[Mlir-commits] [mlir] b7ae1d3 - [mlir][Linalg] Revisit the Linalg on tensors abstraction

llvmlistbot at llvm.org llvmlistbot at llvm.org
Mon Dec 21 12:33:54 PST 2020


Author: nicolasvasilache
Date: 2020-12-21T12:29:10-08:00
New Revision: b7ae1d3d2b1b1d73374a0583150c452273318268

URL: https://github.com/llvm/llvm-project/commit/b7ae1d3d2b1b1d73374a0583150c452273318268
DIFF: https://github.com/llvm/llvm-project/commit/b7ae1d3d2b1b1d73374a0583150c452273318268.diff

LOG: [mlir][Linalg] Revisit the Linalg on tensors abstraction

This revision drops init_tensor arguments from Linalg on tensors and instead uniformizes the output buffers and output tensors to be consistent.
This significantly simplifies the usage of Linalg on tensors and is a stepping stone for
its evolution towards a mixed tensor and shape abstraction discussed in https://llvm.discourse.group/t/linalg-and-shapes/2421/19.

Differential Revision: https://reviews.llvm.org/D93469

Added: 
    

Modified: 
    mlir/docs/Dialects/Linalg.md
    mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h
    mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h
    mlir/include/mlir/Dialect/Linalg/EDSC/Intrinsics.h
    mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h
    mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
    mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td
    mlir/include/mlir/IR/OpBase.td
    mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir
    mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp
    mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
    mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
    mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
    mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
    mlir/lib/Dialect/Linalg/Transforms/ElementwiseToLinalg.cpp
    mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
    mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
    mlir/lib/Dialect/Linalg/Transforms/Generalization.cpp
    mlir/lib/Dialect/Linalg/Transforms/Interchange.cpp
    mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
    mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
    mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
    mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
    mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
    mlir/lib/Dialect/Linalg/Utils/Utils.cpp
    mlir/lib/Dialect/StandardOps/IR/Ops.cpp
    mlir/test/Dialect/Linalg/bufferize.mlir
    mlir/test/Dialect/Linalg/canonicalize-duplicate-inputs.mlir
    mlir/test/Dialect/Linalg/canonicalize.mlir
    mlir/test/Dialect/Linalg/convert-elementwise-to-linalg.mlir
    mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
    mlir/test/Dialect/Linalg/fold-unit-trip-loops.mlir
    mlir/test/Dialect/Linalg/fusion-tensor.mlir
    mlir/test/Dialect/Linalg/generalize-named-ops.mlir
    mlir/test/Dialect/Linalg/invalid.mlir
    mlir/test/Dialect/Linalg/parallel-loops.mlir
    mlir/test/Dialect/Linalg/reshape_fusion.mlir
    mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir
    mlir/test/Dialect/Linalg/roundtrip.mlir
    mlir/test/Dialect/Linalg/sparse_1d.mlir
    mlir/test/Dialect/Linalg/sparse_2d.mlir
    mlir/test/Dialect/Linalg/sparse_3d.mlir
    mlir/test/Dialect/Linalg/sparse_invalid.mlir
    mlir/test/Dialect/Linalg/sparse_parallel.mlir
    mlir/test/Dialect/Linalg/sparse_storage.mlir
    mlir/test/Dialect/Linalg/tile-and-distribute.mlir
    mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
    mlir/test/Dialect/Linalg/tile-tensors.mlir
    mlir/test/EDSC/builder-api-test.cpp
    mlir/test/mlir-linalg-ods-gen/test-linalg-ods-gen.tc
    mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp

Removed: 
    mlir/include/mlir/Dialect/Linalg/IR/LinalgTraits.h


################################################################################
diff  --git a/mlir/docs/Dialects/Linalg.md b/mlir/docs/Dialects/Linalg.md
index 02508a81b63a..18473f4cb796 100644
--- a/mlir/docs/Dialects/Linalg.md
+++ b/mlir/docs/Dialects/Linalg.md
@@ -21,8 +21,8 @@ Linalg. They are all implemented in terms of the properties of the
 one-off op knowledge.
 
 The textual form description of these transformations is left for future work.
-Still, it is useful to at least the key transformations that are performed on
-the Linalg IR and that have influenced its design:
+Still, it is useful to list the key transformations that are performed on the
+Linalg IR and that have influenced its design:
 
 1.  Progressive Buffer Allocation.
 1.  Parametric Tiling.
@@ -42,8 +42,25 @@ Linalg takes at least some inspiration from all previously
 [key transformations](#key_transformations), including lowering to scalar
 load/store and other operations or to external library calls and intrinsics.
 
-These ops can have ***either tensor or buffer operands***, subject to
-[conventions and limitations](#tensors_and_buffers).
+These ops can have ***either tensor or buffer*** as both input and output
+operands. Output tensors operands serve the purpose of providing a unifying
+abstraction and give a shape to the results. Output tensors can come in 2
+flavors and are always associated with a corresponding op result:
+
+1.  an "init tensor" output value which provides an initial value for a tensor
+    that is created by iteratively updating the result (also called "destructive
+    updates"). Such tensor is always materialized in some form. If enough fusion
+    occurs it may end up being materialized only as a register-level SSA value.
+    It is expected (but not required) that the destructive update pattern can be
+    rewritten as an inplace update on buffers.
+
+2.  a "shape-only" tensor output value whose underlying elements are not used in
+    the payload computation and only serves the purpose of carrying shape
+    information to lower levels of abstraction. In the future this will be
+    replaced by an appropriate shape type when it is available as a builtin type
+    (see the discourse discussion
+    [Linalg and Shapes](https://llvm.discourse.group/t/linalg-and-shapes/2421)
+    for more details).
 
 ### Payload-Carrying Ops<a name="payload_ops"></a>
 
@@ -125,14 +142,15 @@ instance, it guarantees no out-of bounds access can occur by construction
 (assuming dynamic operand dimensions agree with each other, which is the purpose
 of the `assert` runtime check).
 
-Before lowering to loop form, loop induction variables and iterators are *not
-yet materialized*. This is a necessary property if we want an abstraction that
-works on both tensor values and buffers because ***values don’t escape
-loops/nesting***.
+Before lowering to loop form, loop induction variables and iterators are
+implicit (i.e. *not yet materialized*).
 
-The main implications are that: 1. The semantics of the ops are *restricted to
-operate on structured data types*, on which we can define an iterator. 2. This
-does not model arbitrary code with side-effects.
+The main implications are that:
+
+1.  The semantics of the ops are *restricted to operate on structured data
+    types*, on which we can define an iterator.
+
+2.  This does not model arbitrary code with side-effects.
 
 We do not think these are serious limitations in practice because MLIR is all
 about mixing 
diff erent levels of abstractions in the same IR. As long as Linalg
@@ -483,76 +501,6 @@ because of empirical evidence building and working on multiple high-level
 compilers. As we lay those down and engage more with the community, we expect
 multiple rounds of discussions and design changes to the original architecture.
 
-### Tensors and Buffers: Conventions and Limitations <a name="tensors_and_buffers"></a>
-
-Tensors are immutable SSA values, buffers are mutable regions of memory subject
-to side-effects and aliasing. As a consequence, output buffers are passed as
-operands whereas output tensors are new SSA values corresponding to op results.
-Inputs can be arbitrary tensors or buffers and are always passed as operands.
-
-The following convention is currently in-flight and is in the process of
-replacing other existing conventions. The following convention currently applies
-to "named" structured ops which are auto-generated by the linalg-ods tool.
-
-The convention adopted is as follows:
-
-1.  A first block of `ins` op operands hold read-only inputs of ShapedType.
-2.  An optional second block of `outs` op operands hold read-write output
-    buffers of MemRefType.
-3.  An optional third block of `init` operands hold initialization tensors of
-    RankedTensorType. Such tensors can appear when the op performs a reduction
-    and returns a tensor.
-
-Structured ops with fully parallel semantics, have empty `init`. They may either
-write in-place into `outs` buffers or return new tensors.
-
-Structured ops with reduction semantics and output tensor(s) however have
-additional restrictions:
-
-1.  They can only return a single tensor for now.
-2.  They cannot have any output buffer operand (i.e. `outs` is empty).
-3.  They have exactly one `init` tensor of the same type as the unique output
-    tensor. Such an `init` tensor does not have an explicit associate indexing
-    map. Instead the map of the result tensor is used to signify that the `init`
-    and the `result` are "tied".
-
-Points 1. and 2. keep complexity of the representation in check by allowing only
-a single result tensor, when reductions are present.
-
-Point 3. is related to the fact that SSA values cannot represent in-place
-updates. Instead, linalg adopts a similar convention that exists in e.g.
-`vector.outerproduct`: the value that is reduced into is passed as an explicit
-argument and a new result of the same shape is produced.
-
-It is expected buffer allocation will fold this last input onto the result in a
-single output buffer argument, which is why the same indexing map is required:
-the last input operand is said to be "tied" to the result.
-
-Alternative, more complex representations, would allow for:
-
-1.  Multiple results and `init` tensors in arbitrary orders, which could be
-    captured by an extra ArrayAttr of position pairs.
-2.  Relaxing the conditions on the indexing map equalities on the each pair and
-    e.g. allow implicit broadcasts of the input.
-
-These representations are deemed unnecessarily complex for now and are left for
-future discussion.
-
-As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
-
-```
-linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
-             outs(%c : memref<?x?xf32>)
-```
-
-, whereas the syntax for a `linalg.matmul` returning a new tensor is:
-
-```
-%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
-                  init(%c : tensor<?x?xf32>)
-                    -> tensor<?x?xf32>
-```
-
 ### Data Representation: Views<a name="views"></a>
 
