i64`, `!llvm.i64` (strides).
/// These types can be recomposed to a memref descriptor struct.
- SmallVector<Type, 5> convertMemRefSignature(MemRefType type);
+ SmallVector<LLVM::LLVMType, 5>
+ getMemRefDescriptorFields(MemRefType type, bool unpackAggregates);
/// Convert an unranked memref type into a list of non-aggregate LLVM IR types
- /// that contain all the relevant data. In particular, this list contains:
+ /// that will form the unranked memref descriptor. In particular, this list
+ /// contains:
/// - an integer rank, followed by
/// - a pointer to the memref descriptor struct.
/// For example, memref<*xf32> is converted to the following list:
/// !llvm.i64 (rank)
/// !llvm<"i8*"> (type-erased pointer).
/// These types can be recomposed to a unranked memref descriptor struct.
- SmallVector<Type, 2> convertUnrankedMemRefSignature();
+ SmallVector<LLVM::LLVMType, 2> getUnrankedMemRefDescriptorFields();
// Convert an unranked memref type to an LLVM type that captures the
// runtime rank and a pointer to the static ranked memref desc
diff --git a/mlir/lib/Conversion/StandardToLLVM/StandardToLLVM.cpp b/mlir/lib/Conversion/StandardToLLVM/StandardToLLVM.cpp
index 03f604b652ab..3cd28bf919e8 100644
--- a/mlir/lib/Conversion/StandardToLLVM/StandardToLLVM.cpp
+++ b/mlir/lib/Conversion/StandardToLLVM/StandardToLLVM.cpp
@@ -61,14 +61,17 @@ LogicalResult mlir::structFuncArgTypeConverter(LLVMTypeConverter &converter,
Type type,
SmallVectorImpl<Type> &result) {
if (auto memref = type.dyn_cast<MemRefType>()) {
- auto converted = converter.convertMemRefSignature(memref);
+ // In signatures, Memref descriptors are expanded into lists of
+ // non-aggregate values.
+ auto converted =
+ converter.getMemRefDescriptorFields(memref, /*unpackAggregates=*/true);
if (converted.empty())
return failure();
result.append(converted.begin(), converted.end());
return success();
}
if (type.isa<UnrankedMemRefType>()) {
- auto converted = converter.convertUnrankedMemRefSignature();
+ auto converted = converter.getUnrankedMemRefDescriptorFields();
if (converted.empty())
return failure();
result.append(converted.begin(), converted.end());
@@ -216,32 +219,6 @@ Type LLVMTypeConverter::convertFunctionType(FunctionType type) {
return converted.getPointerTo();
}
-/// In signatures, MemRef descriptors are expanded into lists of non-aggregate
-/// values.
-SmallVector<Type, 5>
-LLVMTypeConverter::convertMemRefSignature(MemRefType type) {
- SmallVector<Type, 5> results;
- assert(isStrided(type) &&
- "Non-strided layout maps must have been normalized away");
-
- LLVM::LLVMType elementType = unwrap(convertType(type.getElementType()));
- if (!elementType)
- return {};
- auto indexTy = getIndexType();
-
- results.insert(results.begin(), 2,
- elementType.getPointerTo(type.getMemorySpace()));
- results.push_back(indexTy);
- auto rank = type.getRank();
- results.insert(results.end(), 2 * rank, indexTy);
- return results;
-}
-
-/// In signatures, unranked MemRef descriptors are expanded into a pair "rank,
-/// pointer to descriptor".
-SmallVector<Type, 2> LLVMTypeConverter::convertUnrankedMemRefSignature() {
- return {getIndexType(), LLVM::LLVMType::getInt8PtrTy(&getContext())};
-}
// Function types are converted to LLVM Function types by recursively converting
// argument and result types. If MLIR Function has zero results, the LLVM
@@ -305,69 +282,92 @@ LLVMTypeConverter::convertFunctionTypeCWrapper(FunctionType type) {
return LLVM::LLVMType::getFunctionTy(resultType, inputs, false);
}
-// Convert a MemRef to an LLVM type. The result is a MemRef descriptor which
-// contains:
-// 1. the pointer to the data buffer, followed by
-// 2. a lowered `index`-type integer containing the distance between the
-// beginning of the buffer and the first element to be accessed through the
-// view, followed by
-// 3. an array containing as many `index`-type integers as the rank of the
-// MemRef: the array represents the size, in number of elements, of the memref
-// along the given dimension. For constant MemRef dimensions, the
-// corresponding size entry is a constant whose runtime value must match the
-// static value, followed by
-// 4. a second array containing as many `index`-type integers as the rank of
-// the MemRef: the second array represents the "stride" (in tensor abstraction
-// sense), i.e. the number of consecutive elements of the underlying buffer.
-// TODO: add assertions for the static cases.
