[Mlir-commits] [mlir] 10a898b - [MLIR] Exact integer emptiness checks for FlatAffineConstraints

Uday Bondhugula llvmlistbot at llvm.org
Thu Jul 2 07:23:57 PDT 2020


Author: Arjun P
Date: 2020-07-02T19:53:27+05:30
New Revision: 10a898b3ecd638c58803e471b1ec239e58574635

URL: https://github.com/llvm/llvm-project/commit/10a898b3ecd638c58803e471b1ec239e58574635
DIFF: https://github.com/llvm/llvm-project/commit/10a898b3ecd638c58803e471b1ec239e58574635.diff

LOG: [MLIR] Exact integer emptiness checks for FlatAffineConstraints

This patch adds the capability to perform exact integer emptiness checks for FlatAffineConstraints using the General Basis Reduction algorithm (GBR). Previously, only a heuristic was available for emptiness checks, which was not guaranteed to always give a conclusive result.

This patch adds a `Simplex` class, which can be constructed using a `FlatAffineConstraints`, and can find an integer sample point (if one exists) using the GBR algorithm. Additionally, it adds two classes `Matrix` and `Fraction`, which are used by `Simplex`.

The integer emptiness check functionality can be accessed through the new `FlatAffineConstraints::isIntegerEmpty()` function, which runs the existing heuristic first and, if that proves to be inconclusive, runs the GBR algorithm to produce a conclusive result.

Differential Revision: https://reviews.llvm.org/D80860

Added: 
    mlir/include/mlir/Analysis/Presburger/Fraction.h
    mlir/include/mlir/Analysis/Presburger/Matrix.h
    mlir/include/mlir/Analysis/Presburger/Simplex.h
    mlir/lib/Analysis/Presburger/CMakeLists.txt
    mlir/lib/Analysis/Presburger/Matrix.cpp
    mlir/lib/Analysis/Presburger/Simplex.cpp
    mlir/unittests/Analysis/AffineStructuresTest.cpp
    mlir/unittests/Analysis/CMakeLists.txt
    mlir/unittests/Analysis/Presburger/CMakeLists.txt
    mlir/unittests/Analysis/Presburger/MatrixTest.cpp
    mlir/unittests/Analysis/Presburger/SimplexTest.cpp

Modified: 
    mlir/include/mlir/Analysis/AffineStructures.h
    mlir/lib/Analysis/AffineStructures.cpp
    mlir/lib/Analysis/CMakeLists.txt
    mlir/unittests/CMakeLists.txt

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Analysis/AffineStructures.h b/mlir/include/mlir/Analysis/AffineStructures.h
index b8a9973fcffa..5858ab2ac62b 100644
--- a/mlir/include/mlir/Analysis/AffineStructures.h
+++ b/mlir/include/mlir/Analysis/AffineStructures.h
@@ -126,19 +126,33 @@ class FlatAffineConstraints {
   /// intersection with no simplification of any sort attempted.
   void append(const FlatAffineConstraints &other);
 
-  // Checks for emptiness by performing variable elimination on all identifiers,
-  // running the GCD test on each equality constraint, and checking for invalid
-  // constraints.
-  // Returns true if the GCD test fails for any equality, or if any invalid
-  // constraints are discovered on any row. Returns false otherwise.
+  /// Checks for emptiness by performing variable elimination on all
+  /// identifiers, running the GCD test on each equality constraint, and
+  /// checking for invalid constraints. Returns true if the GCD test fails for
+  /// any equality, or if any invalid constraints are discovered on any row.
+  /// Returns false otherwise.
   bool isEmpty() const;
 
-  // Runs the GCD test on all equality constraints. Returns 'true' if this test
-  // fails on any equality. Returns 'false' otherwise.
-  // This test can be used to disprove the existence of a solution. If it
-  // returns true, no integer solution to the equality constraints can exist.
+  /// Runs the GCD test on all equality constraints. Returns 'true' if this test
+  /// fails on any equality. Returns 'false' otherwise.
+  /// This test can be used to disprove the existence of a solution. If it
+  /// returns true, no integer solution to the equality constraints can exist.
   bool isEmptyByGCDTest() const;
 
+  /// Runs the GCD test heuristic. If it proves inconclusive, falls back to
+  /// generalized basis reduction if the set is bounded.
+  ///
+  /// Returns true if the set of constraints is found to have no solution,
+  /// false if a solution exists or all tests were inconclusive.
+  bool isIntegerEmpty() const;
+
+  /// Find a sample point satisfying the constraints. This uses a branch and
+  /// bound algorithm with generalized basis reduction, which always works if
+  /// the set is bounded. This should not be called for unbounded sets.
+  ///
+  /// Returns such a point if one exists, or an empty Optional otherwise.
+  Optional<SmallVector<int64_t, 8>> findIntegerSample() const;
+
   // Clones this object.
   std::unique_ptr<FlatAffineConstraints> clone() const;
 

diff  --git a/mlir/include/mlir/Analysis/Presburger/Fraction.h b/mlir/include/mlir/Analysis/Presburger/Fraction.h
new file mode 100644
index 000000000000..09996c486ef3
--- /dev/null
+++ b/mlir/include/mlir/Analysis/Presburger/Fraction.h
@@ -0,0 +1,77 @@
+//===- Fraction.h - MLIR Fraction Class -------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a simple class to represent fractions. It supports multiplication,
+// comparison, floor, and ceiling operations.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_ANALYSIS_PRESBURGER_FRACTION_H
+#define MLIR_ANALYSIS_PRESBURGER_FRACTION_H
+
+#include "mlir/Support/MathExtras.h"
+
+namespace mlir {
+
+/// A class to represent fractions. The sign of the fraction is represented
+/// in the sign of the numerator; the denominator is always positive.
+///
+/// Note that overflows may occur if the numerator or denominator are not
+/// representable by 64-bit integers.
+struct Fraction {
+  /// Default constructor initializes the represented rational number to zero.
+  Fraction() : num(0), den(1) {}
+
+  /// Construct a Fraction from a numerator and denominator.
+  Fraction(int64_t oNum, int64_t oDen) : num(oNum), den(oDen) {
+    if (den < 0) {
+      num = -num;
+      den = -den;
+    }
+  }
+
+  /// The numerator and denominator, respectively. The denominator is always
+  /// positive.
+  int64_t num, den;
+};
+
+/// Three-way comparison between two fractions.
+/// Returns +1, 0, and -1 if the first fraction is greater than, equal to, or
+/// less than the second fraction, respectively.
+inline int compare(Fraction x, Fraction y) {
+  int64_t 
diff  = x.num * y.den - y.num * x.den;
+  if (
diff  > 0)
+    return +1;
+  if (
diff  < 0)
+    return -1;
+  return 0;
+}
+
+inline int64_t floor(Fraction f) { return floorDiv(f.num, f.den); }
+
+inline int64_t ceil(Fraction f) { return ceilDiv(f.num, f.den); }
+
+inline Fraction operator-(Fraction x) { return Fraction(-x.num, x.den); }
+
+inline bool operator<(Fraction x, Fraction y) { return compare(x, y) < 0; }
+
+inline bool operator<=(Fraction x, Fraction y) { return compare(x, y) <= 0; }
+
+inline bool operator==(Fraction x, Fraction y) { return compare(x, y) == 0; }
+
+inline bool operator>(Fraction x, Fraction y) { return compare(x, y) > 0; }
+
+inline bool operator>=(Fraction x, Fraction y) { return compare(x, y) >= 0; }
+
+inline Fraction operator*(Fraction x, Fraction y) {
+  return Fraction(x.num * y.num, x.den * y.den);
+}
+
+} // namespace mlir
+
+#endif // MLIR_ANALYSIS_PRESBURGER_FRACTION_H

diff  --git a/mlir/include/mlir/Analysis/Presburger/Matrix.h b/mlir/include/mlir/Analysis/Presburger/Matrix.h
new file mode 100644
index 000000000000..7bc29f81a834
--- /dev/null
+++ b/mlir/include/mlir/Analysis/Presburger/Matrix.h
@@ -0,0 +1,79 @@
+//===- Matrix.h - MLIR Matrix Class -----------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a simple 2D matrix class that supports reading, writing, resizing,
+// swapping rows, and swapping columns.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_ANALYSIS_PRESBURGER_MATRIX_H
+#define MLIR_ANALYSIS_PRESBURGER_MATRIX_H
+
+#include "mlir/Support/LLVM.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <cassert>
+
+namespace mlir {
+
+/// This is a simple class to represent a resizable matrix.
+///
+/// The data is stored in the form of a vector of vectors.
+class Matrix {
+public:
+  Matrix() = delete;
+
+  /// Construct a matrix with the specified number of rows and columns.
+  /// Initially, the values are default initialized.
+  Matrix(unsigned rows, unsigned columns);
+
+  /// Return the identity matrix of the specified dimension.
+  static Matrix identity(unsigned dimension);
+
+  /// Access the element at the specified row and column.
+  int64_t &at(unsigned row, unsigned column);
+  int64_t at(unsigned row, unsigned column) const;
+  int64_t &operator()(unsigned row, unsigned column);
+  int64_t operator()(unsigned row, unsigned column) const;
+
+  /// Swap the given columns.
+  void swapColumns(unsigned column, unsigned otherColumn);
+
+  /// Swap the given rows.
+  void swapRows(unsigned row, unsigned otherRow);
+
+  unsigned getNumRows() const;
+
+  unsigned getNumColumns() const;
+
+  /// Get an ArrayRef corresponding to the specified row.
+  ArrayRef<int64_t> getRow(unsigned row) const;
+
+  /// Add `scale` multiples of the source row to the target row.
+  void addToRow(unsigned sourceRow, unsigned targetRow, int64_t scale);
+
+  /// Resize the matrix to the specified dimensions. If a dimension is smaller,
+  /// the values are truncated; if it is bigger, the new values are default
+  /// initialized.
+  void resizeVertically(unsigned newNRows);
+
+  /// Print the matrix.
+  void print(raw_ostream &os) const;
+  void dump() const;
+
+private:
+  unsigned nRows, nColumns;
+
+  /// Stores the data. data.size() is equal to nRows * nColumns.
+  SmallVector<int64_t, 64> data;
+};
+
+} // namespace mlir
+
+#endif // MLIR_ANALYSIS_PRESBURGER_MATRIX_H

