[Mlir-commits] [mlir] 2bcd192 - [mlir][SCFToGPU] Remove conversions from scf.for to gpu.launch.

llvmlistbot at llvm.org llvmlistbot at llvm.org
Mon Jun 1 23:18:50 PDT 2020


Author: MaheshRavishankar
Date: 2020-06-01T23:06:20-07:00
New Revision: 2bcd1927dd9f3ffc12b990bb132995a4c68f998e

URL: https://github.com/llvm/llvm-project/commit/2bcd1927dd9f3ffc12b990bb132995a4c68f998e
DIFF: https://github.com/llvm/llvm-project/commit/2bcd1927dd9f3ffc12b990bb132995a4c68f998e.diff

LOG: [mlir][SCFToGPU] Remove conversions from scf.for to gpu.launch.

Keeping in the affine.for to gpu.launch conversions, which should
probably be the affine.parallel to gpu.launch conversion as well.

Differential Revision: https://reviews.llvm.org/D80747

Added: 
    

Modified: 
    mlir/include/mlir/Conversion/Passes.td
    mlir/include/mlir/Conversion/SCFToGPU/SCFToGPU.h
    mlir/include/mlir/Conversion/SCFToGPU/SCFToGPUPass.h
    mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp
    mlir/lib/Conversion/SCFToGPU/SCFToGPUPass.cpp
    mlir/test/Conversion/SCFToGPU/no_blocks_no_threads.mlir
    mlir/test/Conversion/SCFToGPU/step_one.mlir
    mlir/test/Conversion/SCFToGPU/step_positive.mlir

Removed: 
    mlir/test/Conversion/SCFToGPU/imperfect_2D.mlir
    mlir/test/Conversion/SCFToGPU/imperfect_3D.mlir
    mlir/test/Conversion/SCFToGPU/imperfect_4D.mlir
    mlir/test/Conversion/SCFToGPU/imperfect_linalg.mlir
    mlir/test/Conversion/SCFToGPU/linalg_to_gpu.mlir
    mlir/test/Conversion/SCFToGPU/perfect_1D_setlaunch.mlir


################################################################################
diff  --git a/mlir/include/mlir/Conversion/Passes.td b/mlir/include/mlir/Conversion/Passes.td
index 5d8318483c3c..f83e913e484f 100644
--- a/mlir/include/mlir/Conversion/Passes.td
+++ b/mlir/include/mlir/Conversion/Passes.td
@@ -180,9 +180,9 @@ def SCFToStandard : Pass<"convert-scf-to-std"> {
 // SCFToGPU
 //===----------------------------------------------------------------------===//
 
-def ConvertSimpleSCFToGPU : FunctionPass<"convert-scf-to-gpu"> {
-  let summary = "Convert top-level loops to GPU kernels";
-  let constructor = "mlir::createSimpleSCFToGPUPass()";
+def ConvertAffineForToGPU : FunctionPass<"convert-affine-for-to-gpu"> {
+  let summary = "Convert top-level AffineFor Ops to GPU kernels";
+  let constructor = "mlir::createAffineForToGPUPass()";
   let options = [
     Option<"numBlockDims", "gpu-block-dims", "unsigned", /*default=*/"1u",
            "Number of GPU block dimensions for mapping">,
@@ -191,19 +191,6 @@ def ConvertSimpleSCFToGPU : FunctionPass<"convert-scf-to-gpu"> {
   ];
 }
 
-def ConvertSCFToGPU : FunctionPass<"convert-loop-op-to-gpu"> {
-  let summary = "Convert top-level scf::ForOp to GPU kernels";
-  let constructor = "mlir::createLoopToGPUPass()";
-  let options = [
-    ListOption<"numWorkGroups", "gpu-num-workgroups", "int64_t",
-               "Num workgroups in the GPU launch",
-               "llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated">,
-    ListOption<"workGroupSize", "gpu-workgroup-size", "int64_t",
-               "Workgroup Size in the GPU launch",
-               "llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated">
-  ];
-}
-
 def ConvertParallelLoopToGpu : Pass<"convert-parallel-loops-to-gpu"> {
   let summary = "Convert mapped scf.parallel ops to gpu launch operations";
   let constructor = "mlir::createParallelLoopToGpuPass()";

diff  --git a/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPU.h b/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPU.h
index 02e3a02e69c3..900bc6e3fe84 100644
--- a/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPU.h
+++ b/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPU.h
@@ -31,49 +31,14 @@ class ForOp;
 /// parallelization is performed, it is under the responsibility of the caller
 /// to strip-mine the loops and to perform the dependence analysis before
 /// calling the conversion.
+
+// TODO: Consider removing this in favor of affine.for -> affine.parallel
+// detection followed by an affine.parallel -> scf.parallel -> gpu.launch
+// conversion
 LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
                                                unsigned numBlockDims,
                                                unsigned numThreadDims);
 
-/// Convert a perfect linalg loop nest with the outermost loop identified by
-/// `forOp` into a gpu::Launch operation.  Map `numBlockDims` outer loops to
-/// GPU blocks and `numThreadDims` to GPU threads.  The bounds of the loops that
-/// are mapped should be independent of the induction variables of the other
-/// mapped loops.
-///
-/// No check on the size of the block or grid, or on the validity of
-/// parallelization is performed, it is under the responsibility of the caller
-/// to strip-mine the loops and to perform the dependence analysis before
-/// calling the conversion.
-LogicalResult convertLoopNestToGPULaunch(scf::ForOp forOp,
-                                         unsigned numBlockDims,
-                                         unsigned numThreadDims);
-
-/// Convert a loop operation into a GPU launch with the values provided in
-/// `numWorkGroups` as the grid size and the values provided in `workGroupSizes`
-/// as the block size. Size of `numWorkGroups` and workGroupSizes` must be less
-/// than or equal to 3. The loop operation can be an imperfectly nested
-/// computation with the following restrictions:
-/// 1) The loop nest must contain as many perfectly nested loops as the number
-/// of values passed in through `numWorkGroups`. This corresponds to the number
-/// of grid dimensions of the launch. All loops within the loop nest must be
-/// parallel.
-/// 2) The body of the innermost loop of the above perfectly nested loops, must
-/// contain statements that satisfy one of the two conditions below:
-///   a) A perfect loop nest of depth greater than or equal to the number of
-///   values passed in through `workGroupSizes`, i.e. the number of thread
-///   dimensions of the launch. Loops at depth less than or equal to size of
-///   `workGroupSizes` must be parallel. Loops nested deeper can be sequential
-///   and are retained as such in the generated GPU launch code.
-///   b) Statements that are safe to be executed by all threads within the
-///   workgroup. No checks are performed that this is indeed the case.
-///   TODO(ravishankarm) : Add checks that verify 2(b) above.
-/// The above conditions are assumed to be satisfied by the computation rooted
-/// at `forOp`.
-LogicalResult convertLoopToGPULaunch(scf::ForOp forOp,
-                                     ArrayRef<Value> numWorkGroups,
-                                     ArrayRef<Value> workGroupSizes);
-
 /// Adds the conversion pattern from `scf.parallel` to `gpu.launch` to the
 /// provided pattern list.
 void populateParallelLoopToGPUPatterns(OwningRewritePatternList &patterns,

diff  --git a/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPUPass.h b/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPUPass.h
index 930380e5e69c..f0afbe93d7f5 100644
--- a/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPUPass.h
+++ b/mlir/include/mlir/Conversion/SCFToGPU/SCFToGPUPass.h
@@ -19,27 +19,16 @@ class OperationPass;
 class Pass;
 