 The current implementation uses the

diff  --git a/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h b/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h
index 4ee5fac7f677..9aa50c25cd79 100644
--- a/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h
+++ b/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h
@@ -45,19 +45,17 @@ class Aliases {
 class LinalgDependenceGraph {
 public:
   enum DependenceType { RAR = 0, RAW, WAR, WAW, NumTypes };
-  struct LinalgOpView {
-    Operation *op;
-    unsigned operandIndex;
-  };
+  // TODO: OpOperand tracks dependencies on buffer operands. Tensor result will
+  // need an extension to use OpResult.
   struct LinalgDependenceGraphElem {
     // dependentOpView may be either:
     //   1. src in the case of dependencesIntoGraphs.
     //   2. dst in the case of dependencesFromDstGraphs.
-    LinalgOpView dependentOpView;
+    OpOperand *dependentOpView;
     // View in the op that is used to index in the graph:
     //   1. src in the case of dependencesFromDstGraphs.
     //   2. dst in the case of dependencesIntoGraphs.
-    LinalgOpView indexingOpView;
+    OpOperand *indexingOpView;
     // Type of the dependence.
     DependenceType dependenceType;
   };
@@ -161,8 +159,8 @@ class LinalgDependenceGraph {
   // Uses std::pair to keep operations and view together and avoid usage errors
   // related to src/dst and producer/consumer terminology in the context of
   // dependences.
-  void addDependenceElem(DependenceType dt, LinalgOpView indexingOpView,
-                         LinalgOpView dependentOpView);
+  void addDependenceElem(DependenceType dt, OpOperand *indexingOpView,
+                         OpOperand *dependentOpView);
 
   /// Implementation detail for findCoveringxxx.
   SmallVector<Operation *, 8>

diff  --git a/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h b/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h
index ac9ca9581f0d..43dff8150f77 100644
--- a/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h
+++ b/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h
@@ -30,8 +30,8 @@ class ParallelOp;
 namespace edsc {
 inline void defaultRegionBuilder(ValueRange args) {}
 
-/// Build a `linalg.generic` op with the specified `inputs`, `outputBuffers`,
-/// `initTensors`, `resultTensorsTypes` and `region`.
+/// Build a `linalg.generic` op with the specified `inputs`, `outputs`,
+/// `resultTensorsTypes` and `region`.
 ///
 /// `otherValues` and `otherAttributes` may be passed and will be appended as
 /// operands and attributes respectively.
@@ -41,15 +41,12 @@ inline void defaultRegionBuilder(ValueRange args) {}
 ///
 /// 1. `inputs` may contain StructuredIndexed that capture either buffer or
 /// tensor values.
-/// 2. `outputsBuffers` may contain StructuredIndexed that capture buffer
-/// values.
-/// 3. `initTensors` contain tensor values, without indexing maps.
-/// 4. `resultTensorTypes` may contain StructuredIndexed that capture return
-/// tensor types.
+/// 2. `outputs` may contain StructuredIndexed that capture either buffer or
+/// tensor values. In the future this will be extended with ranked shape values.
+/// 4. `resultTensorTypes` may contain return tensor types.
 Operation *makeGenericLinalgOp(
     ArrayRef<IteratorType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
-    ArrayRef<StructuredIndexed> outputBuffers, ArrayRef<Value> initTensors,
-    ArrayRef<StructuredIndexed> resultTensorTypes,
+    ArrayRef<StructuredIndexed> outputs, TypeRange resultTensorTypes,
     function_ref<void(ValueRange)> regionBuilder = defaultRegionBuilder,
     ArrayRef<Value> otherValues = {}, ArrayRef<Attribute> otherAttributes = {});
 

diff  --git a/mlir/include/mlir/Dialect/Linalg/EDSC/Intrinsics.h b/mlir/include/mlir/Dialect/Linalg/EDSC/Intrinsics.h
index d842069f6570..0b53fc7573a5 100644
--- a/mlir/include/mlir/Dialect/Linalg/EDSC/Intrinsics.h
+++ b/mlir/include/mlir/Dialect/Linalg/EDSC/Intrinsics.h
@@ -18,6 +18,7 @@ namespace intrinsics {
 using linalg_copy = OperationBuilder<linalg::CopyOp>;
 using linalg_dot = OperationBuilder<linalg::DotOp>;
 using linalg_fill = OperationBuilder<linalg::FillOp>;
+using linalg_init_tensor = ValueBuilder<linalg::InitTensorOp>;
 using linalg_matmul = OperationBuilder<linalg::MatmulOp>;
 using linalg_matvec = OperationBuilder<linalg::MatvecOp>;
 using linalg_vecmat = OperationBuilder<linalg::VecmatOp>;

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h
index 2438338a534f..b1ac1a3b48b6 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h
@@ -9,7 +9,6 @@
 #ifndef MLIR_DIALECT_LINALG_LINALGOPS_H_
 #define MLIR_DIALECT_LINALG_LINALGOPS_H_
 
-#include "mlir/Dialect/Linalg/IR/LinalgTraits.h"
 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
@@ -111,9 +110,17 @@ SmallVector<AffineExpr, 4> concat(ArrayRef<AffineExpr> a,
 void getDimsOfType(Operation *op, StringRef iteratorTypeName,
                    SmallVectorImpl<AffineExpr> &res);
 
+namespace detail {
+LogicalResult verifyStructuredOpInterface(Operation *op);
+} // namespace detail
 } // namespace linalg
 } // namespace mlir
 
+namespace mlir {
+namespace linalg {
+class IndexedGenericOp;
+} // namespace linalg
+} // namespace mlir
 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterfaces.h.inc"
 
 #define GET_OP_CLASSES

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index 66f39104d7e7..26db4c2f6735 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -19,26 +19,6 @@ include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td"
 include "mlir/Interfaces/CopyOpInterface.td"
 include "mlir/Interfaces/SideEffectInterfaces.td"
 
-// The Linalg `NInputs` trait provides the API for ops that are known
-// to have a specified number of inputs, all passed as operands.
-// See Linalg/LinalgTraits.h for implementation details and usage.
-class NInputs<int n> :
-  NativeOpTrait<"linalg::NInputs<" # !cast<string>(n) # ">::Impl"> {}
-
-// The Linalg `ZeroInitTensors` trait provides the API for ops that are known
-// to not have input tensor operands.
-// See Linalg/LinalgTraits.h for implementation details and usage.
-def ZeroInitTensors : NativeOpTrait<"linalg::ZeroInitTensors"> {}
-
-// The Linalg `NOutputs` trait provides the API for ops that are known
-// to have a specified number of outputs, all passed as operands.
-// See Linalg/LinalgTraits.h for implementation details and usage.
-class NOutputs<int n> :
-  NativeOpTrait<"linalg::NOutputs<" # !cast<string>(n) # ">::Impl"> {}
-
-def StructuredOpTraits : NativeOpTrait<"linalg::StructuredOpTraits">;
-def NamedStructuredOpTrait : NativeOpTrait<"linalg::NamedStructuredOpTrait">;
-
 // Base Tablegen class for Linalg ops.
 // Linalg ops that correspond to library calls operate on ShapedType as their
 // first operands. These may be optionally followed by non-view operands
@@ -50,7 +30,6 @@ class LinalgStructuredBase_Op<string mnemonic, list<OpTrait> props>
 class LinalgStructured_Op<string mnemonic, list<OpTrait> props>
   : LinalgStructuredBase_Op<mnemonic,
        !listconcat(props, [
-         StructuredOpTraits,
          DeclareOpInterfaceMethods<MemoryEffectsOpInterface>])> {
   code libraryCallName = [{
     std::string getLibraryCallName() {
@@ -65,12 +44,7 @@ class LinalgStructured_Op<string mnemonic, list<OpTrait> props>
 //===----------------------------------------------------------------------===//
 // At the moment these are not declarative and require a bunch of C++ code.
 // In the future, these should be migrated to a declarative specification.
-def CopyOp : LinalgStructured_Op<"copy", [
-    CopyOpInterface,
-    NInputs<1>,
-    ZeroInitTensors,
-    NOutputs<1>
-  ]> {
+def CopyOp : LinalgStructured_Op<"copy", [CopyOpInterface]> {
   let description = [{
     Copies the data in the input view into the output view.
 