diff  --git a/mlir/include/mlir/Analysis/Presburger/Simplex.h b/mlir/include/mlir/Analysis/Presburger/Simplex.h
new file mode 100644
index 000000000000..f6344a62d214
--- /dev/null
+++ b/mlir/include/mlir/Analysis/Presburger/Simplex.h
@@ -0,0 +1,327 @@
+//===- Simplex.h - MLIR Simplex Class ---------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Functionality to perform analysis on FlatAffineConstraints. In particular,
+// support for performing emptiness checks.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_ANALYSIS_PRESBURGER_SIMPLEX_H
+#define MLIR_ANALYSIS_PRESBURGER_SIMPLEX_H
+
+#include "mlir/Analysis/AffineStructures.h"
+#include "mlir/Analysis/Presburger/Fraction.h"
+#include "mlir/Analysis/Presburger/Matrix.h"
+#include "mlir/Support/LogicalResult.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace mlir {
+
+class GBRSimplex;
+
+/// This class implements a version of the Simplex and Generalized Basis
+/// Reduction algorithms, which can perform analysis of integer sets with affine
+/// inequalities and equalities. A Simplex can be constructed
+/// by specifying the dimensionality of the set. It supports adding affine
+/// inequalities and equalities, and can perform emptiness checks, i.e., it can
+/// find a solution to the set of constraints if one exists, or say that the
+/// set is empty if no solution exists. Currently, this only works for bounded
+/// sets. Simplex can also be constructed from a FlatAffineConstraints object.
+///
+/// The implementation of this Simplex class, other than the functionality
+/// for sampling, is based on the paper
+/// "Simplify: A Theorem Prover for Program Checking"
+/// by D. Detlefs, G. Nelson, J. B. Saxe.
+///
+/// We define variables, constraints, and unknowns. Consider the example of a
+/// two-dimensional set defined by 1 + 2x + 3y >= 0 and 2x - 3y >= 0. Here,
+/// x, y, are variables while 1 + 2x + 3y >= 0, 2x - 3y >= 0 are
+/// constraints. Unknowns are either variables or constraints, i.e., x, y,
+/// 1 + 2x + 3y >= 0, 2x - 3y >= 0 are all unknowns.
+///
+/// The implementation involves a matrix called a tableau, which can be thought
+/// of as a 2D matrix of rational numbers having number of rows equal to the
+/// number of constraints and number of columns equal to one plus the number of
+/// variables. In our implementation, instead of storing rational numbers, we
+/// store a common denominator for each row, so it is in fact a matrix of
+/// integers with number of rows equal to number of constraints and number of
+/// columns equal to _two_ plus the number of variables. For example, instead of
+/// storing a row of three rationals [1/2, 2/3, 3], we would store [6, 3, 4, 18]
+/// since 3/6 = 1/2, 4/6 = 2/3, and 18/6 = 3.
+///
+/// Every row and column except the first and second columns is associated with
+/// an unknown and every unknown is associated with a row or column. The second
+/// column represents the constant, explained in more detail below. An unknown
+/// associated with a row or column is said to be in row or column position
+/// respectively.
+///
+/// The vectors var and con store information about the variables and
+/// constraints respectively, namely, whether they are in row or column
+/// position, which row or column they are associated with, and whether they
+/// correspond to a variable or a constraint.
+///
+/// An unknown is addressed by its index. If the index i is non-negative, then
+/// the variable var[i] is being addressed. If the index i is negative, then
+/// the constraint con[~i] is being addressed. Effectively this maps
+/// 0 -> var[0], 1 -> var[1], -1 -> con[0], -2 -> con[1], etc. rowUnknown[r] and
+/// colUnknown[c] are the indexes of the unknowns associated with row r and
+/// column c, respectively.
+///
+/// The unknowns in column position are together called the basis. Initially the
+/// basis is the set of variables -- in our example above, the initial basis is
+/// x, y.
+///
+/// The unknowns in row position are represented in terms of the basis unknowns.
+/// If the basis unknowns are u_1, u_2, ... u_m, and a row in the tableau is
+/// d, c, a_1, a_2, ... a_m, this representats the unknown for that row as
+/// (c + a_1*u_1 + a_2*u_2 + ... + a_m*u_m)/d. In our running example, if the
+/// basis is the initial basis of x, y, then the constraint 1 + 2x + 3y >= 0
+/// would be represented by the row [1, 1, 2, 3].
+///
+/// The association of unknowns to rows and columns can be changed by a process
+/// called pivoting, where a row unknown and a column unknown exchange places
+/// and the remaining row variables' representation is changed accordingly
+/// by eliminating the old column unknown in favour of the new column unknown.
+/// If we had pivoted the column for x with the row for 2x - 3y >= 0,
+/// the new row for x would be [2, 1, 3] since x = (1*(2x - 3y) + 3*y)/2.
+/// See the documentation for the pivot member function for details.
+///
+/// The association of unknowns to rows and columns is called the _tableau
+/// configuration_. The _sample value_ of an unknown in a particular tableau
+/// configuration is its value if all the column unknowns were set to zero.
+/// Concretely, for unknowns in column position the sample value is zero and
+/// for unknowns in row position the sample value is the constant term divided
+/// by the common denominator.
+///
+/// The tableau configuration is called _consistent_ if the sample value of all
+/// restricted unknowns is non-negative. Initially there are no constraints, and
+/// the tableau is consistent. When a new constraint is added, its sample value
+/// in the current tableau configuration may be negative. In that case, we try
+/// to find a series of pivots to bring us to a consistent tableau
+/// configuration, i.e. we try to make the new constraint's sample value
+/// non-negative without making that of any other constraints negative. (See
+/// findPivot and findPivotRow for details.) If this is not possible, then the
+/// set of constraints is mutually contradictory and the tableau is marked
+/// _empty_, which means the set of constraints has no solution.
+///
+/// This Simplex class also supports taking snapshots of the current state
+/// and rolling back to prior snapshots. This works by maintaing an undo log
+/// of operations. Snapshots are just pointers to a particular location in the
+/// log, and rolling back to a snapshot is done by reverting each log entry's
+/// operation from the end until we reach the snapshot's location.
+///
+/// Finding an integer sample is done with the Generalized Basis Reduction
+/// algorithm. See the documentation for findIntegerSample and reduceBasis.
+class Simplex {
+public:
+  enum class Direction { Up, Down };
+
+  Simplex() = delete;
+  explicit Simplex(unsigned nVar);
+  explicit Simplex(const FlatAffineConstraints &constraints);
+
+  /// Returns true if the tableau is empty (has conflicting constraints),
+  /// false otherwise.
+  bool isEmpty() const;
+
+  /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
+  /// is the current number of variables, then the corresponding inequality is
+  /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
+  void addInequality(ArrayRef<int64_t> coeffs);
+
+  /// Returns the number of variables in the tableau.
+  unsigned numVariables() const;
+
+  /// Returns the number of constraints in the tableau.
+  unsigned numConstraints() const;
+
+  /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
+  /// is the current number of variables, then the corresponding equality is
+  /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
+  void addEquality(ArrayRef<int64_t> coeffs);
+
+  /// Mark the tableau as being empty.
+  void markEmpty();
+
+  /// Get a snapshot of the current state. This is used for rolling back.
+  unsigned getSnapshot() const;
+
+  /// Rollback to a snapshot. This invalidates all later snapshots.
+  void rollback(unsigned snapshot);
+
+  /// Compute the maximum or minimum value of the given row, depending on
+  /// direction.
+  ///
+  /// Returns a (num, den) pair denoting the optimum, or None if no
+  /// optimum exists, i.e., if the expression is unbounded in this direction.
+  Optional<Fraction> computeRowOptimum(Direction direction, unsigned row);
+
+  /// Compute the maximum or minimum value of the given expression, depending on
+  /// direction.
+  ///
+  /// Returns a (num, den) pair denoting the optimum, or a null value if no
+  /// optimum exists, i.e., if the expression is unbounded in this direction.
+  Optional<Fraction> computeOptimum(Direction direction,
+                                    ArrayRef<int64_t> coeffs);
+
+  /// Returns a (min, max) pair denoting the minimum and maximum integer values
+  /// of the given expression.
+  std::pair<int64_t, int64_t> computeIntegerBounds(ArrayRef<int64_t> coeffs);
+
+  /// Returns true if the polytope is unbounded, i.e., extends to infinity in
+  /// some direction. Otherwise, returns false.
+  bool isUnbounded();
+
+  /// Make a tableau to represent a pair of points in the given tableaus, one in
+  /// tableau A and one in B.
+  static Simplex makeProduct(const Simplex &a, const Simplex &b);
+
+  /// Returns the current sample point if it is integral. Otherwise, returns an
+  /// None.
+  Optional<SmallVector<int64_t, 8>> getSamplePointIfIntegral() const;
+
+  /// Returns an integer sample point if one exists, or None
+  /// otherwise. This should only be called for bounded sets.
+  Optional<SmallVector<int64_t, 8>> findIntegerSample();
+
+  /// Print the tableau's internal state.
+  void print(raw_ostream &os) const;
+  void dump() const;
+
+private:
+  friend class GBRSimplex;
+
+  enum class Orientation { Row, Column };
+
+  /// An Unknown is either a variable or a constraint. It is always associated
+  /// with either a row or column. Whether it's a row or a column is specified
+  /// by the orientation and pos identifies the specific row or column it is
+  /// associated with. If the unknown is restricted, then it has a
+  /// non-negativity constraint associated with it, i.e., its sample value must
+  /// always be non-negative and if it cannot be made non-negative without
+  /// violating other constraints, the tableau is empty.
+  struct Unknown {
+    Unknown(Orientation oOrientation, bool oRestricted, unsigned oPos)
+        : pos(oPos), orientation(oOrientation), restricted(oRestricted) {}
+    unsigned pos;
+    Orientation orientation;
+    bool restricted : 1;
+
+    void print(raw_ostream &os) const {
+      os << (orientation == Orientation::Row ? "r" : "c");
+      os << pos;
+      if (restricted)
+        os << " [>=0]";
+    }
+  };
+
+  struct Pivot {
+    unsigned row, column;
+  };
+
+  /// Find a pivot to change the sample value of row in the specified
+  /// direction. The returned pivot row will be row if and only
+  /// if the unknown is unbounded in the specified direction.
+  ///
+  /// Returns a (row, col) pair denoting a pivot, or an empty Optional if
+  /// no valid pivot exists.
+  Optional<Pivot> findPivot(int row, Direction direction) const;
+
+  /// Swap the row with the column in the tableau's data structures but not the
+  /// tableau itself. This is used by pivot.
+  void swapRowWithCol(unsigned row, unsigned col);
+
+  /// Pivot the row with the column.
+  void pivot(unsigned row, unsigned col);
+  void pivot(Pivot pair);
+
+  /// Returns the unknown associated with index.
+  const Unknown &unknownFromIndex(int index) const;
+  /// Returns the unknown associated with col.
+  const Unknown &unknownFromColumn(unsigned col) const;
+  /// Returns the unknown associated with row.
+  const Unknown &unknownFromRow(unsigned row) const;
+  /// Returns the unknown associated with index.
+  Unknown &unknownFromIndex(int index);
+  /// Returns the unknown associated with col.
+  Unknown &unknownFromColumn(unsigned col);
+  /// Returns the unknown associated with row.
+  Unknown &unknownFromRow(unsigned row);
+
+  /// Add a new row to the tableau and the associated data structures.
+  unsigned addRow(ArrayRef<int64_t> coeffs);
+
+  /// Normalize the given row by removing common factors between the numerator
+  /// and the denominator.
+  void normalizeRow(unsigned row);
+
+  /// Swap the two rows in the tableau and associated data structures.
+  void swapRows(unsigned i, unsigned j);
+
+  /// Restore the unknown to a non-negative sample value.
+  ///
+  /// Returns true if the unknown was successfully restored to a non-negative
+  /// sample value, false otherwise.
+  LogicalResult restoreRow(Unknown &u);
+
+  enum class UndoLogEntry { RemoveLastConstraint, UnmarkEmpty };
+
+  /// Undo the operation represented by the log entry.
+  void undo(UndoLogEntry entry);
+
+  /// Find a row that can be used to pivot the column in the specified
+  /// direction. If skipRow is not null, then this row is excluded
+  /// from consideration. The returned pivot will maintain all constraints
+  /// except the column itself and skipRow, if it is set. (if these unknowns
+  /// are restricted).
+  ///
+  /// Returns the row to pivot to, or an empty Optional if the column
+  /// is unbounded in the specified direction.
+  Optional<unsigned> findPivotRow(Optional<unsigned> skipRow,
+                                  Direction direction, unsigned col) const;
+
+  /// Reduce the given basis, starting at the specified level, using general
+  /// basis reduction.
+  void reduceBasis(Matrix &basis, unsigned level);
+
+  /// The number of rows in the tableau.
+  unsigned nRow;
+
+  /// The number of columns in the tableau, including the common denominator
+  /// and the constant column.
+  unsigned nCol;
+
+  /// The matrix representing the tableau.
+  Matrix tableau;
+
+  /// This is true if the tableau has been detected to be empty, false
+  /// otherwise.
+  bool empty;
+
+  /// Holds a log of operations, used for rolling back to a previous state.
+  SmallVector<UndoLogEntry, 8> undoLog;
+
+  /// These hold the indexes of the unknown at a given row or column position.
+  /// We keep these as signed integers since that makes it convenient to check
+  /// if an index corresponds to a variable or a constraint by checking the
+  /// sign.
+  ///
+  /// colUnknown is padded with two null indexes at the front since the first
+  /// two columns don't correspond to any unknowns.
+  SmallVector<int, 8> rowUnknown, colUnknown;
+
+  /// These hold information about each unknown.
+  SmallVector<Unknown, 8> con, var;
+};
+
+} // namespace mlir
+
+#endif // MLIR_ANALYSIS_PRESBURGER_SIMPLEX_H

diff  --git a/mlir/lib/Analysis/AffineStructures.cpp b/mlir/lib/Analysis/AffineStructures.cpp
index 5c3f33d0a693..f297f6b11d63 100644
--- a/mlir/lib/Analysis/AffineStructures.cpp
+++ b/mlir/lib/Analysis/AffineStructures.cpp
@@ -11,6 +11,7 @@
 //===----------------------------------------------------------------------===//
 