 /// Create a pass that converts loop nests into GPU kernels.  It considers
-/// top-level affine.for and linalg.for operations as roots of loop nests and
-/// converts them to the gpu.launch operations if possible.
+/// top-level affine.for operations as roots of loop nests and converts them to
+/// the gpu.launch operations if possible.
 ///
 /// No check on the size of the block or grid, or on the validity of
 /// parallelization is performed, it is under the responsibility of the caller
 /// to strip-mine the loops and to perform the dependence analysis before
 /// calling the conversion.
 std::unique_ptr<OperationPass<FuncOp>>
-createSimpleSCFToGPUPass(unsigned numBlockDims, unsigned numThreadDims);
-std::unique_ptr<OperationPass<FuncOp>> createSimpleSCFToGPUPass();
-
-/// Create a pass that converts every loop operation within the body of the
-/// FuncOp into a GPU launch. The number of workgroups and workgroup size for
-/// the implementation is controlled by SSA values passed into conversion
-/// method. For testing, the values are set as constants obtained from a command
-/// line flag. See convertLoopToGPULaunch for a description of the required
-/// semantics of the converted loop operation.
-std::unique_ptr<OperationPass<FuncOp>>
-createLoopToGPUPass(ArrayRef<int64_t> numWorkGroups,
-                    ArrayRef<int64_t> workGroupSize);
-std::unique_ptr<OperationPass<FuncOp>> createLoopToGPUPass();
+createAffineForToGPUPass(unsigned numBlockDims, unsigned numThreadDims);
+std::unique_ptr<OperationPass<FuncOp>> createAffineForToGPUPass();
 
 /// Creates a pass that converts scf.parallel operations into a gpu.launch
 /// operation. The mapping of loop dimensions to launch dimensions is derived

diff  --git a/mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp b/mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp
index 034cd1e5f8eb..4acce99ce2dc 100644
--- a/mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp
+++ b/mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp
@@ -36,8 +36,6 @@
 using namespace mlir;
 using namespace mlir::scf;
 
-using llvm::seq;
-
 // Extract an indexed value from KernelDim3.
 static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
   switch (pos) {
@@ -57,44 +55,29 @@ static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
 static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
   return forOp.getLowerBoundOperands();
 }
-static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) {
-  SmallVector<Value, 1> bounds(1, forOp.lowerBound());
-  return bounds;
-}
 
 // Get the upper bound-related operands of a loop operation.
 static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
   return forOp.getUpperBoundOperands();
 }
-static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) {
-  SmallVector<Value, 1> bounds(1, forOp.upperBound());
-  return bounds;
-}
 
 // Get a Value that corresponds to the loop step.  If the step is an attribute,
 // materialize a corresponding constant using builder.
 static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
   return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep());
 }
-static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); }
 
 // Get a Value for the loop lower bound.  If the value requires computation,
 // materialize the instructions using builder.
 static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
   return lowerAffineLowerBound(forOp, builder);
 }
-static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) {
-  return forOp.lowerBound();
-}
 
 // Get a Value for the loop upper bound.  If the value requires computation,
 // materialize the instructions using builder.
 static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
   return lowerAffineUpperBound(forOp, builder);
 }
-static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
-  return forOp.upperBound();
-}
 
 // Check the structure of the loop nest:
 //   - there are enough loops to map to numDims;
@@ -102,8 +85,8 @@ static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
 //   - the loop bounds can be computed above the outermost loop.
 // This roughly corresponds to the "matcher" part of the pattern-based
 // rewriting infrastructure.
-template <typename OpTy>
-static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) {
+static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp,
+                                                     unsigned numDims) {
   Region &limit = forOp.region();
   for (unsigned i = 0, e = numDims; i < e; ++i) {
     Operation *nested = &forOp.getBody()->front();
@@ -122,32 +105,15 @@ static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) {
     if (forOp.getBody()->empty() || std::next(begin, 2) != end)
       return forOp.emitError("expected perfectly nested loops in the body");
 
-    if (!(forOp = dyn_cast<OpTy>(nested)))
+    if (!(forOp = dyn_cast<AffineForOp>(nested)))
       return nested->emitError("expected a nested loop");
   }
   return success();
 }
 
-template <typename OpTy>
-static LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims,
-                                           unsigned numThreadDims) {
-  if (numBlockDims < 1 || numThreadDims < 1) {
-    LLVM_DEBUG(llvm::dbgs() << "nothing to map");
-    return success();
-  }
-
-  if (numBlockDims > 3) {
-    return forOp.emitError("cannot map to more than 3 block dimensions");
-  }
-  if (numThreadDims > 3) {
-    return forOp.emitError("cannot map to more than 3 thread dimensions");
-  }
-  return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
-}
-
-template <typename OpTy>
-static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims,
-                                         unsigned numThreadDims) {
+static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp,
+                                                 unsigned numBlockDims,
+                                                 unsigned numThreadDims) {
   if (numBlockDims < 1 || numThreadDims < 1) {
     LLVM_DEBUG(llvm::dbgs() << "nothing to map");
     return success();
@@ -159,52 +125,17 @@ static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims,
   if (numThreadDims > 3) {
     return forOp.emitError("cannot map to more than 3 thread dimensions");
   }
-  if (numBlockDims != numThreadDims) {
-    // TODO(ravishankarm) : This can probably be relaxed by having a one-trip
-    // loop for the missing dimension, but there is not reason to handle this
-    // case for now.
-    return forOp.emitError(
-        "mismatch in block dimensions and thread dimensions");
-  }
-
-  // Check that the forOp contains perfectly nested loops for numBlockDims
-  if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) {
-    return failure();
-  }
-
-  // Get to the innermost loop.
-  for (auto i : seq<unsigned>(0, numBlockDims - 1)) {
-    forOp = cast<OpTy>(&forOp.getBody()->front());
-    (void)i;
-  }
-
-  // The forOp now points to the body of the innermost loop mapped to blocks.
-  for (Operation &op : *forOp.getBody()) {
-    // If the operation is a loop, check that it is mappable to workItems.
-    if (auto innerLoop = dyn_cast<OpTy>(&op)) {
-      if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) {
-        return failure();
-      }
-      continue;
-    }
-    // TODO(ravishankarm) : If it is not a loop op, it is assumed that the
-    // statement is executed by all threads. It might be a collective operation,
-    // or some non-side effect instruction. Have to decide on "allowable"
-    // statements and check for those here.
-  }
-  return success();
+  return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
 }
 
 namespace {
 // Helper structure that holds common state of the loop to GPU kernel
 // conversion.
-struct LoopToGpuConverter {
-  template <typename OpTy>
-  Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops);
+struct AffineLoopToGpuConverter {
+  Optional<AffineForOp> collectBounds(AffineForOp forOp, unsigned numLoops);
 