@@ -137,6 +111,9 @@ def CopyOp : LinalgStructured_Op<"copy", [
     }]>];
 
   let extraClassDeclaration = libraryCallName # [{
+    ValueRange inputs() { return getOperands().take_front(); }
+    ValueRange outputs() { return getOperands().take_back(); }
+
     // Rank-polymorphic.
     //   filling_value -> O(ivs) with parallel iterators.
     ArrayAttr iterator_types() {
@@ -170,14 +147,13 @@ def CopyOp : LinalgStructured_Op<"copy", [
   let hasCanonicalizer = 1;
 }
 
-def FillOp : LinalgStructured_Op<"fill", [
-    NInputs<0>,
-    ZeroInitTensors,
-    NOutputs<1>]> {
-
+def FillOp : LinalgStructured_Op<"fill", []> {
   let arguments = (ins AnyStridedMemRef:$output,
                    AnyTypeOf<[AnyFloat, AnySignlessInteger, AnyVector]>:$value);
   let extraClassDeclaration = libraryCallName # [{
+    ValueRange inputs() { return {}; }
+    ValueRange outputs() { return getOperands().take_front(); }
+
     // Rank-polymorphic.
     //   filling_value -> O(ivs) with parallel iterators.
     ArrayAttr iterator_types() {
@@ -276,13 +252,8 @@ class PoolingBase_Op<string mnemonic, list<OpTrait> props>
   }];
 }
 
-def ConvOp : PoolingBase_Op<"conv", [
-    NInputs<2>,
-    // Despite having reductions, this manually defined ConvOp may only take
-    // memref operands and can never have init tensors.
-    ZeroInitTensors,
-    NOutputs<1>]> {
-
+// Only support buffer semantics.
+def ConvOp : PoolingBase_Op<"conv", []> {
   let description = [{
     Generic n-D convolution as described in the TF documentation:
     https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/convolution
@@ -313,6 +284,9 @@ def ConvOp : PoolingBase_Op<"conv", [
                    OptionalAttr<I64ElementsAttr>:$padding);
 
   let extraClassDeclaration = commonUtils # [{
+    ValueRange inputs() { return getOperands().slice(0, 2); }
+    ValueRange outputs() { return getOperands().take_back(); }
+
     // TODO: extend to support more than 1 dimensions and potentially grouping
     // too.
     unsigned getNumBatchDimensions() { return 1; }
@@ -335,6 +309,12 @@ def ConvOp : PoolingBase_Op<"conv", [
       // parallelized across; i.e. [zs] in the TF notation above whose number
       // match `xs` (i.e. 1 window loop per "image" dimension).
       // This may evolve in the future.
+      // Conditionally check nPar is large enough for cases of ill-formed op: 
+      // this avoids overflows before hitting the verifier.
+      assert(nPar > getNumBatchDimensions() + getNumInputFeatureDimensions() &&
+             "expected at least one window dimension (i.e. memref ranks greater "
+             "than 2). See 'func @conv_rank_limit' in "
+             "mlir/test/Dialect/Linalg/invalid.mlir");
       unsigned nWin =
         nPar - getNumBatchDimensions() - getNumInputFeatureDimensions();
       SmallVector<StringRef, 8> iters(nPar, getParallelIteratorTypeName());
@@ -352,7 +332,8 @@ def ConvOp : PoolingBase_Op<"conv", [
     ArrayAttr indexing_maps() {
       MLIRContext *context = getContext();
       auto nWin = getNumWindowLoops();
-      assert(nWin > 0 && "expected at least one window dimension");
+      assert(nWin > 0 && "expected at least one window dimension (i.e. memref "
+                         "ranks greater than 2)");
       unsigned idx = 0;
       // In the following, AffineDimExprs are indexed in loop order:
       //   [ b, xs, k,           q,                     zs]
@@ -394,13 +375,9 @@ def ConvOp : PoolingBase_Op<"conv", [
   let hasCanonicalizer = 1;
 }
 
+// Only support buffer semantics.
 class SingleInputPoolingBase_Op<string mnemonic>
-  : PoolingBase_Op<mnemonic, [
-    NInputs<2>,
-    // Despite having reductions, this manually defined ConvOp may only take
-    // memref operands and can never have init tensors.
-    ZeroInitTensors,
-    NOutputs<1>]> {
+    : PoolingBase_Op<mnemonic, []> {
   let description = [{
     A base class for single input pooling function.
 
@@ -420,6 +397,9 @@ class SingleInputPoolingBase_Op<string mnemonic>
                    OptionalAttr<I64ElementsAttr>:$padding);
 
   let extraClassDeclaration = commonUtils# [{
+    ValueRange inputs() { return getOperands().slice(0, 2); }
+    ValueRange outputs() { return getOperands().take_back(); }
+
     ArrayAttr iterator_types() {
       // Outer parallel loops are always the number of output dimensions.
       unsigned nPar = getOutputShapedType(0).getRank();
@@ -493,11 +473,9 @@ class LinalgOperandOfRank<int rank>: Type<
 class GenericOpBase<string mnemonic> : LinalgStructuredBase_Op<mnemonic, [
     AttrSizedOperandSegments,
     DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
-    NamedStructuredOpTrait,
     SingleBlockImplicitTerminator<"YieldOp">]> {
   let arguments = (ins Variadic<AnyShaped>:$inputs,
-                       Variadic<AnyMemRef>:$output_buffers,
-                       Variadic<AnyRankedTensor>:$init_tensors,
+                       Variadic<AnyShaped>:$outputs,
                        AffineMapArrayAttr:$indexing_maps,
                        ArrayAttr:$iterator_types,
                        OptionalAttr<StrAttr>:$doc,
@@ -622,34 +600,26 @@ def GenericOp : GenericOpBase<"generic"> {
     ```mlir
     %C = linalg.generic #trait_attribute
       ins(%A, %B : tensor<?x?xf32>, memref<?x?xf32, stride_specification>)
-      init(%C : tensor<?x?xf32>)
+      outs(%C : tensor<?x?xf32>)
       {other-optional-attributes}
       {region}
       -> (tensor<?x?xf32>)
     ```
-
-    The `init` operand and the conventions around mixing tensors and buffers are
-    described in more detail in the "Tensors and Buffers: Conventions and
-    Limitations" section in the [Linalg Document](../docs/Linalg.md)
-
-    Tensor values must be legalized by a buffer allocation pass before most
-    transformations can be applied. Such legalizations move tensor return values
-    into output buffer operands and updates the region arguments accordingly.
   }];
 
   let builders = [
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
-      "ValueRange":$outputBuffers, "ValueRange":$initTensors,
-      "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
-      "StringRef":$doc, "StringRef":$libraryCall,
+      "ValueRange":$outputs, "ArrayRef<AffineMap>":$indexingMaps,
+      "ArrayRef<StringRef>":$iteratorTypes, "StringRef":$doc,
+      "StringRef":$libraryCall,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange)>", "nullptr">)>,
     OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
       "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
       "StringRef":$doc, "StringRef":$libraryCall,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange)>", "nullptr">)>,
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
-      "ValueRange":$outputBuffers, "ValueRange":$initTensors,
-      "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
+      "ValueRange":$outputs, "ArrayRef<AffineMap>":$indexingMaps,
+      "ArrayRef<StringRef>":$iteratorTypes,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange)>", "nullptr">)>,
     OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
       "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
@@ -714,8 +684,8 @@ def IndexedGenericOp : GenericOpBase<"indexed_generic"> {
 