 #include "mlir/Analysis/AffineStructures.h"
+#include "mlir/Analysis/Presburger/Simplex.h"
 #include "mlir/Dialect/Affine/IR/AffineOps.h"
 #include "mlir/Dialect/Affine/IR/AffineValueMap.h"
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
@@ -1035,6 +1036,28 @@ bool FlatAffineConstraints::isEmptyByGCDTest() const {
   return false;
 }
 
+// First, try the GCD test heuristic.
+//
+// If that doesn't find the set empty, check if the set is unbounded. If it is,
+// we cannot use the GBR algorithm and we conservatively return false.
+//
+// If the set is bounded, we use the complete emptiness check for this case
+// provided by Simplex::findIntegerSample(), which gives a definitive answer.
+bool FlatAffineConstraints::isIntegerEmpty() const {
+  if (isEmptyByGCDTest())
+    return true;
+
+  Simplex simplex(*this);
+  if (simplex.isUnbounded())
+    return false;
+  return !simplex.findIntegerSample().hasValue();
+}
+
+Optional<SmallVector<int64_t, 8>>
+FlatAffineConstraints::findIntegerSample() const {
+  return Simplex(*this).findIntegerSample();
+}
+
 /// Tightens inequalities given that we are dealing with integer spaces. This is
 /// analogous to the GCD test but applied to inequalities. The constant term can
 /// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,

diff  --git a/mlir/lib/Analysis/CMakeLists.txt b/mlir/lib/Analysis/CMakeLists.txt
index 0d9cc9036c2f..524203b87068 100644
--- a/mlir/lib/Analysis/CMakeLists.txt
+++ b/mlir/lib/Analysis/CMakeLists.txt
@@ -25,6 +25,7 @@ add_mlir_library(MLIRAnalysis
   MLIRCallInterfaces
   MLIRControlFlowInterfaces
   MLIRInferTypeOpInterface
+  MLIRPresburger
   MLIRSCF
   )
 
@@ -46,5 +47,8 @@ add_mlir_library(MLIRLoopAnalysis
   MLIRCallInterfaces
   MLIRControlFlowInterfaces
   MLIRInferTypeOpInterface
+  MLIRPresburger
   MLIRSCF
   )
+  
+add_subdirectory(Presburger)

diff  --git a/mlir/lib/Analysis/Presburger/CMakeLists.txt b/mlir/lib/Analysis/Presburger/CMakeLists.txt
new file mode 100644
index 000000000000..2561013696d9
--- /dev/null
+++ b/mlir/lib/Analysis/Presburger/CMakeLists.txt
@@ -0,0 +1,4 @@
+add_mlir_library(MLIRPresburger
+  Simplex.cpp
+  Matrix.cpp
+  )

diff  --git a/mlir/lib/Analysis/Presburger/Matrix.cpp b/mlir/lib/Analysis/Presburger/Matrix.cpp
new file mode 100644
index 000000000000..213f1111e2a3
--- /dev/null
+++ b/mlir/lib/Analysis/Presburger/Matrix.cpp
@@ -0,0 +1,92 @@
+//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/Presburger/Matrix.h"
+
+namespace mlir {
+
+Matrix::Matrix(unsigned rows, unsigned columns)
+    : nRows(rows), nColumns(columns), data(nRows * nColumns) {}
+
+Matrix Matrix::identity(unsigned dimension) {
+  Matrix matrix(dimension, dimension);
+  for (unsigned i = 0; i < dimension; ++i)
+    matrix(i, i) = 1;
+  return matrix;
+}
+
+int64_t &Matrix::at(unsigned row, unsigned column) {
+  assert(row < getNumRows() && "Row outside of range");
+  assert(column < getNumColumns() && "Column outside of range");
+  return data[row * nColumns + column];
+}
+
+int64_t Matrix::at(unsigned row, unsigned column) const {
+  assert(row < getNumRows() && "Row outside of range");
+  assert(column < getNumColumns() && "Column outside of range");
+  return data[row * nColumns + column];
+}
+
+int64_t &Matrix::operator()(unsigned row, unsigned column) {
+  return at(row, column);
+}
+
+int64_t Matrix::operator()(unsigned row, unsigned column) const {
+  return at(row, column);
+}
+
+unsigned Matrix::getNumRows() const { return nRows; }
+
+unsigned Matrix::getNumColumns() const { return nColumns; }
+
+void Matrix::resizeVertically(unsigned newNRows) {
+  nRows = newNRows;
+  data.resize(nRows * nColumns);
+}
+
+void Matrix::swapRows(unsigned row, unsigned otherRow) {
+  assert((row < getNumRows() && otherRow < getNumRows()) &&
+         "Given row out of bounds");
+  if (row == otherRow)
+    return;
+  for (unsigned col = 0; col < nColumns; col++)
+    std::swap(at(row, col), at(otherRow, col));
+}
+
+void Matrix::swapColumns(unsigned column, unsigned otherColumn) {
+  assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
+         "Given column out of bounds");
+  if (column == otherColumn)
+    return;
+  for (unsigned row = 0; row < nRows; row++)
+    std::swap(at(row, column), at(row, otherColumn));
+}
+
+ArrayRef<int64_t> Matrix::getRow(unsigned row) const {
+  return {&data[row * nColumns], nColumns};
+}
+
+void Matrix::addToRow(unsigned sourceRow, unsigned targetRow, int64_t scale) {
+  if (scale == 0)
+    return;
+  for (unsigned col = 0; col < nColumns; ++col)
+    at(targetRow, col) += scale * at(sourceRow, col);
+  return;
+}
+
+void Matrix::print(raw_ostream &os) const {
+  for (unsigned row = 0; row < nRows; ++row) {
+    for (unsigned column = 0; column < nColumns; ++column)
+      os << at(row, column) << ' ';
+    os << '\n';
+  }
+}
+
+void Matrix::dump() const { print(llvm::errs()); }
+
+} // namespace mlir