-//
-// template <typename Elem, size_t Rank>
-// struct {
-// Elem *allocatedPtr;
-// Elem *alignedPtr;
-// int64_t offset;
-// int64_t sizes[Rank]; // omitted when rank == 0
-// int64_t strides[Rank]; // omitted when rank == 0
-// };
static constexpr unsigned kAllocatedPtrPosInMemRefDescriptor = 0;
static constexpr unsigned kAlignedPtrPosInMemRefDescriptor = 1;
static constexpr unsigned kOffsetPosInMemRefDescriptor = 2;
static constexpr unsigned kSizePosInMemRefDescriptor = 3;
static constexpr unsigned kStridePosInMemRefDescriptor = 4;
-Type LLVMTypeConverter::convertMemRefType(MemRefType type) {
- int64_t offset;
- SmallVector<int64_t, 4> strides;
- bool strideSuccess = succeeded(getStridesAndOffset(type, strides, offset));
- assert(strideSuccess &&
+
+/// Convert a memref type into a list of LLVM IR types that will form the
+/// memref descriptor. The result contains the following types:
+/// 1. The pointer to the allocated data buffer, followed by
+/// 2. The pointer to the aligned data buffer, followed by
+/// 3. A lowered `index`-type integer containing the distance between the
+/// beginning of the buffer and the first element to be accessed through the
+/// view, followed by
+/// 4. An array containing as many `index`-type integers as the rank of the
+/// MemRef: the array represents the size, in number of elements, of the memref
+/// along the given dimension. For constant MemRef dimensions, the
+/// corresponding size entry is a constant whose runtime value must match the
+/// static value, followed by
+/// 5. A second array containing as many `index`-type integers as the rank of
+/// the MemRef: the second array represents the "stride" (in tensor abstraction
+/// sense), i.e. the number of consecutive elements of the underlying buffer.
+/// TODO: add assertions for the static cases.
+///
+/// If `unpackAggregates` is set to true, the arrays described in (4) and (5)
+/// are expanded into individual index-type elements.
+///
+/// template <typename Elem, typename Index, size_t Rank>
+/// struct {
+/// Elem *allocatedPtr;
+/// Elem *alignedPtr;
+/// Index offset;
+/// Index sizes[Rank]; // omitted when rank == 0
+/// Index strides[Rank]; // omitted when rank == 0
+/// };
+SmallVector<LLVM::LLVMType, 5>
+LLVMTypeConverter::getMemRefDescriptorFields(MemRefType type,
+ bool unpackAggregates) {
+ assert(isStrided(type) &&
"Non-strided layout maps must have been normalized away");
- (void)strideSuccess;
+
LLVM::LLVMType elementType = unwrap(convertType(type.getElementType()));
if (!elementType)
return {};
auto ptrTy = elementType.getPointerTo(type.getMemorySpace());
auto indexTy = getIndexType();
+
+ SmallVector<LLVM::LLVMType, 5> results = {ptrTy, ptrTy, indexTy};
auto rank = type.getRank();
- if (rank > 0) {
- auto arrayTy = LLVM::LLVMType::getArrayTy(indexTy, type.getRank());
- return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy, arrayTy, arrayTy);
- }
- return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy);
+ if (rank == 0)
+ return results;
+
+ if (unpackAggregates)
+ results.insert(results.end(), 2 * rank, indexTy);
+ else
+ results.insert(results.end(), 2, LLVM::LLVMType::getArrayTy(indexTy, rank));
+ return results;
}
-// Converts UnrankedMemRefType to LLVMType. The result is a descriptor which
-// contains:
-// 1. int64_t rank, the dynamic rank of this MemRef
-// 2. void* ptr, pointer to the static ranked MemRef descriptor. This will be
-// stack allocated (alloca) copy of a MemRef descriptor that got casted to
-// be unranked.
+/// Converts MemRefType to LLVMType. A MemRefType is converted to a struct that
+/// packs the descriptor fields as defined by `getMemRefDescriptorFields`.
+Type LLVMTypeConverter::convertMemRefType(MemRefType type) {
+ // When converting a MemRefType to a struct with descriptor fields, do not
+ // unpack the `sizes` and `strides` arrays.
+ SmallVector<LLVM::LLVMType, 5> types =
+ getMemRefDescriptorFields(type, /*unpackAggregates=*/false);
+ return LLVM::LLVMType::getStructTy(&getContext(), types);
+}
static constexpr unsigned kRankInUnrankedMemRefDescriptor = 0;
static constexpr unsigned kPtrInUnrankedMemRefDescriptor = 1;
+/// Convert an unranked memref type into a list of non-aggregate LLVM IR types
+/// that will form the unranked memref descriptor. In particular, the fields
+/// for an unranked memref descriptor are:
+/// 1. index-typed rank, the dynamic rank of this MemRef
+/// 2. void* ptr, pointer to the static ranked MemRef descriptor. This will be
+/// stack allocated (alloca) copy of a MemRef descriptor that got casted to
+/// be unranked.
+SmallVector<LLVM::LLVMType, 2>
+LLVMTypeConverter::getUnrankedMemRefDescriptorFields() {
+ return {getIndexType(), LLVM::LLVMType::getInt8PtrTy(&getContext())};
+}
+
Type LLVMTypeConverter::convertUnrankedMemRefType(UnrankedMemRefType type) {
- auto rankTy = getIndexType();
- auto ptrTy = LLVM::LLVMType::getInt8PtrTy(&getContext());
- return LLVM::LLVMType::getStructTy(rankTy, ptrTy);
+ return LLVM::LLVMType::getStructTy(&getContext(),
+ getUnrankedMemRefDescriptorFields());
}
/// Convert a memref type to a bare pointer to the memref element type.
More information about the Mlir-commits
mailing list