     ```mlir
       linalg.indexed_generic #matmul_trait
-        ins(%A, %B : memref<?x?xf32, stride_specification>,
-                     memref<?x?xf32, stride_specification>)
+         ins(%A, %B : memref<?x?xf32, stride_specification>,
+                      memref<?x?xf32, stride_specification>)
         outs(%C : memref<?x?xf32, stride_specification>) {
       (%offset_m: index, %offset_n: index, %offset_k: index,
        %a: f32, %b: f32, %c: f32) :
@@ -761,27 +731,19 @@ def IndexedGenericOp : GenericOpBase<"indexed_generic"> {
 
     ```mlir
     %C = linalg.indexed_generic #trait_attribute
-      ins(%A, %B : tensor<?x?xf32>, memref<?x?xf32, stride_specification>)
-      init(%C : tensor<?x?xf32>)
+       ins(%A, %B : tensor<?x?xf32>, memref<?x?xf32, stride_specification>)
+      outs(%C : tensor<?x?xf32>)
       {other-optional-attributes}
       {region_with_index_arguments}
       -> (tensor<?x?xf32>)
     ```
-
-    The `init` operand and the conventions around mixing tensors and buffers are
-    described in more detail in the "Tensors and Buffers: Conventions and
-    Limitations" section in the [Linalg Document](../docs/Linalg.md)
-
-    Tensor values must be legalized by a buffer allocation pass before most
-    transformations can be applied. Such legalizations move tensor return values
-    into output buffer operands and update the region arguments accordingly.
   }];
 
   let builders = [
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
-      "ValueRange":$outputBuffers, "ValueRange":$initTensors,
-      "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
-      "StringRef":$doc, "StringRef":$libraryCall,
+      "ValueRange":$outputs, "ArrayRef<AffineMap>":$indexingMaps,
+      "ArrayRef<StringRef>":$iteratorTypes, "StringRef":$doc,
+      "StringRef":$libraryCall,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>",
            "nullptr">)>,
     OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
@@ -790,8 +752,8 @@ def IndexedGenericOp : GenericOpBase<"indexed_generic"> {
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>",
            "nullptr">)>,
     OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
-      "ValueRange":$outputBuffers, "ValueRange":$initTensors,
-      "ArrayRef<AffineMap>":$indexingMaps, "ArrayRef<StringRef>":$iteratorTypes,
+      "ValueRange":$outputs, "ArrayRef<AffineMap>":$indexingMaps,
+      "ArrayRef<StringRef>":$iteratorTypes,
       CArg<"function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>",
            "nullptr">)>,
     OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td
index 74ca666d63a5..3fc3fa4a5556 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td
@@ -20,6 +20,24 @@ include "mlir/Dialect/Linalg/IR/LinalgBase.td"
 def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
   let cppNamespace = "::mlir::linalg";
   let methods = [
+    //===------------------------------------------------------------------===//
+    // Loop types handling.
+    //===------------------------------------------------------------------===//
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the number of induction variables in the basic block. This should
+        always be 0 for index-free linalg ops. For IndexedGeneric, this must be
+        equal to numLoops
+      }],
+      /*retTy=*/"unsigned",
+      /*methodName=*/"getNumPayloadInductionVariables",
+      /*args=*/(ins),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        return isa<IndexedGenericOp>(this->getOperation()) ?
+          $_op.getNumLoops() : 0;
+      }]
+    >,
     //===------------------------------------------------------------------===//
     // Loop types handling.
     //===------------------------------------------------------------------===//
@@ -125,42 +143,60 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
                getNumIterators(getReductionIteratorTypeName(), iters) == 1;
       }]>,
     //===------------------------------------------------------------------===//
-    // Num input/output/initTensors arguments handling.
+    // Num input/output arguments handling.
     //===------------------------------------------------------------------===//
-    // These special methods must be defined by each op that wants to implement
-    // the LinalgStructuredInterface. For now, this is either:
-    // - Explicitly specified in the op definition.
-    // - Derived from variadic attributes (for "named" ops, linalg.generic and
-    //   linalg.indexed_generic ops).
+    // `inputs` must be defined by each op that wants to implement the
+    // LinalgStructuredInterface.
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the input shape operands.
+      }],
+      /*retTy=*/"ValueRange",
+      /*methodName=*/"inputs",
+      /*args=*/(ins)
+    >,
+    // These special methods rely on `inputs` and `outputs` being defined by
+    // each op that wants to implement the LinalgStructuredInterface.
     InterfaceMethod<
       /*desc=*/[{
         Return the number of inputs.
       }],
       /*retTy=*/"unsigned",
-      /*methodName=*/"getNumInputs"
+      /*methodName=*/"getNumInputs",
+      /*args=*/(ins),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        return $_op.inputs().size();
+      }]
     >,
+    // `outputs` must be defined by each op that wants to implement the
+    // LinalgStructuredInterface.
     InterfaceMethod<
       /*desc=*/[{
-        Return the number of init tensors.
+        Return the output shape operands.
       }],
-      /*retTy=*/"unsigned",
-      /*methodName=*/"getNumInitTensors"
+      /*retTy=*/"ValueRange",
+      /*methodName=*/"outputs",
+      /*args=*/(ins)
     >,
     InterfaceMethod<
       /*desc=*/[{
         Return the number of outputs.
       }],
       /*retTy=*/"unsigned",
-      /*methodName=*/"getNumOutputs"
+      /*methodName=*/"getNumOutputs",
+      /*args=*/(ins),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        return $_op.outputs().size();
+      }]
     >,
     //===------------------------------------------------------------------===//
-    // Input arguments handling.
+    // Input operands handling.
     //===------------------------------------------------------------------===//
     InterfaceMethod<
       /*desc=*/[{
-        Return the `i`-th input value.
-        The `i^th` input argument is always the `i^th` operand regardless of
-        whether we have tensors or buffers.
+        Return the `i`-th input operand.
       }],
       /*retTy=*/"Value",
       /*methodName=*/"getInput",
@@ -173,24 +209,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the index of the given input value `v`, or `None` if the value is
-        not an input.
-      }],
-      /*retTy=*/"llvm::Optional<unsigned>",
-      /*methodName=*/"getIndexOfInput",
-      /*args=*/(ins "Value":$value),
-      /*methodBody=*/"",
-      /*defaultImplementation=*/[{
-        auto it = llvm::find(getInputs(), value);
-        if (it != getInputs().end())
-          return it - getInputs().begin();
-        return llvm::None;
-      }]
-    >,
-    InterfaceMethod<
-      /*desc=*/[{
-        Return the `i`-th input shaped type, irrespective of buffer or tensor
-        type.
+        Return the `i`-th input shaped type
       }],
       /*retTy=*/"ShapedType",
       /*methodName=*/"getInputShapedType",
@@ -202,7 +221,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the input operands.
+        Return the range of input operands.
       }],
       /*retTy=*/"Operation::operand_range",
       /*methodName=*/"getInputs",
@@ -215,7 +234,19 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the range over the input operands that are of buffer type.
+        Return the OpOperands for the input operands.
+      }],
+      /*retTy=*/" MutableArrayRef<OpOperand>",
+      /*methodName=*/"getInputOpOperands",
+      /*args=*/(ins),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        return this->getOperation()->getOpOperands().take_front(getNumInputs());
+      }]
+    >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the subset of input operands that are of buffer type.
       }],
       /*retTy=*/"SmallVector<Value, 4>",
       /*methodName=*/"getInputBuffers",
@@ -223,417 +254,504 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
         return llvm::to_vector<4>(llvm::make_filter_range(
-          getInputs(), [](Value in){ return in.getType().isa<MemRefType>(); }));
+          getInputs(), [](Value in){ return in.getType().template isa<MemRefType>(); }));
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the subset of input operands that are of ranked tensor type.
+        Return the number of input buffer operands.
       }],
-      /*retTy=*/"SmallVector<RankedTensorType, 4>",
-      /*methodName=*/"getInputTensorTypes" ,
+      /*retTy=*/"unsigned",
+      /*methodName=*/"getNumInputBuffers",
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        SmallVector<RankedTensorType, 4> res;
-        for (Type type : getInputs().getTypes())
-          if (auto t = type.template dyn_cast<RankedTensorType>())
-            res.push_back(t);
-        return res;
+        return $_op.getInputBuffers().size();
       }]
     >,
-    //===------------------------------------------------------------------===//
-    // Output arguments handling.
-    //===------------------------------------------------------------------===//
     InterfaceMethod<
       /*desc=*/[{
-        Return the output buffer at the given index, asserts that this is a
-        buffer operand and not a tensor result.
-        The `i^th` output argument is an operand (resp. a return value) iff it
-        is a value of buffer type (resp. a return value of tensor type).
+        Return the `index`^th input buffer.
       }],
       /*retTy=*/"Value",
-      /*methodName=*/"getOutputBuffer",
-      /*args=*/(ins "unsigned":$i),
+      /*methodName=*/"getInputBuffer",
+      /*args=*/(ins "unsigned":$index),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        // Output buffers are passed as output buffer operands (side-effecting).
-        // Output tensors are results.
-        // The union of the 2 are all the outputs and we want to ensure i does
-        // not overflow the buffer operands.
-        assert(i + this->getOperation()->getNumResults() < $_op.getNumOutputs()
-               && "overflowing output buffer index");
-        return this->getOperation()->getOperand($_op.getNumInputs() + i);
+        assert(index < getNumInputBuffers());
+        return getInputBuffers()[index];
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the index of the given buffer value, or `None` if the value is
-        not part of the output buffers.
+        Return the subset of input operands that are of buffer type.
       }],
-      /*retTy=*/"llvm::Optional<unsigned>",
-      /*methodName=*/"getIndexOfOutputBuffer",
-      /*args=*/(ins "Value":$value),
+      /*retTy=*/"SmallVector<OpOperand*, 4>",
+      /*methodName=*/"getInputBuffersOpOperands",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        auto it = llvm::find(getOutputBuffers(), value);
-        if (it != getOutputBuffers().end())
-          return it - getOutputBuffers().begin();
-        return llvm::None;
+        SmallVector<OpOperand*, 4> res;
+        res.reserve(getNumInputs());
+        for (OpOperand &o : getInputOpOperands())
+          if (o.get().getType().isa<MemRefType>())
+            res.push_back(&o);
+        return res;
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the type of the output buffer at the given index.
+        Return the subset of input operands that are of tensor type.
       }],
-      /*retTy=*/"MemRefType",
-      /*methodName=*/"getOutputBufferType",
-      /*args=*/(ins "unsigned":$i),
+      /*retTy=*/"SmallVector<Value, 4>",
+      /*methodName=*/"getInputTensors",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        return getOutputBuffer(i).getType().template cast<MemRefType>();
-      }]>,
+        return llvm::to_vector<4>(llvm::make_filter_range(
+          getInputs(),
+          [](Value in){ return in.getType().template isa<RankedTensorType>(); }));
+      }]
+    >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the `i`-th output shaped type, irrespective of buffer or tensor
-        type.
+        Return the subset of op operands that are of tensor type.
       }],
-      /*retTy=*/"ShapedType",
-      /*methodName=*/"getOutputShapedType",
-      /*args=*/(ins "unsigned":$i),
+      /*retTy=*/"SmallVector<OpOperand*, 4>",
+      /*methodName=*/"getInputTensorsOpOperands",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        return getShapedType(i + $_op.getNumInputs());
-      }]>,
+        SmallVector<OpOperand*, 4> res;
+        res.reserve(getNumInputs());
+        for (OpOperand &o : getInputOpOperands())
+          if (o.get().getType().isa<RankedTensorType>())
+            res.push_back(&o);
+        return res;
+      }]
+    >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the results that are of ranked tensor type.
+        Return the types of the subset of input operands that are of buffer type.
       }],
-      /*retTy=*/"SmallVector<RankedTensorType, 4>",
-      /*methodName=*/"getOutputTensorTypes",
+      /*retTy=*/"SmallVector<MemRefType, 4>",
+      /*methodName=*/"getInputBufferTypes" ,
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        SmallVector<RankedTensorType, 4> res;
-        for (Type type : this->getOperation()->getResults().getTypes())
-          res.push_back(type.template cast<RankedTensorType>());
-        return res;
-      }]>,
+        return llvm::to_vector<4>(
+          llvm::map_range(
+            llvm::make_filter_range(
+              ValueRange(getInputs()).getTypes(),
+              [](Type in){ return in.isa<MemRefType>(); }),
+            [](Type in){ return in.cast<MemRefType>(); }));
+      }]
+    >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the output buffers (operands).
+        Return the types of the subset of input operands that are of ranked
+        tensor type.
       }],
-      /*retTy=*/"Operation::operand_range",
-      /*methodName=*/"getOutputBuffers",
+      /*retTy=*/"SmallVector<RankedTensorType, 4>",
+      /*methodName=*/"getInputTensorTypes" ,
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        auto range = this->getOperation()->getOperands();
-        return {range.begin() + $_op.getNumInputs(),
-                range.begin() + getNumInputsAndOutputBuffers()};
+        return llvm::to_vector<4>(
+          llvm::map_range(
+            llvm::make_filter_range(
+              ValueRange(getInputs()).getTypes(),
+              [](Type in){ return in.isa<RankedTensorType>(); }),
+            [](Type in){ return in.cast<RankedTensorType>(); }));
       }]
     >,
 