-  template <typename OpTy>
-  void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims,
-                    unsigned numThreadDims);
+  void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
+                    unsigned numBlockDims, unsigned numThreadDims);
 
   // Ranges of the loops mapped to blocks or threads.
   SmallVector<Value, 6> dims;
@@ -229,15 +160,14 @@ static bool isConstantOne(Value value) {
 // This may fail if the IR for computing loop bounds cannot be constructed, for
 // example if an affine loop uses semi-affine maps. Return the last loop to be
 // mapped on success, llvm::None on failure.
-template <typename OpTy>
-Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
-                                                 unsigned numLoops) {
+Optional<AffineForOp>
+AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) {
   OpBuilder builder(forOp.getOperation());
   dims.reserve(numLoops);
   lbs.reserve(numLoops);
   ivs.reserve(numLoops);
   steps.reserve(numLoops);
-  OpTy currentLoop = forOp;
+  AffineForOp currentLoop = forOp;
   for (unsigned i = 0; i < numLoops; ++i) {
     Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
     Value upperBound = getOrEmitUpperBound(currentLoop, builder);
@@ -257,133 +187,19 @@ Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
     steps.push_back(step);
 
     if (i != numLoops - 1)
-      currentLoop = cast<OpTy>(&currentLoop.getBody()->front());
+      currentLoop = cast<AffineForOp>(&currentLoop.getBody()->front());
   }
   return currentLoop;
 }
 
-/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o
-/// be partitioned across workgroups or workitems. The values for the
-/// workgroup/workitem id along each dimension is passed in with `ids`. The
-/// number of workgroups/workitems along each dimension are passed in with
-/// `nids`. The innermost loop is mapped to the x-dimension, followed by the
-/// next innermost loop to y-dimension, followed by z-dimension.
-template <typename OpTy>
-static OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids,
-                                 ArrayRef<Value> nids) {
-  auto nDims = ids.size();
-  assert(nDims == nids.size());
-  for (auto dim : llvm::seq<unsigned>(0, nDims)) {
-    // TODO(ravishankarm): Don't always need to generate a loop here. If nids >=
-    // number of iterations of the original loop, this becomes a if
-    // condition. Though that does rely on how the workgroup/workitem sizes are
-    // specified to begin with.
-    mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]);
-    if (dim != nDims - 1) {
-      rootForOp = cast<OpTy>(rootForOp.getBody()->front());
-    }
-  }
-  return rootForOp;
-}
-
-/// Utility method to convert the gpu::KernelDim3 object for representing id of
-/// each workgroup/workitem and number of workgroup/workitems along a dimension
-/// of the launch into a container.
-static void packIdAndNumId(gpu::KernelDim3 kernelIds,
-                           gpu::KernelDim3 kernelNids, unsigned nDims,
-                           SmallVectorImpl<Value> &ids,
-                           SmallVectorImpl<Value> &nids) {
-  assert(nDims <= 3 && "invalid number of launch dimensions");
-  std::array<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x};
-  std::array<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x};
-  ids.clear();
-  ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end());
-  nids.clear();
-  nids.append(std::next(allNids.begin(), allNids.size() - nDims),
-              allNids.end());
-}
-
-/// Generate the body of the launch operation.
-template <typename OpTy>
-static LogicalResult
-createLaunchBody(OpBuilder &builder, OpTy rootForOp, gpu::LaunchOp launchOp,
-                 unsigned numBlockDims, unsigned numThreadDims) {
-  OpBuilder::InsertionGuard bodyInsertionGuard(builder);
-  builder.setInsertionPointToEnd(&launchOp.body().front());
-  auto terminatorOp = builder.create<gpu::TerminatorOp>(launchOp.getLoc());
-
-  rootForOp.getOperation()->moveBefore(terminatorOp);
-  SmallVector<Value, 3> workgroupID, numWorkGroups;
-  packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims,
-                 workgroupID, numWorkGroups);
-
-  // Partition the loop for mapping to workgroups.
-  auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups);
-
-  // Iterate over the body of the loopOp and get the loops to partition for
-  // thread blocks.
-  SmallVector<OpTy, 1> threadRootForOps;
-  for (Operation &op : *loopOp.getBody()) {
-    if (auto threadRootForOp = dyn_cast<OpTy>(&op)) {
-      threadRootForOps.push_back(threadRootForOp);
-    }
-  }
-
-  SmallVector<Value, 3> workItemID, workGroupSize;
-  packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(),
-                 numThreadDims, workItemID, workGroupSize);
-  for (auto &loopOp : threadRootForOps) {
-    builder.setInsertionPoint(loopOp);
-    createGPULaunchLoops(loopOp, workItemID, workGroupSize);
-  }
-  return success();
-}
-
-// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the
-// given workgroup size and number of workgroups.
-template <typename OpTy>
-static LogicalResult createLaunchFromOp(OpTy rootForOp,
-                                        ArrayRef<Value> numWorkGroups,
-                                        ArrayRef<Value> workGroupSizes) {
-  OpBuilder builder(rootForOp.getOperation());
-  if (numWorkGroups.size() > 3) {
-    return rootForOp.emitError("invalid ")
-           << numWorkGroups.size() << "-D workgroup specification";
-  }
-  auto loc = rootForOp.getLoc();
-  Value one = builder.create<ConstantOp>(
-      loc, builder.getIntegerAttr(builder.getIndexType(), 1));
-  SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one);
-  for (auto numWorkGroup : enumerate(numWorkGroups)) {
-    numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value();
-  }
-  for (auto workGroupSize : enumerate(workGroupSizes)) {
-    workGroupSize3D[workGroupSize.index()] = workGroupSize.value();
-  }
-
-  auto launchOp = builder.create<gpu::LaunchOp>(
-      rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1],
-      numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1],
-      workGroupSize3D[2]);
-  if (failed(createLaunchBody(builder, rootForOp, launchOp,
-                              numWorkGroups.size(), workGroupSizes.size()))) {
-    return failure();
-  }
-
-  return success();
-}
-
 // Replace the rooted at "rootForOp" with a GPU launch operation.  This expects
 // "innermostForOp" to point to the last loop to be transformed to the kernel,
 // and to have (numBlockDims + numThreadDims) perfectly nested loops between
 // "rootForOp" and "innermostForOp".
-// TODO(ravishankarm) : This method can be modified to use the
-// createLaunchFromOp method, since that is a strict generalization of this
-// method.
-template <typename OpTy>
-void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
-                                      unsigned numBlockDims,
-                                      unsigned numThreadDims) {
+void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
+                                            AffineForOp innermostForOp,
+                                            unsigned numBlockDims,
+                                            unsigned numThreadDims) {
   OpBuilder builder(rootForOp.getOperation());
   // Prepare the grid and block sizes for the launch operation.  If there is
   // no loop mapped to a specific dimension, use constant "1" as its size.
@@ -444,14 +260,13 @@ void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
 }
 