diff  --git a/mlir/lib/Analysis/Presburger/Simplex.cpp b/mlir/lib/Analysis/Presburger/Simplex.cpp
new file mode 100644
index 000000000000..825346478819
--- /dev/null
+++ b/mlir/lib/Analysis/Presburger/Simplex.cpp
@@ -0,0 +1,1081 @@
+//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/Presburger/Simplex.h"
+#include "mlir/Analysis/Presburger/Matrix.h"
+#include "mlir/Support/MathExtras.h"
+
+namespace mlir {
+using Direction = Simplex::Direction;
+
+const int nullIndex = std::numeric_limits<int>::max();
+
+/// Construct a Simplex object with `nVar` variables.
+Simplex::Simplex(unsigned nVar)
+    : nRow(0), nCol(2), tableau(0, 2 + nVar), empty(false) {
+  colUnknown.push_back(nullIndex);
+  colUnknown.push_back(nullIndex);
+  for (unsigned i = 0; i < nVar; ++i) {
+    var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
+    colUnknown.push_back(i);
+    nCol++;
+  }
+}
+
+Simplex::Simplex(const FlatAffineConstraints &constraints)
+    : Simplex(constraints.getNumIds()) {
+  for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
+       i < numIneqs; ++i)
+    addInequality(constraints.getInequality(i));
+  for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
+    addEquality(constraints.getEquality(i));
+}
+
+const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
+  assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
+  return index >= 0 ? var[index] : con[~index];
+}
+
+const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
+  assert(col < nCol && "Invalid column");
+  return unknownFromIndex(colUnknown[col]);
+}
+
+const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
+  assert(row < nRow && "Invalid row");
+  return unknownFromIndex(rowUnknown[row]);
+}
+
+Simplex::Unknown &Simplex::unknownFromIndex(int index) {
+  assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
+  return index >= 0 ? var[index] : con[~index];
+}
+
+Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
+  assert(col < nCol && "Invalid column");
+  return unknownFromIndex(colUnknown[col]);
+}
+
+Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
+  assert(row < nRow && "Invalid row");
+  return unknownFromIndex(rowUnknown[row]);
+}
+
+/// Add a new row to the tableau corresponding to the given constant term and
+/// list of coefficients. The coefficients are specified as a vector of
+/// (variable index, coefficient) pairs.
+unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
+  assert(coeffs.size() == 1 + var.size() &&
+         "Incorrect number of coefficients!");
+
+  ++nRow;
+  // If the tableau is not big enough to accomodate the extra row, we extend it.
+  if (nRow >= tableau.getNumRows())
+    tableau.resizeVertically(nRow);
+  rowUnknown.push_back(~con.size());
+  con.emplace_back(Orientation::Row, false, nRow - 1);
+
+  tableau(nRow - 1, 0) = 1;
+  tableau(nRow - 1, 1) = coeffs.back();
+  for (unsigned col = 2; col < nCol; ++col)
+    tableau(nRow - 1, col) = 0;
+
+  // Process each given variable coefficient.
+  for (unsigned i = 0; i < var.size(); ++i) {
+    unsigned pos = var[i].pos;
+    if (coeffs[i] == 0)
+      continue;
+
+    if (var[i].orientation == Orientation::Column) {
+      // If a variable is in column position at column col, then we just add the
+      // coefficient for that variable (scaled by the common row denominator) to
+      // the corresponding entry in the new row.
+      tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
+      continue;
+    }
+
+    // If the variable is in row position, we need to add that row to the new
+    // row, scaled by the coefficient for the variable, accounting for the two
+    // rows potentially having 
diff erent denominators. The new denominator is
+    // the lcm of the two.
+    int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
+    int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
+    int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
+    tableau(nRow - 1, 0) = lcm;
+    for (unsigned col = 1; col < nCol; ++col)
+      tableau(nRow - 1, col) =
+          nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
+  }
+
+  normalizeRow(nRow - 1);
+  // Push to undo log along with the index of the new constraint.
+  undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
+  return con.size() - 1;
+}
+
+/// Normalize the row by removing factors that are common between the
+/// denominator and all the numerator coefficients.
+void Simplex::normalizeRow(unsigned row) {
+  int64_t gcd = 0;
+  for (unsigned col = 0; col < nCol; ++col) {
+    if (gcd == 1)
+      break;
+    gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
+  }
+  for (unsigned col = 0; col < nCol; ++col)
+    tableau(row, col) /= gcd;
+}
+
+namespace {
+bool signMatchesDirection(int64_t elem, Direction direction) {
+  assert(elem != 0 && "elem should not be 0");
+  return direction == Direction::Up ? elem > 0 : elem < 0;
+}
+
+Direction flippedDirection(Direction direction) {
+  return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
+}
+} // anonymous namespace
+
+/// Find a pivot to change the sample value of the row in the specified
+/// direction. The returned pivot row will involve `row` if and only if the
+/// unknown is unbounded in the specified direction.
+///
+/// To increase (resp. decrease) the value of a row, we need to find a live
+/// column with a non-zero coefficient. If the coefficient is positive, we need
+/// to increase (decrease) the value of the column, and if the coefficient is
+/// negative, we need to decrease (increase) the value of the column. Also,
+/// we cannot decrease the sample value of restricted columns.
+///
+/// If multiple columns are valid, we break ties by considering a lexicographic
+/// ordering where we prefer unknowns with lower index.
+Optional<Simplex::Pivot> Simplex::findPivot(int row,
+                                            Direction direction) const {
+  Optional<unsigned> col;
+  for (unsigned j = 2; j < nCol; ++j) {
+    int64_t elem = tableau(row, j);
+    if (elem == 0)
+      continue;
+
+    if (unknownFromColumn(j).restricted &&
+        !signMatchesDirection(elem, direction))
+      continue;
+    if (!col || colUnknown[j] < colUnknown[*col])
+      col = j;
+  }
+
+  if (!col)
+    return {};
+
+  Direction newDirection =
+      tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
+  Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
+  return Pivot{maybePivotRow.getValueOr(row), *col};
+}
+
+/// Swap the associated unknowns for the row and the column.
+///
+/// First we swap the index associated with the row and column. Then we update
+/// the unknowns to reflect their new position and orientation.
+void Simplex::swapRowWithCol(unsigned row, unsigned col) {
+  std::swap(rowUnknown[row], colUnknown[col]);
+  Unknown &uCol = unknownFromColumn(col);
+  Unknown &uRow = unknownFromRow(row);
+  uCol.orientation = Orientation::Column;
+  uRow.orientation = Orientation::Row;
+  uCol.pos = col;
+  uRow.pos = row;
+}
+
+void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }
+
+/// Pivot pivotRow and pivotCol.
+///
+/// Let R be the pivot row unknown and let C be the pivot col unknown.
+/// Since initially R = a*C + sum b_i * X_i
+/// (where the sum is over the other column's unknowns, x_i)
+/// C = (R - (sum b_i * X_i))/a
+///
+/// Let u be some other row unknown.
+/// u = c*C + sum d_i * X_i
+/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
+///
+/// This results in the following transform:
+///            pivot col    other col                   pivot col    other col
+/// pivot row     a             b       ->   pivot row     1/a         -b/a
+/// other row     c             d            other row     c/a        d - bc/a
+///
+/// Taking into account the common denominators p and q:
+///
+///            pivot col    other col                    pivot col   other col
+/// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
+/// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
+///
+/// The pivot row transform is accomplished be swapping a with the pivot row's
+/// common denominator and negating the pivot row except for the pivot column
+/// element.
+void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
+  assert(pivotCol >= 2 && "Refusing to pivot invalid column");
+
+  swapRowWithCol(pivotRow, pivotCol);
+  std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
+  // We need to negate the whole pivot row except for the pivot column.
+  if (tableau(pivotRow, 0) < 0) {
+    // If the denominator is negative, we negate the row by simply negating the
+    // denominator.
+    tableau(pivotRow, 0) = -tableau(pivotRow, 0);
+    tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
+  } else {
+    for (unsigned col = 1; col < nCol; ++col) {
+      if (col == pivotCol)
+        continue;
+      tableau(pivotRow, col) = -tableau(pivotRow, col);
+    }
+  }
+  normalizeRow(pivotRow);
+
+  for (unsigned row = 0; row < nRow; ++row) {
+    if (row == pivotRow)
+      continue;
+    if (tableau(row, pivotCol) == 0) // Nothing to do.
+      continue;
+    tableau(row, 0) *= tableau(pivotRow, 0);
+    for (unsigned j = 1; j < nCol; ++j) {
+      if (j == pivotCol)
+        continue;
+      // Add rather than subtract because the pivot row has been negated.
+      tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
+                        tableau(row, pivotCol) * tableau(pivotRow, j);
+    }
+    tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
+    normalizeRow(row);
+  }
+}
+
+/// Perform pivots until the unknown has a non-negative sample value or until
+/// no more upward pivots can be performed. Return the sign of the final sample
+/// value.
+LogicalResult Simplex::restoreRow(Unknown &u) {
+  assert(u.orientation == Orientation::Row &&
+         "unknown should be in row position");
+
+  while (tableau(u.pos, 1) < 0) {
+    Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
+    if (!maybePivot)
+      break;
+
+    pivot(*maybePivot);
+    if (u.orientation == Orientation::Column)
+      return LogicalResult::Success; // the unknown is unbounded above.
+  }
+  return success(tableau(u.pos, 1) >= 0);
+}
+
+/// Find a row that can be used to pivot the column in the specified direction.
+/// This returns an empty optional if and only if the column is unbounded in the
+/// specified direction (ignoring skipRow, if skipRow is set).
+///
+/// If skipRow is set, this row is not considered, and (if it is restricted) its
+/// restriction may be violated by the returned pivot. Usually, skipRow is set
+/// because we don't want to move it to column position unless it is unbounded,
+/// and we are either trying to increase the value of skipRow or explicitly
+/// trying to make skipRow negative, so we are not concerned about this.
+///
+/// If the direction is up (resp. down) and a restricted row has a negative
+/// (positive) coefficient for the column, then this row imposes a bound on how
+/// much the sample value of the column can change. Such a row with constant
+/// term c and coefficient f for the column imposes a bound of c/|f| on the
+/// change in sample value (in the specified direction). (note that c is
+/// non-negative here since the row is restricted and the tableau is consistent)
+///
+/// We iterate through the rows and pick the row which imposes the most
+/// stringent bound, since pivoting with a row changes the row's sample value to
+/// 0 and hence saturates the bound it imposes. We break ties between rows that
+/// impose the same bound by considering a lexicographic ordering where we
+/// prefer unknowns with lower index value.
+Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
+                                         Direction direction,
+                                         unsigned col) const {
+  Optional<unsigned> retRow;
+  int64_t retElem, retConst;
+  for (unsigned row = 0; row < nRow; ++row) {
+    if (skipRow && row == *skipRow)
+      continue;
+    int64_t elem = tableau(row, col);
+    if (elem == 0)
+      continue;
+    if (!unknownFromRow(row).restricted)
+      continue;
+    if (signMatchesDirection(elem, direction))
+      continue;
+    int64_t constTerm = tableau(row, 1);
+
+    if (!retRow) {
+      retRow = row;
+      retElem = elem;
+      retConst = constTerm;
+      continue;
+    }
+
+    int64_t 
diff  = retConst * elem - constTerm * retElem;
+    if ((
diff  == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
+        (
diff  != 0 && !signMatchesDirection(
diff , direction))) {
+      retRow = row;
+      retElem = elem;
+      retConst = constTerm;
+    }
+  }
+  return retRow;
+}
+
+bool Simplex::isEmpty() const { return empty; }
+
+void Simplex::swapRows(unsigned i, unsigned j) {
+  if (i == j)
+    return;
+  tableau.swapRows(i, j);
+  std::swap(rowUnknown[i], rowUnknown[j]);
+  unknownFromRow(i).pos = i;
+  unknownFromRow(j).pos = j;
+}
+
+/// Mark this tableau empty and push an entry to the undo stack.
+void Simplex::markEmpty() {
+  undoLog.push_back(UndoLogEntry::UnmarkEmpty);
+  empty = true;
+}
+
+/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
+/// is the curent number of variables, then the corresponding inequality is
+/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
+///
+/// We add the inequality and mark it as restricted. We then try to make its
+/// sample value non-negative. If this is not possible, the tableau has become
+/// empty and we mark it as such.
+void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
+  unsigned conIndex = addRow(coeffs);
+  Unknown &u = con[conIndex];
+  u.restricted = true;
+  LogicalResult result = restoreRow(u);
+  if (failed(result))
+    markEmpty();
+}
+
+/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
+/// is the curent number of variables, then the corresponding equality is
+/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
+///
+/// We simply add two opposing inequalities, which force the expression to