     //===------------------------------------------------------------------===//
-    // Input and Output arguments handling.
+    // Output operands handling.
     //===------------------------------------------------------------------===//
     InterfaceMethod<
       /*desc=*/[{
-        Return one single buffer at position `$i`.
+        Return the `i`-th output operand.
       }],
       /*retTy=*/"Value",
-      /*methodName=*/"getBuffer",
+      /*methodName=*/"getOutput",
       /*args=*/(ins "unsigned":$i),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        assert(i < getNumInputsAndOutputBuffers() && "overflowing buffers index");
-        return this->getOperation()->getOperand(i);
+        assert(i < $_op.getNumOutputs());
+        return this->getOperation()->getOperand(i + $_op.getNumInputs());
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the number of output buffers
+        Return the `i`-th output shaped type
       }],
-      /*retTy=*/"unsigned",
-      /*methodName=*/"getNumOutputBuffers",
+      /*retTy=*/"ShapedType",
+      /*methodName=*/"getOutputShapedType",
+      /*args=*/(ins "unsigned":$i),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        return getOutput(i).getType().template cast<ShapedType>();
+      }]
+    >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the range of output operands.
+      }],
+      /*retTy=*/"Operation::operand_range",
+      /*methodName=*/"getOutputs",
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        return $_op.getNumOutputs() - this->getOperation()->getNumResults();
+        auto start =
+          this->getOperation()->getOperands().begin() + $_op.getNumInputs();
+        return {start, start + $_op.getNumOutputs()};
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the number of inputs and outputs, irrespective of their buffer or
-        tensor type.
+        Return the OpOperands for the output operands.
       }],
-      /*retTy=*/"unsigned",
-      /*methodName=*/"getNumInputsAndOutputs",
+      /*retTy=*/" MutableArrayRef<OpOperand>",
+      /*methodName=*/"getOutputOpOperands",
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        return $_op.getNumInputs() + $_op.getNumOutputs();
+        return this->getOperation()->getOpOperands().slice(
+          getNumInputs(), getNumOutputs());
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the number of inputs, irrespective of their buffer or tensor type
-        and output buffers
+        Return the subset of output operands that are of buffer type.
       }],
-      /*retTy=*/"unsigned",
-      /*methodName=*/"getNumInputsAndOutputBuffers",
+      /*retTy=*/"SmallVector<Value, 4>",
+      /*methodName=*/"getOutputBuffers",
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        return $_op.getNumInputs() + $_op.getNumOutputs() -
-          this->getOperation()->getNumResults();
+        return llvm::to_vector<4>(llvm::make_filter_range(
+          getOutputs(), [](Value in){ return in.getType().template isa<MemRefType>(); }));
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the range over inputs (irrespective of type) and output buffers.
+        Return the `index`^th output buffer.
       }],
-      /*retTy=*/"Operation::operand_range",
-      /*methodName=*/"getInputsAndOutputBuffers",
+      /*retTy=*/"Value",
+      /*methodName=*/"getOutputBuffer",
+      /*args=*/(ins "unsigned":$index),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        assert(index < getNumOutputBuffers());
+        return getOutputBuffers()[index];
+      }]
+    >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the subset of output operands that are of buffer type.
+      }],
+      /*retTy=*/"SmallVector<OpOperand*, 4>",
+      /*methodName=*/"getOutputBuffersOpOperands",
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        auto range = this->getOperation()->getOperands();
-        return {range.begin(), range.begin() + getNumInputsAndOutputBuffers()};
+        SmallVector<OpOperand*, 4> res;
+        res.reserve(getNumOutputs());
+        for (OpOperand &o : getOutputOpOperands())
+          if (o.get().getType().isa<MemRefType>())
+            res.push_back(&o);
+        return res;
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the range over init tensors.
+        Return the number of output buffer operands.
       }],
-      /*retTy=*/"Operation::operand_range",
-      /*methodName=*/"getInitTensors",
+      /*retTy=*/"unsigned",
+      /*methodName=*/"getNumOutputBuffers",
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        auto range = this->getOperation()->getOperands();
-        auto base = range.begin() + getNumInputsAndOutputBuffers();
-        return {base, base + $_op.getNumInitTensors()};
+        return $_op.getOutputBuffers().size();
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return one single init tensor at position `$i`.
+        Return the subset of output operands that are of tensor type.
       }],
-      /*retTy=*/"Value",
-      /*methodName=*/"getInitTensor",
-      /*args=*/(ins "unsigned":$i),
+      /*retTy=*/"SmallVector<Value, 4>",
+      /*methodName=*/"getOutputTensors",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        assert(i < $_op.getNumInitTensors() && "overflowing init tensor index");
-        return getInitTensors()[i];
+        return llvm::to_vector<4>(llvm::make_filter_range(
+          getOutputs(),
+          [](Value in){ return in.getType().template isa<RankedTensorType>(); }));
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return true if the shaped operand index `i` is the index of an init
-        tensor.
+        Return the subset of output operands that are of tensor type.
       }],
-      /*retTy=*/"bool",
-      /*methodName=*/"isIndexOfAnInitTensor",
-      /*args=*/(ins "unsigned":$i),
+      /*retTy=*/"SmallVector<OpOperand*, 4>",
+      /*methodName=*/"getOutputTensorsOpOperands",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        assert(i < $_op.getNumShapedOperands() && "overflowing shaped operand index");
-        return i >= $_op.getNumInputs() + getNumOutputBuffers();
+        SmallVector<OpOperand*, 4> res;
+        res.reserve(getNumOutputs());
+        for (OpOperand &o : getOutputOpOperands())
+          if (o.get().getType().isa<RankedTensorType>())
+            res.push_back(&o);
+        return res;
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the relative init tensor index of the shaped operand index.
+        Return the number of output tensor operands.
       }],
       /*retTy=*/"unsigned",
-      /*methodName=*/"getInitTensorIndexFromShapedIndex",
-      /*args=*/(ins "unsigned":$i),
+      /*methodName=*/"getNumOutputTensors",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        assert(isIndexOfAnInitTensor(i) && "expected an init tensor index");
-        return i - $_op.getNumInputs() - getNumOutputBuffers();
+        return $_op.getOutputTensors().size();
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the index of the given init tensor value, or `None` if the value 
-        is not part of the init tensors.
+        Return the types of the subset of output operands that are of buffer type.
       }],
-      /*retTy=*/"llvm::Optional<unsigned>",
-      /*methodName=*/"getIndexOfInitTensor",
-      /*args=*/(ins "Value":$value),
+      /*retTy=*/"SmallVector<MemRefType, 4>",
+      /*methodName=*/"getOutputBufferTypes" ,
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        auto it = llvm::find(getInitTensors(), value);
-        if (it != getInitTensors().end())
-          return it - getInitTensors().begin();
-        return llvm::None;
+        return llvm::to_vector<4>(
+          llvm::map_range(
+            llvm::make_filter_range(
+              ValueRange(getOutputs()).getTypes(),
+              [](Type in){ return in.isa<MemRefType>(); }),
+            [](Type in){ return in.cast<MemRefType>(); }));
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the number of inputs, output buffers and init tensors operands.
+        Return the types of the subset of output operands that are of ranked
+        tensor type.
       }],
-      /*retTy=*/"unsigned",
-      /*methodName=*/"getNumShapedOperands",
+      /*retTy=*/"SmallVector<RankedTensorType, 4>",
+      /*methodName=*/"getOutputTensorTypes" ,
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        return getNumInputsAndOutputBuffers() + $_op.getNumInitTensors();
+        return llvm::to_vector<4>(
+          llvm::map_range(
+            llvm::make_filter_range(
+              ValueRange(getOutputs()).getTypes(),
+              [](Type in){ return in.isa<RankedTensorType>(); }),
+            [](Type in){ return in.cast<RankedTensorType>(); }));
       }]
     >,
+
+    //===------------------------------------------------------------------===//
+    // Input and Output arguments handling.
+    //===------------------------------------------------------------------===//
     InterfaceMethod<
       /*desc=*/[{
-        Return the `i`-th shaped operand value, which can be an arbitrary input
-        tensor/buffer, init tensor or output buffer.
+        Return true if the payload uses the value loaded from `opOperand`. This
+        is useful to avoid loading from "write-only" memory that may be
+        uninitialized, as well as properly cloning "read-write" operands.
       }],
-      /*retTy=*/"Value",
-      /*methodName=*/"getShapedOperand",
-      /*args=*/(ins "unsigned":$i),
+      /*retTy=*/"bool",
+      /*methodName=*/"payloadUsesValueFromOpOperand",
+      /*args=*/(ins "OpOperand *":$opOperand),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        assert(i < $_op.getNumShapedOperands());
-        return this->getOperation()->getOperand(i);
+        unsigned bbArgNumber =
+          getNumPayloadInductionVariables() + opOperand->getOperandNumber();