 // Generic loop to GPU kernel conversion function.
-template <typename OpTy>
-static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
-                                                unsigned numBlockDims,
-                                                unsigned numThreadDims) {
-  if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims)))
+static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
+                                                      unsigned numBlockDims,
+                                                      unsigned numThreadDims) {
+  if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims)))
     return failure();
 
-  LoopToGpuConverter converter;
+  AffineLoopToGpuConverter converter;
   auto maybeInnerLoop =
       converter.collectBounds(forOp, numBlockDims + numThreadDims);
   if (!maybeInnerLoop)
@@ -461,35 +276,10 @@ static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
   return success();
 }
 
-// Generic loop to GPU kernel conversion function when loop is imperfectly
-// nested. The workgroup size and num workgroups is provided as input
-template <typename OpTy>
-static LogicalResult convertLoopToGPULaunch(OpTy forOp,
-                                            ArrayRef<Value> numWorkGroups,
-                                            ArrayRef<Value> workGroupSize) {
-  if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(),
-                                 workGroupSize.size()))) {
-    return failure();
-  }
-  return createLaunchFromOp(forOp, numWorkGroups, workGroupSize);
-}
-
 LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
                                                      unsigned numBlockDims,
                                                      unsigned numThreadDims) {
-  return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
-}
-
-LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp,
-                                               unsigned numBlockDims,
-                                               unsigned numThreadDims) {
-  return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
-}
-
-LogicalResult mlir::convertLoopToGPULaunch(scf::ForOp forOp,
-                                           ArrayRef<Value> numWorkGroups,
-                                           ArrayRef<Value> workGroupSizes) {
-  return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes);
+  return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
 }
 
 namespace {

diff  --git a/mlir/lib/Conversion/SCFToGPU/SCFToGPUPass.cpp b/mlir/lib/Conversion/SCFToGPU/SCFToGPUPass.cpp
index e8c4e76c1681..4c657a34804b 100644
--- a/mlir/lib/Conversion/SCFToGPU/SCFToGPUPass.cpp
+++ b/mlir/lib/Conversion/SCFToGPU/SCFToGPUPass.cpp
@@ -18,7 +18,7 @@
 #include "llvm/ADT/ArrayRef.h"
 #include "llvm/Support/CommandLine.h"
 
-#define PASS_NAME "convert-scf-to-gpu"
+#define PASS_NAME "convert-affine-for-to-gpu"
 #define LOOPOP_TO_GPU_PASS_NAME "convert-loop-op-to-gpu"
 
 using namespace mlir;
@@ -28,7 +28,7 @@ namespace {
 // A pass that traverses top-level loops in the function and converts them to
 // GPU launch operations.  Nested launches are not allowed, so this does not
 // walk the function recursively to avoid considering nested loops.
-struct ForLoopMapper : public ConvertSimpleSCFToGPUBase<ForLoopMapper> {
+struct ForLoopMapper : public ConvertAffineForToGPUBase<ForLoopMapper> {
   ForLoopMapper() = default;
   ForLoopMapper(unsigned numBlockDims, unsigned numThreadDims) {
     this->numBlockDims = numBlockDims;
@@ -41,49 +41,6 @@ struct ForLoopMapper : public ConvertSimpleSCFToGPUBase<ForLoopMapper> {
         if (failed(convertAffineLoopNestToGPULaunch(forOp, numBlockDims,
                                                     numThreadDims)))
           signalPassFailure();
-      } else if (auto forOp = dyn_cast<ForOp>(&op)) {
-        if (failed(
-                convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims)))
-          signalPassFailure();
-      }
-    }
-  }
-};
-
-// A pass that traverses top-level loops in the function and convertes them to
-// GPU launch operations. The top-level loops itself does not have to be
-// perfectly nested. The only requirement is that there be as many perfectly
-// nested loops as the size of `numWorkGroups`. Within these any loop nest has
-// to be perfectly nested upto depth equal to size of `workGroupSize`.
-struct ImperfectlyNestedForLoopMapper
-    : public ConvertSCFToGPUBase<ImperfectlyNestedForLoopMapper> {
-  ImperfectlyNestedForLoopMapper() = default;
-  ImperfectlyNestedForLoopMapper(ArrayRef<int64_t> numWorkGroups,
-                                 ArrayRef<int64_t> workGroupSize) {
-    this->numWorkGroups = numWorkGroups;
-    this->workGroupSize = workGroupSize;
-  }
-
-  void runOnFunction() override {
-    // Insert the num work groups and workgroup sizes as constant values. This
-    // pass is only used for testing.
-    FuncOp funcOp = getFunction();
-    OpBuilder builder(funcOp.getOperation()->getRegion(0));
-    SmallVector<Value, 3> numWorkGroupsVal, workGroupSizeVal;
-    for (auto val : numWorkGroups) {
-      auto constOp = builder.create<ConstantOp>(
-          funcOp.getLoc(), builder.getIntegerAttr(builder.getIndexType(), val));
-      numWorkGroupsVal.push_back(constOp);
-    }
-    for (auto val : workGroupSize) {
-      auto constOp = builder.create<ConstantOp>(
-          funcOp.getLoc(), builder.getIntegerAttr(builder.getIndexType(), val));
-      workGroupSizeVal.push_back(constOp);
-    }
-    for (ForOp forOp : llvm::make_early_inc_range(funcOp.getOps<ForOp>())) {
-      if (failed(convertLoopToGPULaunch(forOp, numWorkGroupsVal,
-                                        workGroupSizeVal))) {
-        return signalPassFailure();
       }
     }
   }
@@ -108,23 +65,13 @@ struct ParallelLoopToGpuPass
 } // namespace
 
 std::unique_ptr<OperationPass<FuncOp>>
-mlir::createSimpleSCFToGPUPass(unsigned numBlockDims, unsigned numThreadDims) {
+mlir::createAffineForToGPUPass(unsigned numBlockDims, unsigned numThreadDims) {
   return std::make_unique<ForLoopMapper>(numBlockDims, numThreadDims);
 }
-std::unique_ptr<OperationPass<FuncOp>> mlir::createSimpleSCFToGPUPass() {
+std::unique_ptr<OperationPass<FuncOp>> mlir::createAffineForToGPUPass() {
   return std::make_unique<ForLoopMapper>();
 }
 