+/// be zero.
+void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
+  addInequality(coeffs);
+  SmallVector<int64_t, 8> negatedCoeffs;
+  for (int64_t coeff : coeffs)
+    negatedCoeffs.emplace_back(-coeff);
+  addInequality(negatedCoeffs);
+}
+
+unsigned Simplex::numVariables() const { return var.size(); }
+unsigned Simplex::numConstraints() const { return con.size(); }
+
+/// Return a snapshot of the curent state. This is just the current size of the
+/// undo log.
+unsigned Simplex::getSnapshot() const { return undoLog.size(); }
+
+void Simplex::undo(UndoLogEntry entry) {
+  if (entry == UndoLogEntry::RemoveLastConstraint) {
+    Unknown &constraint = con.back();
+    if (constraint.orientation == Orientation::Column) {
+      unsigned column = constraint.pos;
+      Optional<unsigned> row;
+
+      // Try to find any pivot row for this column that preserves tableau
+      // consistency (except possibly the column itself, which is going to be
+      // deallocated anyway).
+      //
+      // If no pivot row is found in either direction, then the unknown is
+      // unbounded in both directions and we are free to
+      // perform any pivot at all. To do this, we just need to find any row with
+      // a non-zero coefficient for the column.
+      if (Optional<unsigned> maybeRow =
+              findPivotRow({}, Direction::Up, column)) {
+        row = *maybeRow;
+      } else if (Optional<unsigned> maybeRow =
+                     findPivotRow({}, Direction::Down, column)) {
+        row = *maybeRow;
+      } else {
+        // The loop doesn't find a pivot row only if the column has zero
+        // coefficients for every row. But the unknown is a constraint,
+        // so it was added initially as a row. Such a row could never have been
+        // pivoted to a column. So a pivot row will always be found.
+        for (unsigned i = 0; i < nRow; ++i) {
+          if (tableau(i, column) != 0) {
+            row = i;
+            break;
+          }
+        }
+      }
+      assert(row.hasValue() && "No pivot row found!");
+      pivot(*row, column);
+    }
+
+    // Move this unknown to the last row and remove the last row from the
+    // tableau.
+    swapRows(constraint.pos, nRow - 1);
+    // It is not strictly necessary to shrink the tableau, but for now we
+    // maintain the invariant that the tableau has exactly nRow rows.
+    tableau.resizeVertically(nRow - 1);
+    nRow--;
+    rowUnknown.pop_back();
+    con.pop_back();
+  } else if (entry == UndoLogEntry::UnmarkEmpty) {
+    empty = false;
+  }
+}
+
+/// Rollback to the specified snapshot.
+///
+/// We undo all the log entries until the log size when the snapshot was taken
+/// is reached.
+void Simplex::rollback(unsigned snapshot) {
+  while (undoLog.size() > snapshot) {
+    undo(undoLog.back());
+    undoLog.pop_back();
+  }
+}
+
+Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
+                                              unsigned row) {
+  // Keep trying to find a pivot for the row in the specified direction.
+  while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
+    // If findPivot returns a pivot involving the row itself, then the optimum
+    // is unbounded, so we return None.
+    if (maybePivot->row == row)
+      return {};
+    pivot(*maybePivot);
+  }
+
+  // The row has reached its optimal sample value, which we return.
+  // The sample value is the entry in the constant column divided by the common
+  // denominator for this row.
+  return Fraction(tableau(row, 1), tableau(row, 0));
+}
+
+/// Compute the optimum of the specified expression in the specified direction,
+/// or None if it is unbounded.
+Optional<Fraction> Simplex::computeOptimum(Direction direction,
+                                           ArrayRef<int64_t> coeffs) {
+  assert(!empty && "Tableau should not be empty");
+
+  unsigned snapshot = getSnapshot();
+  unsigned conIndex = addRow(coeffs);
+  unsigned row = con[conIndex].pos;
+  Optional<Fraction> optimum = computeRowOptimum(direction, row);
+  rollback(snapshot);
+  return optimum;
+}
+
+bool Simplex::isUnbounded() {
+  if (empty)
+    return false;
+
+  SmallVector<int64_t, 8> dir(var.size() + 1);
+  for (unsigned i = 0; i < var.size(); ++i) {
+    dir[i] = 1;
+
+    Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
+    if (!maybeMax)
+      return true;
+
+    Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
+    if (!maybeMin)
+      return true;
+
+    dir[i] = 0;
+  }
+  return false;
+}
+
+/// Make a tableau to represent a pair of points in the original tableau.
+///
+/// The product constraints and variables are stored as: first A's, then B's.
+///
+/// The product tableau has row layout:
+///   A's rows, B's rows.
+///
+/// It has column layout:
+///   denominator, constant, A's columns, B's columns.
+Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
+  unsigned numVar = a.numVariables() + b.numVariables();
+  unsigned numCon = a.numConstraints() + b.numConstraints();
+  Simplex result(numVar);
+
+  result.tableau.resizeVertically(numCon);
+  result.empty = a.empty || b.empty;
+
+  auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
+    SmallVector<Unknown, 8> result;
+    result.reserve(v.size() + w.size());
+    result.insert(result.end(), v.begin(), v.end());
+    result.insert(result.end(), w.begin(), w.end());
+    return result;
+  };
+  result.con = concat(a.con, b.con);
+  result.var = concat(a.var, b.var);
+
+  auto indexFromBIndex = [&](int index) {
+    return index >= 0 ? a.numVariables() + index
+                      : ~(a.numConstraints() + ~index);
+  };
+
+  result.colUnknown.assign(2, nullIndex);
+  for (unsigned i = 2; i < a.nCol; ++i) {
+    result.colUnknown.push_back(a.colUnknown[i]);
+    result.unknownFromIndex(result.colUnknown.back()).pos =
+        result.colUnknown.size() - 1;
+  }
+  for (unsigned i = 2; i < b.nCol; ++i) {
+    result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
+    result.unknownFromIndex(result.colUnknown.back()).pos =
+        result.colUnknown.size() - 1;
+  }
+
+  auto appendRowFromA = [&](unsigned row) {
+    for (unsigned col = 0; col < a.nCol; ++col)
+      result.tableau(result.nRow, col) = a.tableau(row, col);
+    result.rowUnknown.push_back(a.rowUnknown[row]);
+    result.unknownFromIndex(result.rowUnknown.back()).pos =
+        result.rowUnknown.size() - 1;
+    result.nRow++;
+  };
+
+  // Also fixes the corresponding entry in rowUnknown and var/con (as the case
+  // may be).
+  auto appendRowFromB = [&](unsigned row) {
+    result.tableau(result.nRow, 0) = b.tableau(row, 0);
+    result.tableau(result.nRow, 1) = b.tableau(row, 1);
+
+    unsigned offset = a.nCol - 2;
+    for (unsigned col = 2; col < b.nCol; ++col)
+      result.tableau(result.nRow, offset + col) = b.tableau(row, col);
+    result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
+    result.unknownFromIndex(result.rowUnknown.back()).pos =
+        result.rowUnknown.size() - 1;
+    result.nRow++;
+  };
+
+  for (unsigned row = 0; row < a.nRow; ++row)
+    appendRowFromA(row);
+  for (unsigned row = 0; row < b.nRow; ++row)
+    appendRowFromB(row);
+
+  return result;
+}
+
+Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
+  // The tableau is empty, so no sample point exists.
+  if (empty)
+    return {};
+
+  SmallVector<int64_t, 8> sample;
+  // Push the sample value for each variable into the vector.
+  for (const Unknown &u : var) {
+    if (u.orientation == Orientation::Column) {
+      // If the variable is in column position, its sample value is zero.
+      sample.push_back(0);
+    } else {
+      // If the variable is in row position, its sample value is the entry in
+      // the constant column divided by the entry in the common denominator
+      // column. If this is not an integer, then the sample point is not
+      // integral so we return None.
+      if (tableau(u.pos, 1) % tableau(u.pos, 0) != 0)
+        return {};
+      sample.push_back(tableau(u.pos, 1) / tableau(u.pos, 0));
+    }
+  }
+  return sample;
+}
+
+/// Given a simplex for a polytope, construct a new simplex whose variables are
+/// identified with a pair of points (x, y) in the original polytope. Supports
+/// some operations needed for generalized basis reduction. In what follows,
+/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
+/// dimension of the original polytope.
+///
+/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
+/// also supports rolling back this addition, by maintaining a snapshot stack
+/// that contains a snapshot of the Simplex's state for each equality, just
+/// before that equality was added.
+class GBRSimplex {
+  using Orientation = Simplex::Orientation;
+
+public:
+  GBRSimplex(const Simplex &originalSimplex)
+      : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
+        simplexConstraintOffset(simplex.numConstraints()) {}
+
+  /// Add an equality dotProduct(dir, x - y) == 0.
+  /// First pushes a snapshot for the current simplex state to the stack so
+  /// that this can be rolled back later.
+  void addEqualityForDirection(ArrayRef<int64_t> dir) {
+    assert(
+        std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
+        "Direction passed is the zero vector!");
+    snapshotStack.push_back(simplex.getSnapshot());
+    simplex.addEquality(getCoeffsForDirection(dir));
+  }
+
+  /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
+  /// the direction equalities to `dual`.
+  Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
+                                SmallVectorImpl<int64_t> &dual,
+                                int64_t &dualDenom) {
+    unsigned snap = simplex.getSnapshot();
+    unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
+    unsigned row = simplex.con[conIndex].pos;
+    Optional<Fraction> maybeWidth =
+        simplex.computeRowOptimum(Simplex::Direction::Up, row);
+    assert(maybeWidth.hasValue() && "Width should not be unbounded!");
+    dualDenom = simplex.tableau(row, 0);
+    dual.clear();
+    // The increment is i += 2 because equalities are added as two inequalities,
+    // one positive and one negative. Each iteration processes one equality.
+    for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
+      // The dual variable is the negative of the coefficient of the new row
+      // in the column of the constraint, if the constraint is in a column.
+      // Note that the second inequality for the equality is negated.
+      //
+      // We want the dual for the original equality. If the positive inequality
+      // is in column position, the negative of its row coefficient is the
+      // desired dual. If the negative inequality is in column position, its row
+      // coefficient is the desired dual. (its coefficients are already the
+      // negated coefficients of the original equality, so we don't need to
+      // negate it now.)
+      //
+      // If neither are in column position, we move the negated inequality to
+      // column position. Since the inequality must have sample value zero
+      // (since it corresponds to an equality), we are free to pivot with
+      // any column. Since both the unknowns have sample value before and after
+      // pivoting, no other sample values will change and the tableau will
+      // remain consistent. To pivot, we just need to find a column that has a
+      // non-zero coefficient in this row. There must be one since otherwise the
+      // equality would be 0 == 0, which should never be passed to
+      // addEqualityForDirection.
+      //
+      // After finding a column, we pivot with the column, after which we can
+      // get the dual from the inequality in column position as explained above.
+      if (simplex.con[i].orientation == Orientation::Column) {
+        dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
+      } else {
+        if (simplex.con[i + 1].orientation == Orientation::Row) {
+          unsigned ineqRow = simplex.con[i + 1].pos;
+          // Since it is an equality, the the sample value must be zero.
+          assert(simplex.tableau(ineqRow, 1) == 0 &&
+                 "Equality's sample value must be zero.");
+          for (unsigned col = 2; col < simplex.nCol; ++col) {
+            if (simplex.tableau(ineqRow, col) != 0) {
+              simplex.pivot(ineqRow, col);
+              break;
+            }
+          }
+          assert(simplex.con[i + 1].orientation == Orientation::Column &&
+                 "No pivot found. Equality has all-zeros row in tableau!");
+        }
+        dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
+      }
+    }
+    simplex.rollback(snap);
+    return *maybeWidth;
+  }
+
+  /// Remove the last equality that was added through addEqualityForDirection.
+  ///
+  /// We do this by rolling back to the snapshot at the top of the stack, which
+  /// should be a snapshot taken just before the last equality was added.
+  void removeLastEquality() {
+    assert(!snapshotStack.empty() && "Snapshot stack is empty!");
+    simplex.rollback(snapshotStack.back());
+    snapshotStack.pop_back();
+  }
+
+private:
+  /// Returns coefficients of the expression 'dot_product(dir, x - y)',
+  /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
+  ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
+  /// where n is the dimension of the original polytope.
+  SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
+    assert(2 * dir.size() == simplex.numVariables() &&
+           "Direction vector has wrong dimensionality");
+    SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
+    coeffs.reserve(2 * dir.size());
+    for (int64_t coeff : dir)
+      coeffs.push_back(-coeff);
+    coeffs.push_back(0); // constant term
+    return coeffs;
+  }
+
+  Simplex simplex;
+  /// The first index of the equality constraints, the index immediately after
+  /// the last constraint in the initial product simplex.