+        // Safeguard against the named linalg ops that are manually defined and
+        // that only support buffer semantics: we should not be there.
+        // Such ops have an empty regionBuilder and are not constructed with a
+        // region for now. In the future they are slated to disappear.
+        assert(this->getOperation()->getNumRegions() == 1 && "unexpected "
+               "missing region (calling `payloadUsesValueFromOpOperand` on "
+               "manually defined named Linalg op?)");
+        Block &block = this->getOperation()->getRegion(0).front();
+        // Init tensors have uses.
+        return !block.getArgument(bbArgNumber).use_empty();
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the range over inputs, output buffers and init tensors.
+        Return true if the payload uses the value loaded from input operand
+        `index`.
       }],
-      /*retTy=*/"Operation::operand_range",
-      /*methodName=*/"getShapedOperands",
-      /*args=*/(ins),
+      /*retTy=*/"bool",
+      /*methodName=*/"payloadUsesValueFromInputOperandIndex",
+      /*args=*/(ins "unsigned":$index),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        auto range = this->getOperation()->getOperands();
-        return {range.begin(), range.begin() + getNumShapedOperands()};
+        return payloadUsesValueFromOpOperand(&getInputOpOperands()[index]);
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the `i`-th shaped type, there are 3 cases:
-          1. if `i < $_op.getNumInputs()` then return `getInputShapedType(i)`;
-             otherwise
-          2. if `i < getNumInputsAndOutputBuffers()` then return the
-             `getOutputBufferType(i - $_op.getNumInputs())`; otherwise
-          3. return the `i - getNumInputsAndOutputBuffers()` result type.
+        Return true if the payload uses the value loaded from output operand
+        `index`.
       }],
-      /*retTy=*/"ShapedType",
-      /*methodName=*/"getShapedType",
-      /*args=*/(ins "unsigned":$i),
+      /*retTy=*/"bool",
+      /*methodName=*/"payloadUsesValueFromOutputOperandIndex",
+      /*args=*/(ins "unsigned":$index),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        if (i < $_op.getNumInputs())
-          return getInputShapedType(i);
-        if (i < getNumInputsAndOutputBuffers())
-          return getOutputBufferType(i - $_op.getNumInputs());
-        return this->getOperation()->getResult(
-          i - getNumInputsAndOutputBuffers()).
-          getType().template cast<ShapedType>();
-      }]>,
+        return payloadUsesValueFromOpOperand(&getOutputOpOperands()[index]);
+      }]
+    >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the shaped types for all the inputs and outputs
+        Return true if `opOperand` is an init tensor. This is true when it is
+        an output tensor operand whose value is used in the payload region.
       }],
-      /*retTy=*/"SmallVector<ShapedType, 4>",
-      /*methodName=*/"getInputOutputShapedTypes",
+      /*retTy=*/"bool",
+      /*methodName=*/"isInitTensor",
+      /*args=*/(ins "OpOperand *":$opOperand),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        if (!opOperand->get().getType().template isa<RankedTensorType>())
+          return false;
+        if (opOperand->getOperandNumber() < $_op.getNumInputs())
+          return false;
+        return payloadUsesValueFromOpOperand(opOperand);
+      }]
+    >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return true if the operand at output index `index` is an init tensor.
+      }],
+      /*retTy=*/"bool",
+      /*methodName=*/"isIndexOfInitTensor",
+      /*args=*/(ins "unsigned":$index),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        assert(index < getNumOutputs());
+        return isInitTensor(
+          &this->getOperation()->getOpOperands()[$_op.getNumInputs() + index]);
+      }]
+    >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the output operands that are init tensors.
+      }],
+      /*retTy=*/"SmallVector<Value, 4>",
+      /*methodName=*/"getInitTensors",
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        SmallVector<Type, 4> inputOutputTypes(
-            this->getOperation()->operand_type_begin(),
-            this->getOperation()->operand_type_end());
-        inputOutputTypes.append(this->getOperation()->result_type_begin(),
-                                this->getOperation()->result_type_end());
+        auto start =
+          this->getOperation()->getOpOperands().begin() + $_op.getNumInputs();
         return llvm::to_vector<4>(
-            llvm::map_range(inputOutputTypes, [](Type type) -> ShapedType {
-              return type.cast<ShapedType>();
-            }));
+          llvm::map_range(
+            llvm::make_filter_range(
+              llvm::make_range(start, start + $_op.getNumOutputs()),
+              [&](OpOperand &opOperand) {
+                return $_op.isInitTensor(&opOperand);
+              }),
+              [&](OpOperand &opOperand) {
+                return opOperand.get();
+              }));
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Return the first position of the shaped operand in the operand list.
+        Return the number of init tensor operands.
       }],
-      /*retTy=*/"Optional<unsigned>",
-      /*methodName=*/"getIndexOfShapedOperand",
-      /*args=*/(ins "Value":$value),
+      /*retTy=*/"unsigned",
+      /*methodName=*/"getNumInitTensors",
+      /*args=*/(ins),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        return getInitTensors().size();
+      }]
+    >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the number of input and output operands.
+      }],
+      /*retTy=*/"unsigned",
+      /*methodName=*/"getNumShapedOperands",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        Optional<unsigned> inputIndex = getIndexOfInput(value);
-        if (inputIndex.hasValue()) return inputIndex.getValue();
-        Optional<unsigned> outputIndex = getIndexOfOutputBuffer(value);
-        if (outputIndex.hasValue())
-          return $_op.getNumInputs() + outputIndex.getValue();
-        Optional<unsigned> initTensorIndex = getIndexOfInitTensor(value);
-        if (initTensorIndex.hasValue())
-          return $_op.getNumInputs() + $_op.getNumOutputBuffers() + initTensorIndex.getValue();
-        return llvm::None;
+        return $_op.getNumInputs() + $_op.getNumOutputs();
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Returns the operand index given the input index. Returns None
-        of the input index is invalid.
+        Return the `i`-th shaped operand value.
       }],
-      /*retTy=*/"Optional<unsigned>",
-      /*methodName=*/"getOperandIndexForInputIndex",
-      /*args=*/(ins "unsigned":$input_index),
+      /*retTy=*/"Value",
+      /*methodName=*/"getShapedOperand",
+      /*args=*/(ins "unsigned":$i),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        if (input_index >= $_op.getNumInputs())
-          return llvm::None;
-        return input_index;
+        assert(i < $_op.getNumShapedOperands());
+        return this->getOperation()->getOperand(i);
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Returns the operand index given the output index. Returns None
-        of the output index is invalid.
+        Return the range over input and output operands.
       }],
-      /*retTy=*/"Optional<unsigned>",
-      /*methodName=*/"getOperandIndexForOutputIndex",
-      /*args=*/(ins "unsigned":$output_index),
+      /*retTy=*/"Operation::operand_range",
+      /*methodName=*/"getShapedOperands",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        if (output_index >= $_op.getNumOutputs())
-          return llvm::None;
-        return output_index + $_op.getNumInputs();
+        auto range = this->getOperation()->getOperands();
+        return {range.begin(), range.begin() + getNumShapedOperands()};
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Returns the input index given the operand index. Return None
-        if the operand index doesnt corresponding to an input.
+        Return the OpOperands for all the shaped operands.
       }],
-      /*retTy=*/"Optional<unsigned>",
-      /*methodName=*/"getInputIndex",
-      /*args=*/(ins "unsigned":$operand_index),
+      /*retTy=*/" MutableArrayRef<OpOperand>",
+      /*methodName=*/"getShapedOpOperands",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-         if (operand_index >= $_op.getNumInputs())
-           return llvm::None;
-         return operand_index;
+        return this->getOperation()->getOpOperands().take_front(
+          getNumShapedOperands());
       }]
     >,
     InterfaceMethod<
       /*desc=*/[{
-        Returns the output index given the operand index. Return None
-        if the operand index doesnt corresponding to an output.
+        Return the range over input and output operands.
       }],
-      /*retTy=*/"Optional<unsigned>",
-      /*methodName=*/"getOutputIndex",
-      /*args=*/(ins "unsigned":$operand_index),
+      /*retTy=*/"SmallVector<ShapedType, 4>",
+      /*methodName=*/"getShapedOperandTypes",
+      /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-         if (operand_index < $_op.getNumInputs() ||
-             operand_index >= $_op.getNumInputs() + $_op.getNumOutputs())
-           return llvm::None;
-         return operand_index - $_op.getNumInputs();
+        return llvm::to_vector<4>(
+          llvm::map_range(
+            getShapedOperands(),
+            [](Value v) { return v.getType().cast<ShapedType>(); }));
       }]
     >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return the `i`-th shaped type
+      }],
+      /*retTy=*/"ShapedType",
+      /*methodName=*/"getShapedType",
+      /*args=*/(ins "unsigned":$i),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{
+        return $_op.getShapedOperand(i).getType().template cast<ShapedType>();
+      }]>,
 