-std::unique_ptr<OperationPass<FuncOp>>
-mlir::createLoopToGPUPass(ArrayRef<int64_t> numWorkGroups,
-                          ArrayRef<int64_t> workGroupSize) {
-  return std::make_unique<ImperfectlyNestedForLoopMapper>(numWorkGroups,
-                                                          workGroupSize);
-}
-std::unique_ptr<OperationPass<FuncOp>> mlir::createLoopToGPUPass() {
-  return std::make_unique<ImperfectlyNestedForLoopMapper>();
-}
-
 std::unique_ptr<Pass> mlir::createParallelLoopToGpuPass() {
   return std::make_unique<ParallelLoopToGpuPass>();
 }

diff  --git a/mlir/test/Conversion/SCFToGPU/imperfect_2D.mlir b/mlir/test/Conversion/SCFToGPU/imperfect_2D.mlir
deleted file mode 100644
index d308a9e65e24..000000000000
--- a/mlir/test/Conversion/SCFToGPU/imperfect_2D.mlir
+++ /dev/null
@@ -1,83 +0,0 @@
-// RUN: mlir-opt -convert-loop-op-to-gpu="gpu-num-workgroups=2,2 gpu-workgroup-size=32,4" %s | FileCheck %s
-
-module {
-  // arg2 = arg0 * transpose(arg1) ; with intermediate buffer and tile size passed as argument
-  // CHECK: func {{@.*}}([[ARG0:%.*]]: memref<?x?xf32>, [[ARG1:%.*]]: memref<?x?xf32>, [[ARG2:%.*]]: memref<?x?xf32>, [[ARG3:%.*]]: index, [[ARG4:%.*]]: index)
-  func @foo(%arg0: memref<?x?xf32>, %arg1 : memref<?x?xf32>, %arg2 : memref<?x?xf32>, %arg3 : index, %arg4 : index) {
-    %0 = dim %arg0, 0 : memref<?x?xf32>
-    %1 = dim %arg0, 1 : memref<?x?xf32>
-    %c0 = constant 0 : index
-    %c1 = constant 1 : index
-    // CHECK: gpu.launch blocks([[ARG5:%.*]], [[ARG6:%.*]], [[ARG7:%.*]]) in ([[ARG11:%.*]] = {{%.*}}, [[ARG12:%.*]] = {{%.*}}, [[ARG13:%.*]] = {{%.*}}) threads([[ARG8:%.*]], [[ARG9:%.*]], [[ARG10:%.*]]) in ([[ARG14:%.*]] = {{%.*}}, [[ARG15:%.*]] = {{%.*}}, [[ARG16:%.*]] = {{%.*}})
-    // CHECK: [[TEMP1:%.*]] = muli [[ARG3]], [[ARG6]] : index
-    // CHECK: [[BLOCKLOOPYLB:%.*]] = addi {{%.*}}, [[TEMP1]] : index
-    // CHECK: [[BLOCKLOOPYSTEP:%.*]] = muli [[ARG3]], [[ARG12]] : index
-    // CHECK: scf.for [[BLOCKLOOPYIV:%.*]] = [[BLOCKLOOPYLB]] to {{%.*}} step [[BLOCKLOOPYSTEP]]
-    scf.for %iv1 = %c0 to %0 step %arg3 {
-
-      // CHECK: [[TEMP2:%.*]] = muli [[ARG4]], [[ARG5]] : index
-      // CHECK: [[BLOCKLOOPXLB:%.*]] = addi  {{%.*}}, [[TEMP2]] : index
-      // CHECK: [[BLOCKLOOPXSTEP:%.*]] = muli [[ARG4]], [[ARG11]] : index
-      // CHECK: scf.for [[BLOCKLOOPXIV:%.*]] = [[BLOCKLOOPXLB]] to {{%.*}} step [[BLOCKLOOPXSTEP]]
-
-      scf.for %iv2 = %c0 to %1 step %arg4 {
-
-        // TODO: This is effectively shared memory. Lower it to a
-        // shared memory.
-        %2 = alloc(%arg3, %arg4) : memref<?x?xf32>
-
-        // Load transpose tile
-        // CHECK: [[TEMP3:%.*]] = muli [[ARG20:%.*]], [[ARG9:%.*]] : index
-        // CHECK: [[THREADLOOP1YLB:%.*]] = addi {{%.*}}, [[TEMP3]] : index
-        // CHECK: [[THREADLOOP1YSTEP:%.*]] = muli [[ARG20]], [[ARG15]] : index
-        // CHECK: scf.for [[THREADLOOP1YIV:%.*]] = [[THREADLOOP1YLB]] to {{%.*}} step [[THREADLOOP1YSTEP]]
-        scf.for %iv3 = %c0 to %arg3 step %c1 {
-          // CHECK: [[TEMP4:%.*]] = muli [[ARG20]], [[ARG8]] : index
-          // CHECK: [[THREADLOOP1XLB:%.*]] = addi {{%.*}}, [[TEMP4]] : index
-          // CHECK: [[THREADLOOP1XSTEP:%.*]] = muli [[ARG20]], [[ARG14]] : index
-          // CHECK: scf.for [[THREADLOOP1XIV:%.*]] = [[THREADLOOP1XLB]] to {{%.*}} step [[THREADLOOP1XSTEP]]
-          scf.for %iv4 = %c1 to %arg4 step %c1 {
-            // CHECK: [[INDEX2:%.*]] = addi [[BLOCKLOOPYIV]], [[THREADLOOP1YIV]] : index
-            %10 = addi %iv1, %iv3 : index
-            // CHECK: [[INDEX1:%.*]] = addi [[BLOCKLOOPXIV]], [[THREADLOOP1XIV]] : index
-            %11 = addi %iv2, %iv4 : index
-            // CHECK: [[VAL1:%.*]] = load [[ARG1]]{{\[}}[[INDEX1]], [[INDEX2]]{{\]}} : memref<?x?xf32>
-            %12 = load %arg1[%11, %10] : memref<?x?xf32>
-            // CHECK: store [[VAL1]], [[SCRATCHSPACE:%.*]]{{\[}}[[THREADLOOP1XIV]], [[THREADLOOP1YIV]]{{\]}} : memref<?x?xf32>
-            store %12, %2[%iv4, %iv3] : memref<?x?xf32>
-          }
-        }
-
-        // TODO: There needs to be a sync here for correctness, but
-        // testing only loop partitioning for now.
-
-        // CHECK: [[TEMP5:%.*]] = muli [[ARG20]], [[ARG9]] : index
-        // CHECK: [[THREADLOOP2YLB:%.*]] = addi {{%.*}}, [[TEMP5]] : index
-        // CHECK: [[THREADLOOP2YSTEP:%.*]] = muli [[ARG20]], [[ARG15]] : index
-        // CHECK: scf.for [[THREADLOOP2YIV:%.*]] = [[THREADLOOP2YLB]] to {{%.*}} step [[THREADLOOP2YSTEP]]
-        scf.for %iv3 = %c0 to %arg3 step %c1 {
-          // CHECK: [[TEMP6:%.*]] = muli [[ARG20]], [[ARG8]] : index
-          // CHECK: [[THREADLOOP2XLB:%.*]] = addi {{%.*}}, [[TEMP6]] : index
-          // CHECK: [[THREADLOOP2XSTEP:%.*]] = muli [[ARG20]], [[ARG14]] : index
-          // CHECK: scf.for [[THREADLOOP2XIV:%.*]] = [[THREADLOOP2XLB]] to {{%.*}} step [[THREADLOOP2XSTEP]]
-          scf.for %iv4 = %c1 to %arg4 step %c1 {
-            // CHECK: [[INDEX3:%.*]] = addi [[BLOCKLOOPYIV]], [[THREADLOOP2YIV]] : index
-            %13 = addi %iv1, %iv3 : index
-            // CHECK: [[INDEX4:%.*]] = addi [[BLOCKLOOPXIV]], [[THREADLOOP2XIV]] : index
-            %14 = addi %iv2, %iv4 : index
-            // CHECK: {{%.*}} = load [[SCRATCHSPACE]]{{\[}}[[THREADLOOP2XIV]], [[THREADLOOP2YIV]]{{\]}} : memref<?x?xf32>
-            %15 = load %2[%iv4, %iv3] : memref<?x?xf32>
-            // CHECK: {{%.*}} = load [[ARG0]]{{\[}}[[INDEX3]], [[INDEX4]]{{\]}}
-            %16 = load %arg0[%13, %14] : memref<?x?xf32>
-            %17 = mulf %15, %16 : f32
-            // CHECK: store {{%.*}}, [[ARG2]]{{\[}}[[INDEX3]], [[INDEX4]]{{\]}}
-            store %17, %arg2[%13, %14] : memref<?x?xf32>
-          }
-        }
-
-        dealloc %2 : memref<?x?xf32>
-      }
-    }
-    return
-  }
-}