+  unsigned simplexConstraintOffset;
+  /// A stack of snapshots, used for rolling back.
+  SmallVector<unsigned, 8> snapshotStack;
+};
+
+/// Reduce the basis to try and find a direction in which the polytope is
+/// "thin". This only works for bounded polytopes.
+///
+/// This is an implementation of the algorithm described in the paper
+/// "An Implementation of Generalized Basis Reduction for Integer Programming"
+/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
+///
+/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
+/// Let width_i(v) = max <v, x - y> where x and y are points in the original
+/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
+///
+/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
+/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
+/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
+/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
+/// minimizing value of u, if it were allowed to be fractional. Due to
+/// convexity, the minimizing integer value is either floor(dual_i) or
+/// ceil(dual_i), so we just need to check which of these gives a lower
+/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
+///
+/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
+/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
+/// same i). Otherwise, we increment i.
+///
+/// We keep f values and duals cached and invalidate them when necessary.
+/// Whenever possible, we use them instead of recomputing them. We implement the
+/// algorithm as follows.
+///
+/// In an iteration at i we need to compute:
+///   a) width_i(b_{i + 1})
+///   b) width_i(b_i)
+///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
+///
+/// If width_i(b_i) is not already cached, we compute it.
+///
+/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
+/// store the duals from this computation.
+///
+/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
+/// of u as explained before, caches the duals from this computation, sets
+/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
+///
+/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
+/// decrement i, resulting in the basis
+/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
+/// with corresponding f values
+/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
+/// The values up to i - 1 remain unchanged. We have just gotten the middle
+/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
+/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
+/// the cache. The iteration after decrementing needs exactly the duals from the
+/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
+///
+/// When incrementing i, no cached f values get invalidated. However, the cached
+/// duals do get invalidated as the duals for the higher levels are 
diff erent.
+void Simplex::reduceBasis(Matrix &basis, unsigned level) {
+  const Fraction epsilon(3, 4);
+
+  if (level == basis.getNumRows() - 1)
+    return;
+
+  GBRSimplex gbrSimplex(*this);
+  SmallVector<Fraction, 8> width;
+  SmallVector<int64_t, 8> dual;
+  int64_t dualDenom;
+
+  // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
+  // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
+  // the new value of width_i(b_{i+1}).
+  //
+  // If dual_i is not an integer, the minimizing value must be either
+  // floor(dual_i) or ceil(dual_i). We compute the expression for both and
+  // choose the minimizing value.
+  //
+  // If dual_i is an integer, we don't need to perform these computations. We
+  // know that in this case,
+  //   a) u = dual_i.
+  //   b) one can show that dual_j for j < i are the same duals we would have
+  //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
+  //      are the ones already in the cache.
+  //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
+  //   which
+  //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
+  //      be in the cache, so we get it from there and return it.
+  auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
+    assert(i < level + dual.size() && "dual_i is not known!");
+
+    int64_t u = floorDiv(dual[i - level], dualDenom);
+    basis.addToRow(i, i + 1, u);
+    if (dual[i - level] % dualDenom != 0) {
+      SmallVector<int64_t, 8> candidateDual[2];
+      int64_t candidateDualDenom[2];
+      Fraction widthI[2];
+
+      // Initially u is floor(dual) and basis reflects this.
+      widthI[0] = gbrSimplex.computeWidthAndDuals(
+          basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
+
+      // Now try ceil(dual), i.e. floor(dual) + 1.
+      ++u;
+      basis.addToRow(i, i + 1, 1);
+      widthI[1] = gbrSimplex.computeWidthAndDuals(
+          basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
+
+      unsigned j = widthI[0] < widthI[1] ? 0 : 1;
+      if (j == 0)
+        // Subtract 1 to go from u = ceil(dual) back to floor(dual).
+        basis.addToRow(i, i + 1, -1);
+      dual = std::move(candidateDual[j]);
+      dualDenom = candidateDualDenom[j];
+      return widthI[j];
+    }
+    assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
+    // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
+    // width_{i+1}(b_{i+1}).
+    return width[i + 1 - level];
+  };
+
+  // In the ith iteration of the loop, gbrSimplex has constraints for directions
+  // from `level` to i - 1.
+  unsigned i = level;
+  while (i < basis.getNumRows() - 1) {
+    if (i >= level + width.size()) {
+      // We don't even know the value of f_i(b_i), so let's find that first.
+      // We have to do this first since later we assume that width already
+      // contains values up to and including i.
+
+      assert((i == 0 || i - 1 < level + width.size()) &&
+             "We are at level i but we don't know the value of width_{i-1}");
+
+      // We don't actually use these duals at all, but it doesn't matter
+      // because this case should only occur when i is level, and there are no
+      // duals in that case anyway.
+      assert(i == level && "This case should only occur when i == level");
+      width.push_back(
+          gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
+    }
+
+    if (i >= level + dual.size()) {
+      assert(i + 1 >= level + width.size() &&
+             "We don't know dual_i but we know width_{i+1}");
+      // We don't know dual for our level, so let's find it.
+      gbrSimplex.addEqualityForDirection(basis.getRow(i));
+      width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
+                                                      dualDenom));
+      gbrSimplex.removeLastEquality();
+    }
+
+    // This variable stores width_i(b_{i+1} + u*b_i).
+    Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
+    if (widthICandidate < epsilon * width[i - level]) {
+      basis.swapRows(i, i + 1);
+      width[i - level] = widthICandidate;
+      // The values of width_{i+1}(b_{i+1}) and higher may change after the
+      // swap, so we remove the cached values here.
+      width.resize(i - level + 1);
+      if (i == level) {
+        dual.clear();
+        continue;
+      }
+
+      gbrSimplex.removeLastEquality();
+      i--;
+      continue;
+    }
+
+    // Invalidate duals since the higher level needs to recompute its own duals.
+    dual.clear();
+    gbrSimplex.addEqualityForDirection(basis.getRow(i));
+    i++;
+  }
+}
+
+/// Search for an integer sample point using a branch and bound algorithm.
+///
+/// Each row in the basis matrix is a vector, and the set of basis vectors
+/// should span the space. Initially this is the identity matrix,
+/// i.e., the basis vectors are just the variables.
+///
+/// In every level, a value is assigned to the level-th basis vector, as
+/// follows. Compute the minimum and maximum rational values of this direction.
+/// If only one integer point lies in this range, constrain the variable to
+/// have this value and recurse to the next variable.
+///
+/// If the range has multiple values, perform generalized basis reduction via
+/// reduceBasis and then compute the bounds again. Now we try constraining
+/// this direction in the first value in this range and "recurse" to the next
+/// level. If we fail to find a sample, we try assigning the direction the next
+/// value in this range, and so on.
+///
+/// If no integer sample is found from any of the assignments, or if the range
+/// contains no integer value, then of course the polytope is empty for the
+/// current assignment of the values in previous levels, so we return to
+/// the previous level.
+///
+/// If we reach the last level where all the variables have been assigned values
+/// already, then we simply return the current sample point if it is integral,
+/// and go back to the previous level otherwise.
+///
+/// To avoid potentially arbitrarily large recursion depths leading to stack
+/// overflows, this algorithm is implemented iteratively.
+Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
+  if (empty)
+    return {};
+
+  unsigned nDims = var.size();
+  Matrix basis = Matrix::identity(nDims);
+
+  unsigned level = 0;
+  // The snapshot just before constraining a direction to a value at each level.
+  SmallVector<unsigned, 8> snapshotStack;
+  // The maximum value in the range of the direction for each level.
+  SmallVector<int64_t, 8> upperBoundStack;
+  // The next value to try constraining the basis vector to at each level.
+  SmallVector<int64_t, 8> nextValueStack;
+
+  snapshotStack.reserve(basis.getNumRows());
+  upperBoundStack.reserve(basis.getNumRows());
+  nextValueStack.reserve(basis.getNumRows());
+  while (level != -1u) {
+    if (level == basis.getNumRows()) {
+      // We've assigned values to all variables. Return if we have a sample,
+      // or go back up to the previous level otherwise.
+      if (auto maybeSample = getSamplePointIfIntegral())
+        return maybeSample;
+      level--;
+      continue;
+    }
+
+    if (level >= upperBoundStack.size()) {
+      // We haven't populated the stack values for this level yet, so we have
+      // just come down a level ("recursed"). Find the lower and upper bounds.
+      // If there is more than one integer point in the range, perform
+      // generalized basis reduction.
+      SmallVector<int64_t, 8> basisCoeffs =
+          llvm::to_vector<8>(basis.getRow(level));
+      basisCoeffs.push_back(0);
+
+      int64_t minRoundedUp, maxRoundedDown;
+      std::tie(minRoundedUp, maxRoundedDown) =
+          computeIntegerBounds(basisCoeffs);
+
+      // Heuristic: if the sample point is integral at this point, just return
+      // it.
+      if (auto maybeSample = getSamplePointIfIntegral())
+        return *maybeSample;
+
+      if (minRoundedUp < maxRoundedDown) {
+        reduceBasis(basis, level);
+        basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
+        basisCoeffs.push_back(0);
+        std::tie(minRoundedUp, maxRoundedDown) =
+            computeIntegerBounds(basisCoeffs);
+      }
+
+      snapshotStack.push_back(getSnapshot());
+      // The smallest value in the range is the next value to try.
+      nextValueStack.push_back(minRoundedUp);
+      upperBoundStack.push_back(maxRoundedDown);
+    }
+
+    assert((snapshotStack.size() - 1 == level &&
+            nextValueStack.size() - 1 == level &&
+            upperBoundStack.size() - 1 == level) &&
+           "Mismatched variable stack sizes!");
+
+    // Whether we "recursed" or "returned" from a lower level, we rollback
+    // to the snapshot of the starting state at this level. (in the "recursed"
+    // case this has no effect)
+    rollback(snapshotStack.back());
+    int64_t nextValue = nextValueStack.back();
+    nextValueStack.back()++;
+    if (nextValue > upperBoundStack.back()) {
+      // We have exhausted the range and found no solution. Pop the stack and
+      // return up a level.
+      snapshotStack.pop_back();
+      nextValueStack.pop_back();
+      upperBoundStack.pop_back();
+      level--;
+      continue;
+    }
+
+    // Try the next value in the range and "recurse" into the next level.
+    SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
+                                        basis.getRow(level).end());
+    basisCoeffs.push_back(-nextValue);
+    addEquality(basisCoeffs);
+    level++;
+  }
+
+  return {};
+}
+
+/// Compute the minimum and maximum integer values the expression can take. We
+/// compute each separately.
+std::pair<int64_t, int64_t>
+Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
+  int64_t minRoundedUp;
+  if (Optional<Fraction> maybeMin =
+          computeOptimum(Simplex::Direction::Down, coeffs))
+    minRoundedUp = ceil(*maybeMin);
+  else
+    llvm_unreachable("Tableau should not be unbounded");
+
+  int64_t maxRoundedDown;
+  if (Optional<Fraction> maybeMax =
+          computeOptimum(Simplex::Direction::Up, coeffs))
+    maxRoundedDown = floor(*maybeMax);
+  else
+    llvm_unreachable("Tableau should not be unbounded");
+
+  return {minRoundedUp, maxRoundedDown};
+}
+
+void Simplex::print(raw_ostream &os) const {
+  os << "rows = " << nRow << ", columns = " << nCol << "\n";
+  if (empty)
+    os << "Simplex marked empty!\n";
+  os << "var: ";
+  for (unsigned i = 0; i < var.size(); ++i) {
+    if (i > 0)
+      os << ", ";
+    var[i].print(os);
+  }
+  os << "\ncon: ";
+  for (unsigned i = 0; i < con.size(); ++i) {
+    if (i > 0)
+      os << ", ";
+    con[i].print(os);
+  }
+  os << '\n';
+  for (unsigned row = 0; row < nRow; ++row) {
+    if (row > 0)
+      os << ", ";
+    os << "r" << row << ": " << rowUnknown[row];
+  }
+  os << '\n';
+  os << "c0: denom, c1: const";
+  for (unsigned col = 2; col < nCol; ++col)
+    os << ", c" << col << ": " << colUnknown[col];
+  os << '\n';
+  for (unsigned row = 0; row < nRow; ++row) {
+    for (unsigned col = 0; col < nCol; ++col)
+      os << tableau(row, col) << '\t';
+    os << '\n';
+  }
+  os << '\n';
+}
+
+void Simplex::dump() const { print(llvm::errs()); }
+
+} // namespace mlir