     //===------------------------------------------------------------------===//
     // Other interface methods.
@@ -679,7 +797,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       /*args=*/(ins "unsigned":$i),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        assert(i < getNumInputsAndOutputs());
+        assert(i < $_op.getNumShapedOperands());
         return getIndexingMaps()[i];
       }]
     >,
@@ -719,8 +837,8 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
         return this->getOperation()->getNumResults() == 0 &&
-          llvm::all_of(getInputs(),
-                       [](Value v) { return v.getType().isa<MemRefType>(); });
+          llvm::all_of(getShapedOperands(), [](Value v) {
+            return v.getType().template isa<MemRefType>(); });
       }]
     >,
     InterfaceMethod<
@@ -732,11 +850,9 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        auto isTensorType = [](Value v) {
-          return v.getType().isa<RankedTensorType>();
-        };
-        return llvm::all_of(getInputs(), isTensorType) &&
-               llvm::all_of(this->getOperation()->getResults(), isTensorType);
+        return llvm::all_of(getShapedOperands(), [](Value v) {
+          return v.getType().template isa<RankedTensorType>();
+        });
       }]
     >,
     InterfaceMethod<
@@ -748,7 +864,8 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       /*args=*/(ins),
       /*methodBody=*/"",
       /*defaultImplementation=*/[{
-        return $_op->getAttr(getSparseAttrName()).template dyn_cast_or_null<ArrayAttr>() != nullptr;
+        return $_op->getAttr(getSparseAttrName()).
+          template dyn_cast_or_null<ArrayAttr>() != nullptr;
       }]
     >,
     InterfaceMethod<
@@ -871,7 +988,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
   ];
 