diff  --git a/mlir/test/Conversion/SCFToGPU/imperfect_3D.mlir b/mlir/test/Conversion/SCFToGPU/imperfect_3D.mlir
deleted file mode 100644
index 61f62a99cd97..000000000000
--- a/mlir/test/Conversion/SCFToGPU/imperfect_3D.mlir
+++ /dev/null
@@ -1,83 +0,0 @@
-// RUN: mlir-opt -convert-loop-op-to-gpu="gpu-num-workgroups=4,2,2 gpu-workgroup-size=32,2,2" %s | FileCheck %s
-
-module {
-  func @imperfect_3D(%arg0 : memref<?x?x?xf32>, %arg1 : memref<?x?x?xf32>, %arg2 : memref<?x?x?xf32>, %arg3 : memref<?x?x?xf32>, %t1 : index, %t2 : index, %t3 : index, %step1 : index, %step2 : index, %step3 : index) {
-    %0 = dim %arg0, 0 : memref<?x?x?xf32>
-    %1 = dim %arg0, 1 : memref<?x?x?xf32>
-    %2 = dim %arg0, 2 : memref<?x?x?xf32>
-    %c0 = constant 0 : index
-    // CHECK: gpu.launch
-    // CHECK:   scf.for {{.*}} {
-    // CHECK:     scf.for {{.*}} {
-    // CHECK:       scf.for {{.*}} {
-    // CHECK:         alloc
-    // CHECK:         scf.for {{.*}} {
-    // CHECK:           scf.for {{.*}} {
-    // CHECK:             scf.for {{.*}} {
-    // CHECK:               load
-    // CHECK:               load
-    // CHECK:               addf
-    // CHECK:               store
-    // CHECK:             }
-    // CHECK-NEXT:      }
-    // CHECK-NEXT:    }
-    // CHECK:         scf.for {{.*}} {
-    // CHECK:           scf.for {{.*}} {
-    // CHECK:             scf.for {{.*}} {
-    // CHECK:               load
-    // CHECK:               load
-    // CHECK:               mulf
-    // CHECK:               store
-    // CHECK:             }
-    // CHECK-NEXT:      }
-    // CHECK-NEXT:    }
-    // CHECK:         dealloc
-    scf.for %iv1 = %c0 to %0 step %t1 {
-      scf.for %iv2 = %c0 to %1 step %t2 {
-        scf.for %iv3 = %c0 to %2 step %t3 {
-          %6 = alloc(%t1, %t2, %t3) : memref<?x?x?xf32>
-          %ubcmp1 = cmpi "slt", %0, %t1 : index
-          %ub1 = select %ubcmp1, %0, %t1 : index
-          %ubcmp2 = cmpi "slt", %1, %t2 : index
-          %ub2 = select %ubcmp2, %1, %t2 : index
-          %ubcmp3 = cmpi "slt", %2, %t3 : index
-          %ub3 = select %ubcmp3, %2, %t3 : index
-          scf.for %iv4 = %iv1 to %ub1 step %step1 {
-            scf.for %iv5 = %iv2 to %ub2 step %step2 {
-              scf.for %iv6 = %iv3 to %ub3 step %step3 {
-                %7 = load %arg0[%iv4, %iv5, %iv6] : memref<?x?x?xf32>
-                %8 = load %arg1[%iv4, %iv6, %iv5] : memref<?x?x?xf32>
-                %9 = addf %7, %8 : f32
-                %10 = subi %iv4, %iv1 : index
-                %11 = divi_signed %10, %step1 : index
-                %12 = subi %iv5, %iv2 : index
-                %13 = divi_signed %12, %step2 : index
-                %14 = subi %iv6, %iv3 : index
-                %15 = divi_signed %14, %step3 : index
-                store %9, %6[%11, %13, %15] : memref<?x?x?xf32>
-              }
-            }
-          }
-          scf.for %iv7 = %iv1 to %ub1 step %step1 {
-            scf.for %iv8 = %iv2 to %ub2 step %step2 {
-              scf.for %iv9 = %iv3 to %ub3 step %step3 {
-                %16 = subi %iv7, %iv1 : index
-                %17 = divi_signed %16, %step1 : index
-                %18 = subi %iv8, %iv2 : index
-                %19 = divi_signed %18, %step2 : index
-                %20 = subi %iv9, %iv3 : index
-                %21 = divi_signed %20, %step3 : index
-                %22 = load %6[%17, %19, %21] : memref<?x?x?xf32>
-                %23 = load %arg2[%iv9, %iv8, %iv7] : memref<?x?x?xf32>
-                %24 = mulf %22, %23 : f32
-                store %24, %arg3[%iv7, %iv8, %iv9] : memref<?x?x?xf32>
-              }
-            }
-          }
-          dealloc %6 : memref<?x?x?xf32>
-        }
-      }
-    }
-    return
-  }
-}