diff  --git a/mlir/unittests/Analysis/AffineStructuresTest.cpp b/mlir/unittests/Analysis/AffineStructuresTest.cpp
new file mode 100644
index 000000000000..4ad977d7351f
--- /dev/null
+++ b/mlir/unittests/Analysis/AffineStructuresTest.cpp
@@ -0,0 +1,277 @@
+//===- AffineStructuresTest.cpp - Tests for AffineStructures ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/AffineStructures.h"
+
+#include <gmock/gmock.h>
+#include <gtest/gtest.h>
+
+#include <numeric>
+
+namespace mlir {
+
+/// Evaluate the value of the given affine expression at the specified point.
+/// The expression is a list of coefficients for the dimensions followed by the
+/// constant term.
+int64_t valueAt(ArrayRef<int64_t> expr, ArrayRef<int64_t> point) {
+  assert(expr.size() == 1 + point.size());
+  int64_t value = expr.back();
+  for (unsigned i = 0; i < point.size(); ++i)
+    value += expr[i] * point[i];
+  return value;
+}
+
+/// If 'hasValue' is true, check that findIntegerSample returns a valid sample
+/// for the FlatAffineConstraints fac.
+///
+/// If hasValue is false, check that findIntegerSample does not return None.
+void checkSample(bool hasValue, const FlatAffineConstraints &fac) {
+  Optional<SmallVector<int64_t, 8>> maybeSample = fac.findIntegerSample();
+  if (!hasValue) {
+    EXPECT_FALSE(maybeSample.hasValue());
+    if (maybeSample.hasValue()) {
+      for (auto x : *maybeSample)
+        llvm::errs() << x << ' ';
+      llvm::errs() << '\n';
+    }
+  } else {
+    ASSERT_TRUE(maybeSample.hasValue());
+    for (unsigned i = 0; i < fac.getNumEqualities(); ++i)
+      EXPECT_EQ(valueAt(fac.getEquality(i), *maybeSample), 0);
+    for (unsigned i = 0; i < fac.getNumInequalities(); ++i)
+      EXPECT_GE(valueAt(fac.getInequality(i), *maybeSample), 0);
+  }
+}
+
+/// Construct a FlatAffineConstraints from a set of inequality and
+/// equality constraints.
+FlatAffineConstraints
+makeFACFromConstraints(unsigned dims, ArrayRef<SmallVector<int64_t, 4>> ineqs,
+                       ArrayRef<SmallVector<int64_t, 4>> eqs) {
+  FlatAffineConstraints fac(ineqs.size(), eqs.size(), dims + 1, dims);
+  for (const auto &eq : eqs)
+    fac.addEquality(eq);
+  for (const auto &ineq : ineqs)
+    fac.addInequality(ineq);
+  return fac;
+}
+
+/// Check sampling for all the permutations of the dimensions for the given
+/// constraint set. Since the GBR algorithm progresses dimension-wise, 
diff erent
+/// orderings may cause the algorithm to proceed 
diff erently. At least some of
+///.these permutations should make it past the heuristics and test the
+/// implementation of the GBR algorithm itself.
+void checkPermutationsSample(bool hasValue, unsigned nDim,
+                             ArrayRef<SmallVector<int64_t, 4>> ineqs,
+                             ArrayRef<SmallVector<int64_t, 4>> eqs) {
+  SmallVector<unsigned, 4> perm(nDim);
+  std::iota(perm.begin(), perm.end(), 0);
+  auto permute = [&perm](ArrayRef<int64_t> coeffs) {
+    SmallVector<int64_t, 4> permuted;
+    for (unsigned id : perm)
+      permuted.push_back(coeffs[id]);
+    permuted.push_back(coeffs.back());
+    return permuted;
+  };
+  do {
+    SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs;
+    for (const auto &ineq : ineqs)
+      permutedIneqs.push_back(permute(ineq));
+    for (const auto &eq : eqs)
+      permutedEqs.push_back(permute(eq));
+
+    checkSample(hasValue,
+                makeFACFromConstraints(nDim, permutedIneqs, permutedEqs));
+  } while (std::next_permutation(perm.begin(), perm.end()));
+}
+
+TEST(FlatAffineConstraintsTest, FindSampleTest) {
+  // Bounded sets with only inequalities.
+
+  // 0 <= 7x <= 5
+  checkSample(true, makeFACFromConstraints(1, {{7, 0}, {-7, 5}}, {}));
+
+  // 1 <= 5x and 5x <= 4 (no solution).
+  checkSample(false, makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}));
+
+  // 1 <= 5x and 5x <= 9 (solution: x = 1).
+  checkSample(true, makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}));
+
+  // Bounded sets with equalities.
+  // x >= 8 and 40 >= y and x = y.
+  checkSample(
+      true, makeFACFromConstraints(2, {{1, 0, -8}, {0, -1, 40}}, {{1, -1, 0}}));
+
+  // x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
+  // solution: x = y = z = 10.
+  checkSample(true, makeFACFromConstraints(
+                        3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -10}},
+                        {{1, 2, -3, 0}}));
+
+  // x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
+  // This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
+  checkSample(false, makeFACFromConstraints(
+                         3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -11}},
+                         {{1, 2, -3, 0}}));
+
+  // 0 <= r and r <= 3 and 4q + r = 7.
+  // Solution: q = 1, r = 3.
+  checkSample(true,
+              makeFACFromConstraints(2, {{0, 1, 0}, {0, -1, 3}}, {{4, 1, -7}}));
+
+  // 4q + r = 7 and r = 0.
+  // Solution: q = 1, r = 3.
+  checkSample(false, makeFACFromConstraints(2, {}, {{4, 1, -7}, {0, 1, 0}}));
+
+  // The next two sets are large sets that should take a long time to sample
+  // with a naive branch and bound algorithm but can be sampled efficiently with
+  // the GBR algroithm.
+  //
+  // This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
+  checkSample(
+      true,
+      makeFACFromConstraints(
+          2, {{0, 1, 0}, {300000, -299999, -100000}, {-300000, 299998, 200000}},
+          {}));
+
+  // This is a tetrahedron with vertices at
+  // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
+  // The first three points form a triangular base on the xz plane with the
+  // apex at the fourth point, which is the only integer point.
+  checkPermutationsSample(
+      true, 3,
+      {
+          {0, 1, 0, 0},  // y >= 0
+          {0, -1, 1, 0}, // z >= y
+          {300000, -299998, -1,
+           -100000},                    // -300000x + 299998y + 100000 + z <= 0.
+          {-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0.
+      },
+      {});
+
+  // Same thing with some spurious extra dimensions equated to constants.
+  checkSample(true,
+              makeFACFromConstraints(
+                  5,
+                  {
+                      {0, 1, 0, 1, -1, 0},
+                      {0, -1, 1, -1, 1, 0},
+                      {300000, -299998, -1, -9, 21, -112000},
+                      {-150000, 149999, 0, -15, 47, 68000},
+                  },
+                  {{0, 0, 0, 1, -1, 0},       // p = q.
+                   {0, 0, 0, 1, 1, -2000}})); // p + q = 20000 => p = q = 10000.
+
+  // This is a tetrahedron with vertices at
+  // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
+  checkPermutationsSample(false, 3,
+                          {
+                              {0, 1, 0, 0},
+                              {0, -300, 299, 0},
+                              {300 * 299, -89400, -299, -100 * 299},
+                              {-897, 894, 0, 598},
+                          },
+                          {});
+
+  // Two tests involving equalities that are integer empty but not rational
+  // empty.
+
+  // This is a line segment from (0, 1/3) to (100, 100 + 1/3).
+  checkSample(false, makeFACFromConstraints(
+                         2,
+                         {
+                             {1, 0, 0},   // x >= 0.
+                             {-1, 0, 100} // -x + 100 >= 0, i.e., x <= 100.
+                         },
+                         {
+                             {3, -3, 1} // 3x - 3y + 1 = 0, i.e., y = x + 1/3.
+                         }));
+
+  // A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
+  checkSample(false, makeFACFromConstraints(2,
+                                            {
+                                                {1, 0, 0},    // x >= 0.
+                                                {-1, 0, 100}, // x <= 100.
+                                                {3, -3, 2},   // 3x - 3y >= -2.
+                                                {-3, 3, -1},  // 3x - 3y <= -1.
+                                            },
+                                            {}));
+
+  checkSample(true, makeFACFromConstraints(2,
+                                           {
+                                               {2, 0, 0},   // 2x >= 1.
+                                               {-2, 0, 99}, // 2x <= 99.
+                                               {0, 2, 0},   // 2y >= 0.
+                                               {0, -2, 99}, // 2y <= 99.
+                                           },
+                                           {}));
+}
+
+TEST(FlatAffineConstraintsTest, IsIntegerEmptyTest) {
+  // 1 <= 5x and 5x <= 4 (no solution).
+  EXPECT_TRUE(
+      makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}).isIntegerEmpty());
+  // 1 <= 5x and 5x <= 9 (solution: x = 1).
+  EXPECT_FALSE(
+      makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}).isIntegerEmpty());
+
+  // An unbounded set, which isIntegerEmpty should detect as unbounded and
+  // return without calling findIntegerSample.
+  EXPECT_FALSE(makeFACFromConstraints(3,
+                                      {
+                                          {2, 0, 0, -1},
+                                          {-2, 0, 0, 1},
+                                          {0, 2, 0, -1},
+                                          {0, -2, 0, 1},
+                                          {0, 0, 2, -1},
+                                      },
+                                      {})
+                   .isIntegerEmpty());
+
+  // FlatAffineConstraints::isEmpty() does not detect the following sets to be
+  // empty.
+
+  // 3x + 7y = 1 and 0 <= x, y <= 10.
+  // Since x and y are non-negative, 3x + 7y can never be 1.
+  EXPECT_TRUE(
+      makeFACFromConstraints(
+          2, {{1, 0, 0}, {-1, 0, 10}, {0, 1, 0}, {0, -1, 10}}, {{3, 7, -1}})
+          .isIntegerEmpty());
+
+  // 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
+  // Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
+  // Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
+  EXPECT_TRUE(
+      makeFACFromConstraints(3,
+                             {
+                                 {1, 0, 0, 0},
+                                 {-1, 0, 0, 100},
+                                 {0, 1, 0, 0},
+                                 {0, -1, 0, 100},
+                             },
+                             {{2, -3, 0, 0}, {1, -1, 0, -1}, {1, 1, -6, -2}})
+          .isIntegerEmpty());
+
+  // 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
+  // 2x = 3y implies x is a multiple of 3 and y is even.
+  // Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have
+  // y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
+  // x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
+  EXPECT_TRUE(makeFACFromConstraints(
+                  4,
+                  {
+                      {1, 0, 0, 0, 0},
+                      {-1, 0, 0, 0, 100},
+                      {0, 1, 0, 0, 0},
+                      {0, -1, 0, 0, 100},
+                  },
+                  {{2, -3, 0, 0, 0}, {1, -1, 6, 0, -1}, {1, 1, 0, -6, -2}})
+                  .isIntegerEmpty());
+}
+
+} // namespace mlir