diff  --git a/mlir/test/Conversion/SCFToGPU/imperfect_4D.mlir b/mlir/test/Conversion/SCFToGPU/imperfect_4D.mlir
deleted file mode 100644
index 636dce234145..000000000000
--- a/mlir/test/Conversion/SCFToGPU/imperfect_4D.mlir
+++ /dev/null
@@ -1,86 +0,0 @@
-// RUN: mlir-opt -convert-loop-op-to-gpu="gpu-num-workgroups=4,2,2 gpu-workgroup-size=32,2,2" %s | FileCheck %s
-
-module {
-  func @imperfect_3D(%arg0 : memref<?x?x?x?xf32>, %arg1 : memref<?x?x?x?xf32>, %arg2 : memref<?x?x?x?xf32>, %arg3 : memref<?x?x?x?xf32>, %t1 : index, %t2 : index, %t3 : index, %t4 : index, %step1 : index, %step2 : index, %step3 : index, %step4 : index) {
-    %0 = dim %arg0, 0 : memref<?x?x?x?xf32>
-    %1 = dim %arg0, 1 : memref<?x?x?x?xf32>
-    %2 = dim %arg0, 2 : memref<?x?x?x?xf32>
-    %3 = dim %arg0, 3 : memref<?x?x?x?xf32>
-    %c0 = constant 0 : index
-    // CHECK: gpu.launch
-    // CHECK:   scf.for
-    // CHECK:     scf.for
-    // CHECK:       scf.for
-    // CHECK:         alloc
-    // CHECK:         scf.for
-    // CHECK:           scf.for
-    // CHECK:             scf.for
-    // CHECK:               scf.for
-    // CHECK:                 load
-    // CHECK:                 load
-    // CHECK:                 addf
-    // CHECK:                 store
-    // CHECK:         scf.for
-    // CHECK:           scf.for
-    // CHECK:             scf.for
-    // CHECK:               scf.for
-    // CHECK:                 load
-    // CHECK:                 load
-    // CHECK:                 mulf
-    // CHECK:                 store
-    // CHECK:         dealloc
-    scf.for %iv1 = %c0 to %0 step %t1 {
-      scf.for %iv2 = %c0 to %1 step %t2 {
-        scf.for %iv3 = %c0 to %2 step %t3 {
-          %6 = alloc(%t1, %t2, %t3, %3) : memref<?x?x?x?xf32>
-          %ubcmp1 = cmpi "slt", %0, %t1 : index
-          %ub1 = select %ubcmp1, %0, %t1 : index
-          %ubcmp2 = cmpi "slt", %1, %t2 : index
-          %ub2 = select %ubcmp2, %1, %t2 : index
-          %ubcmp3 = cmpi "slt", %2, %t3 : index
-          %ub3 = select %ubcmp3, %2, %t3 : index
-          %ubcmp4 = cmpi "slt", %3, %t4 : index
-          %ub4 = select %ubcmp3, %3, %t4 : index
-          scf.for %iv5 = %iv1 to %ub1 step %step1 {
-            scf.for %iv6 = %iv2 to %ub2 step %step2 {
-              scf.for %iv7 = %iv3 to %ub3 step %step3 {
-                scf.for %iv8 = %c0 to %3 step %step4 {
-                  %7 = load %arg0[%iv5, %iv6, %iv7, %iv8] : memref<?x?x?x?xf32>
-                  %8 = load %arg1[%iv5, %iv6, %iv7, %iv8] : memref<?x?x?x?xf32>
-                  %9 = addf %7, %8 : f32
-                  %10 = subi %iv5, %iv1 : index
-                  %11 = divi_signed %10, %step1 : index
-                  %12 = subi %iv6, %iv2 : index
-                  %13 = divi_signed %12, %step2 : index
-                  %14 = subi %iv7, %iv3 : index
-                  %15 = divi_signed %14, %step3 : index
-                  store %9, %6[%11, %13, %15, %iv8] : memref<?x?x?x?xf32>
-                }
-              }
-            }
-          }
-          scf.for %iv9 = %iv1 to %ub1 step %step1 {
-            scf.for %iv10 = %iv2 to %ub2 step %step2 {
-              scf.for %iv11 = %iv3 to %ub3 step %step3 {
-                scf.for %iv12 = %c0 to %3 step %step4 {
-                  %18 = subi %iv9, %iv1 : index
-                  %19 = divi_signed %18, %step1 : index
-                  %20 = subi %iv10, %iv2 : index
-                  %21 = divi_signed %20, %step2 : index
-                  %22 = subi %iv11, %iv3 : index
-                  %23 = divi_signed %22, %step3 : index
-                  %26 = load %6[%19, %21, %23, %iv12] : memref<?x?x?x?xf32>
-                  %27 = load %arg2[%iv9, %iv10, %iv12, %iv11] : memref<?x?x?x?xf32>
-                  %28 = mulf %26, %27 : f32
-                  store %28, %arg3[%iv9, %iv10, %iv11, %iv12] : memref<?x?x?x?xf32>
-                }
-              }
-            }
-          }
-          dealloc %6 : memref<?x?x?x?xf32>
-        }
-      }
-    }
-    return
-  }
-}

diff  --git a/mlir/test/Conversion/SCFToGPU/imperfect_linalg.mlir b/mlir/test/Conversion/SCFToGPU/imperfect_linalg.mlir
deleted file mode 100644
index fe147c5929d0..000000000000
--- a/mlir/test/Conversion/SCFToGPU/imperfect_linalg.mlir
+++ /dev/null
@@ -1,40 +0,0 @@
-// RUN: mlir-opt %s -convert-loop-op-to-gpu="gpu-num-workgroups=2,16 gpu-workgroup-size=32,4" | FileCheck %s
-
-module {
-  func @fmul(%arg0: memref<?x?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
-    %c1 = constant 1 : index
-    %c0 = constant 0 : index
-    %c2 = constant 2 : index
-    %0 = dim %arg0, 0 : memref<?x?xf32>
-    %1 = dim %arg0, 1 : memref<?x?xf32>
-    // CHECK-LABEL: gpu.launch
-    // CHECK:   scf.for
-    // CHECK:     scf.for
-    // CHECK:       scf.for
-    // CHECK:         scf.for
-    // CHECK:           load
-    // CHECK:           load
-    // CHECK:           load
-    // CHECK:           mulf
-    // CHECK:           store
-    scf.for %arg3 = %c0 to %0 step %c2 {
-      scf.for %arg4 = %c0 to %1 step %c2 {
-        %4 = std.subview %arg0[%arg3, %arg4][%c2, %c2][%c1, %c1] : memref<?x?xf32> to memref<?x?xf32, offset: ?, strides: [?, ?]>
-        %7 = std.subview %arg1[%arg3, %arg4][%c2, %c2][%c1, %c1] : memref<?x?xf32> to memref<?x?xf32, offset: ?, strides: [?, ?]>
-        %10 = std.subview %arg2[%arg3, %arg4][%c2, %c2][%c1, %c1] : memref<?x?xf32> to memref<?x?xf32, offset: ?, strides: [?, ?]>
-        %11 = dim %4, 0 : memref<?x?xf32, offset: ?, strides: [?, ?]>
-        %12 = dim %4, 1 : memref<?x?xf32, offset: ?, strides: [?, ?]>
-        scf.for %arg5 = %c0 to %11 step %c1 {
-          scf.for %arg6 = %c0 to %12 step %c1 {
-            %13 = load %4[%arg5, %arg6] : memref<?x?xf32, offset: ?, strides: [?, ?]>
-            %14 = load %7[%arg5, %arg6] : memref<?x?xf32, offset: ?, strides: [?, ?]>
-            %15 = load %10[%arg5, %arg6] : memref<?x?xf32, offset: ?, strides: [?, ?]>
-            %16 = mulf %13, %14 : f32
-            store %16, %10[%arg5, %arg6] : memref<?x?xf32, offset: ?, strides: [?, ?]>
-          }
-        }
-      }
-    }
-    return
-  }
-}

diff  --git a/mlir/test/Conversion/SCFToGPU/linalg_to_gpu.mlir b/mlir/test/Conversion/SCFToGPU/linalg_to_gpu.mlir
deleted file mode 100644
index e1aec40aeea8..000000000000
--- a/mlir/test/Conversion/SCFToGPU/linalg_to_gpu.mlir
+++ /dev/null
@@ -1,29 +0,0 @@
-// RUN: mlir-opt -convert-scf-to-gpu %s | FileCheck %s
-
-// CHECK-LABEL: @foo
-func @foo(%arg0: memref<?xf32>, %arg1 : index) {
-  %c0 = constant 0 : index
-  %c42 = constant 42 : index
-  %c3 = constant 3 : index
-  // CHECK:      subi %{{.*}}, %{{.*}} : index
-  // CHECK-NEXT: %[[range_i:.*]] = divi_signed {{.*}}, %{{.*}} : index
-  scf.for %i0 = %c0 to %c42 step %c3 {
-    // CHECK:      subi %{{.*}}, %{{.*}} : index
-    // CHECK-NEXT: %[[range_j:.*]] = divi_signed {{.*}}, %{{.*}} : index
-    scf.for %i1 = %c3 to %c42 step %arg1 {
-      // CHECK:      gpu.launch
-      // CHECK-SAME: blocks
-      // CHECK-SAME: threads
-
-      // Replacements of loop induction variables.  Take a product with the
-      // step and add the lower bound.
-      // CHECK: %[[prod_i:.*]] = muli %{{.*}}, %{{.*}} : index
-      // CHECK: addi %{{.*}}, %[[prod_i]] : index
-      // CHECK: %[[prod_j:.*]] = muli %{{.*}}, %{{.*}} : index
-      // CHECK: addi %{{.*}}, %[[prod_j]] : index
-
-      // CHECK: gpu.terminator
-    }
-  }
-  return
-}

diff  --git a/mlir/test/Conversion/SCFToGPU/no_blocks_no_threads.mlir b/mlir/test/Conversion/SCFToGPU/no_blocks_no_threads.mlir
index 8fb9d4166004..44f170bc43bb 100644
--- a/mlir/test/Conversion/SCFToGPU/no_blocks_no_threads.mlir
+++ b/mlir/test/Conversion/SCFToGPU/no_blocks_no_threads.mlir
@@ -1,5 +1,5 @@
-// RUN: mlir-opt -convert-scf-to-gpu="gpu-block-dims=0 gpu-thread-dims=1" %s | FileCheck --check-prefix=CHECK-THREADS %s --dump-input-on-failure
-// RUN: mlir-opt -convert-scf-to-gpu="gpu-block-dims=1 gpu-thread-dims=0" %s | FileCheck --check-prefix=CHECK-BLOCKS %s --dump-input-on-failure
+// RUN: mlir-opt -convert-affine-for-to-gpu="gpu-block-dims=0 gpu-thread-dims=1" %s | FileCheck --check-prefix=CHECK-THREADS %s --dump-input-on-failure
+// RUN: mlir-opt -convert-affine-for-to-gpu="gpu-block-dims=1 gpu-thread-dims=0" %s | FileCheck --check-prefix=CHECK-BLOCKS %s --dump-input-on-failure
 
 // CHECK-THREADS-LABEL: @one_d_loop
 // CHECK-BLOCKS-LABEL: @one_d_loop

diff  --git a/mlir/test/Conversion/SCFToGPU/perfect_1D_setlaunch.mlir b/mlir/test/Conversion/SCFToGPU/perfect_1D_setlaunch.mlir
deleted file mode 100644
index e4ec4a14df08..000000000000
--- a/mlir/test/Conversion/SCFToGPU/perfect_1D_setlaunch.mlir
+++ /dev/null
@@ -1,26 +0,0 @@
-// RUN: mlir-opt -convert-loop-op-to-gpu="gpu-num-workgroups=2 gpu-workgroup-size=32" %s | FileCheck %s
-
-module {
-  func @foo(%arg0: memref<?x?xf32>, %arg1 : memref<?x?xf32>, %arg2 : memref<?x?xf32>) {
-    %0 = dim %arg0, 0 : memref<?x?xf32>
-    %1 = dim %arg0, 1 : memref<?x?xf32>
-    %c0 = constant 0 : index
-    %c1 = constant 1 : index
-    // CHECK: gpu.launch
-    // CHECK:   scf.for
-    // CHECK:     scf.for
-    // CHECK:       load
-    // CHECK:       load
-    // CHECK:       add
-    // CHECK:       store
-    scf.for %iv1 = %c0 to %0 step %c1 {
-      scf.for %iv2 = %c0 to %1 step %c1 {
-         %12 = load %arg0[%iv1, %iv2] : memref<?x?xf32>
-         %13 = load %arg1[%iv2, %iv1] : memref<?x?xf32>
-         %14 = addf %12, %13 : f32
-         store %12, %arg2[%iv1, %iv2] : memref<?x?xf32>
-       }
-     }
-    return
-  }
-}

diff  --git a/mlir/test/Conversion/SCFToGPU/step_one.mlir b/mlir/test/Conversion/SCFToGPU/step_one.mlir
index cd8ec0d8816f..631886a95403 100644
--- a/mlir/test/Conversion/SCFToGPU/step_one.mlir
+++ b/mlir/test/Conversion/SCFToGPU/step_one.mlir
@@ -1,5 +1,5 @@
-// RUN: mlir-opt -convert-scf-to-gpu="gpu-block-dims=1 gpu-thread-dims=1" %s | FileCheck --check-prefix=CHECK-11 %s
-// RUN: mlir-opt -convert-scf-to-gpu="gpu-block-dims=2 gpu-thread-dims=2" %s | FileCheck --check-prefix=CHECK-22 %s
+// RUN: mlir-opt -convert-affine-for-to-gpu="gpu-block-dims=1 gpu-thread-dims=1" %s | FileCheck --check-prefix=CHECK-11 %s
+// RUN: mlir-opt -convert-affine-for-to-gpu="gpu-block-dims=2 gpu-thread-dims=2" %s | FileCheck --check-prefix=CHECK-22 %s
 
 // CHECK-11-LABEL: @step_1
 // CHECK-22-LABEL: @step_1

diff  --git a/mlir/test/Conversion/SCFToGPU/step_positive.mlir b/mlir/test/Conversion/SCFToGPU/step_positive.mlir
index 26f2dfac5ef6..850f87037351 100644
--- a/mlir/test/Conversion/SCFToGPU/step_positive.mlir
+++ b/mlir/test/Conversion/SCFToGPU/step_positive.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt -convert-scf-to-gpu="gpu-block-dims=1 gpu-thread-dims=1" %s | FileCheck %s
+// RUN: mlir-opt -convert-affine-for-to-gpu="gpu-block-dims=1 gpu-thread-dims=1" %s | FileCheck %s
 
 // CHECK-LABEL: @step_var
 func @step_var(%A : memref<?x?xf32>, %B : memref<?x?xf32>) {


        


More information about the Mlir-commits mailing list