diff  --git a/mlir/unittests/Analysis/CMakeLists.txt b/mlir/unittests/Analysis/CMakeLists.txt
new file mode 100644
index 000000000000..16d084dc452f
--- /dev/null
+++ b/mlir/unittests/Analysis/CMakeLists.txt
@@ -0,0 +1,8 @@
+add_mlir_unittest(MLIRAnalysisTests
+  AffineStructuresTest.cpp
+)
+
+target_link_libraries(MLIRAnalysisTests
+  PRIVATE MLIRLoopAnalysis)
+
+add_subdirectory(Presburger)

diff  --git a/mlir/unittests/Analysis/Presburger/CMakeLists.txt b/mlir/unittests/Analysis/Presburger/CMakeLists.txt
new file mode 100644
index 000000000000..0cfda9b0c8aa
--- /dev/null
+++ b/mlir/unittests/Analysis/Presburger/CMakeLists.txt
@@ -0,0 +1,7 @@
+add_mlir_unittest(MLIRPresburgerTests
+  MatrixTest.cpp
+  SimplexTest.cpp
+)
+
+target_link_libraries(MLIRPresburgerTests
+  PRIVATE MLIRPresburger)

diff  --git a/mlir/unittests/Analysis/Presburger/MatrixTest.cpp b/mlir/unittests/Analysis/Presburger/MatrixTest.cpp
new file mode 100644
index 000000000000..4d8801b579a7
--- /dev/null
+++ b/mlir/unittests/Analysis/Presburger/MatrixTest.cpp
@@ -0,0 +1,92 @@
+//===- MatrixTest.cpp - Tests for Matrix ----------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/Presburger/Matrix.h"
+#include <gmock/gmock.h>
+#include <gtest/gtest.h>
+
+namespace mlir {
+
+TEST(MatrixTest, ReadWrite) {
+  Matrix mat(5, 5);
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      mat(row, col) = 10 * row + col;
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      EXPECT_EQ(mat(row, col), int(10 * row + col));
+}
+
+TEST(MatrixTest, SwapColumns) {
+  Matrix mat(5, 5);
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      mat(row, col) = col == 3 ? 1 : 0;
+  mat.swapColumns(3, 1);
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      EXPECT_EQ(mat(row, col), col == 1 ? 1 : 0);
+
+  // swap around all the other columns, swap (1, 3) twice for no effect.
+  mat.swapColumns(3, 1);
+  mat.swapColumns(2, 4);
+  mat.swapColumns(1, 3);
+  mat.swapColumns(0, 4);
+  mat.swapColumns(2, 2);
+
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      EXPECT_EQ(mat(row, col), col == 1 ? 1 : 0);
+}
+
+TEST(MatrixTest, SwapRows) {
+  Matrix mat(5, 5);
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      mat(row, col) = row == 2 ? 1 : 0;
+  mat.swapRows(2, 0);
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      EXPECT_EQ(mat(row, col), row == 0 ? 1 : 0);
+
+  // swap around all the other rows, swap (2, 0) twice for no effect.
+  mat.swapRows(3, 4);
+  mat.swapRows(1, 4);
+  mat.swapRows(2, 0);
+  mat.swapRows(1, 1);
+  mat.swapRows(0, 2);
+
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      EXPECT_EQ(mat(row, col), row == 0 ? 1 : 0);
+}
+
+TEST(MatrixTest, resizeVertically) {
+  Matrix mat(5, 5);
+  EXPECT_EQ(mat.getNumRows(), 5u);
+  EXPECT_EQ(mat.getNumColumns(), 5u);
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      mat(row, col) = 10 * row + col;
+
+  mat.resizeVertically(3);
+  EXPECT_EQ(mat.getNumRows(), 3u);
+  EXPECT_EQ(mat.getNumColumns(), 5u);
+  for (unsigned row = 0; row < 3; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      EXPECT_EQ(mat(row, col), int(10 * row + col));
+
+  mat.resizeVertically(5);
+  EXPECT_EQ(mat.getNumRows(), 5u);
+  EXPECT_EQ(mat.getNumColumns(), 5u);
+  for (unsigned row = 0; row < 5; ++row)
+    for (unsigned col = 0; col < 5; ++col)
+      EXPECT_EQ(mat(row, col), row >= 3 ? 0 : int(10 * row + col));
+}
+
+} // namespace mlir

diff  --git a/mlir/unittests/Analysis/Presburger/SimplexTest.cpp b/mlir/unittests/Analysis/Presburger/SimplexTest.cpp
new file mode 100644
index 000000000000..b40b01bbc47b
--- /dev/null
+++ b/mlir/unittests/Analysis/Presburger/SimplexTest.cpp
@@ -0,0 +1,219 @@
+//===- SimplexTest.cpp - Tests for Simplex --------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/Presburger/Simplex.h"
+
+#include <gmock/gmock.h>
+#include <gtest/gtest.h>
+
+namespace mlir {
+
+/// Take a snapshot, add constraints making the set empty, and rollback.
+/// The set should not be empty after rolling back.
+TEST(SimplexTest, emptyRollback) {
+  Simplex simplex(2);
+  // (u - v) >= 0
+  simplex.addInequality({1, -1, 0});
+  EXPECT_FALSE(simplex.isEmpty());
+
+  unsigned snapshot = simplex.getSnapshot();
+  // (u - v) <= -1
+  simplex.addInequality({-1, 1, -1});
+  EXPECT_TRUE(simplex.isEmpty());
+  simplex.rollback(snapshot);
+  EXPECT_FALSE(simplex.isEmpty());
+}
+
+/// Check that the set gets marked as empty when we add contradictory
+/// constraints.
+TEST(SimplexTest, addEquality_separate) {
+  Simplex simplex(1);
+  simplex.addInequality({1, -1}); // x >= 1.
+  ASSERT_FALSE(simplex.isEmpty());
+  simplex.addEquality({1, 0}); // x == 0.
+  EXPECT_TRUE(simplex.isEmpty());
+}
+
+void expectInequalityMakesSetEmpty(Simplex &simplex, ArrayRef<int64_t> coeffs,
+                                   bool expect) {
+  ASSERT_FALSE(simplex.isEmpty());
+  unsigned snapshot = simplex.getSnapshot();
+  simplex.addInequality(coeffs);
+  EXPECT_EQ(simplex.isEmpty(), expect);
+  simplex.rollback(snapshot);
+}
+
+TEST(SimplexTest, addInequality_rollback) {
+  Simplex simplex(3);
+  SmallVector<int64_t, 4> coeffs[]{{1, 0, 0, 0},   // u >= 0.
+                                   {-1, 0, 0, 0},  // u <= 0.
+                                   {1, -1, 1, 0},  // u - v + w >= 0.
+                                   {1, 1, -1, 0}}; // u + v - w >= 0.
+  // The above constraints force u = 0 and v = w.
+  // The constraints below violate v = w.
+  SmallVector<int64_t, 4> checkCoeffs[]{{0, 1, -1, -1},  // v - w >= 1.
+                                        {0, -1, 1, -1}}; // v - w <= -1.
+
+  for (int run = 0; run < 4; run++) {
+    unsigned snapshot = simplex.getSnapshot();
+
+    expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
+    expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
+
+    for (int i = 0; i < 4; i++)
+      simplex.addInequality(coeffs[(run + i) % 4]);
+
+    expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], true);
+    expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], true);
+
+    simplex.rollback(snapshot);
+    EXPECT_EQ(simplex.numConstraints(), 0u);
+
+    expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
+    expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
+  }
+}
+
+Simplex simplexFromConstraints(unsigned nDim,
+                               SmallVector<SmallVector<int64_t, 8>, 8> ineqs,
+                               SmallVector<SmallVector<int64_t, 8>, 8> eqs) {
+  Simplex simplex(nDim);
+  for (const auto &ineq : ineqs)
+    simplex.addInequality(ineq);
+  for (const auto &eq : eqs)
+    simplex.addEquality(eq);
+  return simplex;
+}
+
+TEST(SimplexTest, isUnbounded) {
+  EXPECT_FALSE(simplexFromConstraints(
+                   2, {{1, 1, 0}, {-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
+                   .isUnbounded());
+
+  EXPECT_TRUE(
+      simplexFromConstraints(2, {{1, 1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
+          .isUnbounded());
+
+  EXPECT_TRUE(
+      simplexFromConstraints(2, {{-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
+          .isUnbounded());
+
+  EXPECT_TRUE(simplexFromConstraints(2, {}, {}).isUnbounded());
+
+  EXPECT_FALSE(simplexFromConstraints(3,
+                                      {
+                                          {2, 0, 0, -1},
+                                          {-2, 0, 0, 1},
+                                          {0, 2, 0, -1},
+                                          {0, -2, 0, 1},
+                                          {0, 0, 2, -1},
+                                          {0, 0, -2, 1},
+                                      },
+                                      {})
+                   .isUnbounded());
+
+  EXPECT_TRUE(simplexFromConstraints(3,
+                                     {
+                                         {2, 0, 0, -1},
+                                         {-2, 0, 0, 1},
+                                         {0, 2, 0, -1},
+                                         {0, -2, 0, 1},
+                                         {0, 0, -2, 1},
+                                     },
+                                     {})
+                  .isUnbounded());
+
+  EXPECT_TRUE(simplexFromConstraints(3,
+                                     {
+                                         {2, 0, 0, -1},
+                                         {-2, 0, 0, 1},
+                                         {0, 2, 0, -1},
+                                         {0, -2, 0, 1},
+                                         {0, 0, 2, -1},
+                                     },
+                                     {})
+                  .isUnbounded());
+
+  // Bounded set with equalities.
+  EXPECT_FALSE(simplexFromConstraints(2,
+                                      {{1, 1, 1},    // x + y >= -1.
+                                       {-1, -1, 1}}, // x + y <=  1.
+                                      {{1, -1, 0}}   // x = y.
+                                      )
+                   .isUnbounded());
+
+  // Unbounded set with equalities.
+  EXPECT_TRUE(simplexFromConstraints(3,
+                                     {{1, 1, 1, 1},     // x + y + z >= -1.
+                                      {-1, -1, -1, 1}}, // x + y + z <=  1.
+                                     {{1, -1, -1, 0}}   // x = y + z.
+                                     )
+                  .isUnbounded());
+
+  // Rational empty set.
+  EXPECT_FALSE(simplexFromConstraints(3,
+                                      {
+                                          {2, 0, 0, -1},
+                                          {-2, 0, 0, 1},
+                                          {0, 2, 2, -1},
+                                          {0, -2, -2, 1},
+                                          {3, 3, 3, -4},
+                                      },
+                                      {})
+                   .isUnbounded());
+}
+
+TEST(SimplexTest, getSamplePointIfIntegral) {
+  // Empty set.
+  EXPECT_FALSE(simplexFromConstraints(3,
+                                      {
+                                          {2, 0, 0, -1},
+                                          {-2, 0, 0, 1},
+                                          {0, 2, 2, -1},
+                                          {0, -2, -2, 1},
+                                          {3, 3, 3, -4},
+                                      },
+                                      {})
+                   .getSamplePointIfIntegral()
+                   .hasValue());
+
+  auto maybeSample = simplexFromConstraints(2,
+                                            {// x = y - 2.
+                                             {1, -1, 2},
+                                             {-1, 1, -2},
+                                             // x + y = 2.
+                                             {1, 1, -2},
+                                             {-1, -1, 2}},
+                                            {})
+                         .getSamplePointIfIntegral();
+
+  EXPECT_TRUE(maybeSample.hasValue());
+  EXPECT_THAT(*maybeSample, testing::ElementsAre(0, 2));
+
+  auto maybeSample2 = simplexFromConstraints(2,
+                                             {
+                                                 {1, 0, 0},  // x >= 0.
+                                                 {-1, 0, 0}, // x <= 0.
+                                             },
+                                             {
+                                                 {0, 1, -2} // y = 2.
+                                             })
+                          .getSamplePointIfIntegral();
+  EXPECT_TRUE(maybeSample2.hasValue());
+  EXPECT_THAT(*maybeSample2, testing::ElementsAre(0, 2));
+
+  EXPECT_FALSE(simplexFromConstraints(1,
+                                      {// 2x = 1. (no integer solutions)
+                                       {2, -1},
+                                       {-2, +1}},
+                                      {})
+                   .getSamplePointIfIntegral()
+                   .hasValue());
+}
+
+} // namespace mlir

diff  --git a/mlir/unittests/CMakeLists.txt b/mlir/unittests/CMakeLists.txt
index e80cc914cb82..851092c5b56a 100644
--- a/mlir/unittests/CMakeLists.txt
+++ b/mlir/unittests/CMakeLists.txt
@@ -5,6 +5,7 @@ function(add_mlir_unittest test_dirname)
   add_unittest(MLIRUnitTests ${test_dirname} ${ARGN})
 endfunction()
 
+add_subdirectory(Analysis)
 add_subdirectory(Dialect)
 add_subdirectory(IR)
 add_subdirectory(Pass)


        


More information about the Mlir-commits mailing list