   let extraClassDeclaration = [{
-    /// Return the flat list of all operand dimension sizes in the order they 
+    /// Return the flat list of all operand dimension sizes in the order they
     /// appear in the operands.
     SmallVector<Value, 4> createFlatListOfOperandDims(OpBuilder &, Location);
 
@@ -893,7 +1010,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       for (unsigned i = 0; i < nExtraOperands; ++i) {
         res.push_back(getOperation()->getOperand(numShapedOperands + i));
         assert((res.back().getType().isSignlessIntOrIndexOrFloat()
-                || res.back().getType().isa<VectorType>()) &&
+                || res.back().getType().template isa<VectorType>()) &&
                "expected scalar or vector type");
       }
       return res;
@@ -904,7 +1021,6 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
     //========================================================================//
     void setNumInputs(unsigned num) { setOperandSegmentAt(0, num); }
     void setNumOutputBuffers(unsigned num) { setOperandSegmentAt(1, num); }
-    void setNumInitTensors(unsigned num) { setOperandSegmentAt(2, num); }
 
     private:
     void setOperandSegmentAt(unsigned idx, unsigned val) {
@@ -916,6 +1032,8 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
       getOperation()->setAttr("operand_segment_sizes", newAttr);
     }
   }];
+
+  let verify = [{ return detail::verifyStructuredOpInterface($_op); }];
 }
 
 #endif // LINALG_IR_STRUCTURED_OPS_INTERFACE

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgTraits.h b/mlir/include/mlir/Dialect/Linalg/IR/LinalgTraits.h
deleted file mode 100644
index adfa6a6f1af9..000000000000
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgTraits.h
+++ /dev/null
@@ -1,166 +0,0 @@
-//===- LinalgTraits.h - Linalg Traits ---------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_DIALECT_LINALG_LINALGTRAITS_H_
-#define MLIR_DIALECT_LINALG_LINALGTRAITS_H_
-
-#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
-#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
-#include "mlir/IR/AffineMap.h"
-#include "mlir/IR/BuiltinOps.h"
-#include "mlir/IR/BuiltinTypes.h"
-#include "mlir/IR/OpDefinition.h"
-#include "mlir/Support/LLVM.h"
-
-namespace mlir {
-namespace OpTrait {
-namespace linalg {
-
-/// This class provides the API for ops that are known to have a specified
-/// number of inputs, all passed as operands. Use as a trait as follows:
-///
-///   class DotOp : public Op<DotOp, OpTrait::NInputs<2>::Impl> {
-///
-template <unsigned N> class NInputs {
-public:
-  template <typename ConcreteType>
-  class Impl : public OpTrait::TraitBase<ConcreteType, NInputs<N>::Impl> {
-  public:
-    static unsigned getNumInputs() { return N; }
-  };
-};
-
-/// This class provides the API for ops that are known to not have init tensor
-/// operands. Use as a trait as follows:
-///
-///   class CopyOp : public Op<CopyOp, OpTrait::ZeroInitTensors> {
-///
-template <typename ConcreteType>
-class ZeroInitTensors : public TraitBase<ConcreteType, ZeroInitTensors> {
-public:
-  static unsigned getNumInitTensors() { return 0; }
-};
-
-/// This class provides the API for ops that are known to have a specified
-/// number of outputs, all passed as operands. Use as a trait as follows:
-///
-///   class DotOp : public Op<DotOp, OpTrait::NOutputs<2>::Impl> {
-///
-template <unsigned N> class NOutputs {
-public:
-  template <typename ConcreteType>
-  class Impl : public OpTrait::TraitBase<ConcreteType, NOutputs<N>::Impl> {
-  public:
-    static unsigned getNumOutputs() { return N; }
-  };
-};
-
-/// This class provides a verifier for structured ops that are known to operate
-/// on buffers or tensors. This trait must be used in conjunction with an op
-/// definition or a trait that provides the methods `getNumInputs` and
-/// `getNumOutputs`. Use as a trait as follows:
-///
-///   class DotOp : public Op<DotOp, OpTrait::StructuredOpTraits> {
-///
-template <typename ConcreteType>
-class StructuredOpTraits
-    : public OpTrait::TraitBase<ConcreteType, StructuredOpTraits> {
-public:
-  static LogicalResult verifyTrait(Operation *op) {
-    ConcreteType concreteOp = cast<ConcreteType>(op);
-    auto nOperands = concreteOp.getNumInputsAndOutputBuffers();
-    if (failed(OpTrait::impl::verifyAtLeastNOperands(op, nOperands)))
-      return failure();
-    if (op->getNumResults() > concreteOp.getNumOutputs())
-      return op->emitError("unexpected #results > #outputs");
-    return success();
-  }
-};
-
-/// This class provides a verifier for structured ops that are known to operate
-/// on buffers or tensors and that support `ins`, `outs` and `init` arguments.
-/// This trait must be used in conjunction with an op definition or a trait that
-/// provides the methods `getNumInputs` and `getNumOutputs`.
-///
-/// Use as a trait as follows:
-///
-///   class MatmulOp : public Op<MatmulOp, OpTrait::NamedStructuredOpTrait> {
-///
-template <typename ConcreteType>
-class NamedStructuredOpTrait
-    : public OpTrait::TraitBase<ConcreteType, NamedStructuredOpTrait> {
-public:
-  unsigned getNumInputs() {
-    return cast<ConcreteType>(this->getOperation()).inputs().size();
-  }
-  unsigned getNumInitTensors() {
-    return cast<ConcreteType>(this->getOperation()).init_tensors().size();
-  }
-  unsigned getNumOutputs() {
-    ConcreteType concreteOp = cast<ConcreteType>(this->getOperation());
-    return concreteOp.output_buffers().size() +
-           concreteOp.result_tensors().size();
-  }
-  static LogicalResult verifyTrait(Operation *op) {
-    ConcreteType concreteOp = cast<ConcreteType>(op);
-    unsigned nInputAndBufferOperands =
-        concreteOp.getNumInputsAndOutputBuffers();
-    if (failed(
-            OpTrait::impl::verifyAtLeastNOperands(op, nInputAndBufferOperands)))
-      return failure();
-
-    SmallVector<AffineExpr, 4> redDims;
-    concreteOp.getReductionDims(redDims);
-    // If no result and no reduction, only check there is no init tensor and we
-    // are done.
-    if (redDims.empty() || op->getNumResults() == 0) {
-      if (!concreteOp.init_tensors().empty())
-        return op->emitError("expected empty `init` when op has no "
-                             "results or no reduction dims");
-      return success();
-    }
-
-    // Only a single tensor result supported atm.
-    if (op->getNumResults() != 1)
-      return op->emitError(
-          "expected single tensor result when reduction present");
-
-    if (concreteOp.init_tensors().size() != op->getNumResults())
-      return op->emitError(
-          "expected #init tensors to match #results when reduction present");
-
-    for (unsigned idx = 0, e = op->getNumResults(); idx < e; ++idx)
-      if (concreteOp.init_tensors()[idx].getType() != op->getResultTypes()[idx])
-        return op->emitError("expected init tensor #")
-               << idx << " of the same type as result #" << idx;
-
-    // Output tensor indexing map may not depend on reduction index.
-    // TODO: this is not yet tested. Add a test when linalg.generic switches to
-    // this representation.
-    for (unsigned idx = 0, e = concreteOp.getNumOutputs(); idx < e; ++idx) {
-      AffineMap outputMap = concreteOp.getOutputIndexingMap(idx);
-      for (auto expr : outputMap.getResults()) {
-        for (auto dim : redDims) {
-          unsigned pos = dim.cast<AffineDimExpr>().getPosition();
-          if (expr.isFunctionOfDim(pos))
-            return op->emitError(
-                       "unexpected single tensor output indexing map ")
-                   << "is function of reduction dim @" << pos;
-        }
-      }
-    }
-
-    return success();
-  }
-};
-
-} // namespace linalg
-} // namespace OpTrait
-} // namespace mlir
-
-#endif // MLIR_DIALECT_LINALG_LINALGTRAITS_H_

diff  --git a/mlir/include/mlir/IR/OpBase.td b/mlir/include/mlir/IR/OpBase.td
index 552ac75bfee5..0f060b2b1a0a 100644
--- a/mlir/include/mlir/IR/OpBase.td
+++ b/mlir/include/mlir/IR/OpBase.td
@@ -673,6 +673,11 @@ class AnyStridedMemRefOfRank<int rank> :
             MemRefRankOf<[AnyType], [rank]>.predicate]>,
        AnyStridedMemRef.description # " of rank " # rank>;
 
+class StridedMemRefRankOf<list<Type> allowedTypes, list<int> ranks> :
+    Type<And<[MemRefOf<allowedTypes>.predicate, HasAnyRankOfPred<ranks>]>,
+         StrJoin<!foreach(rank, ranks, rank # "D"), "/">.result # " " #
+         MemRefOf<allowedTypes>.description>;
+
 // This represents a generic tuple without any constraints on element type.
 def AnyTuple : Type<IsTupleTypePred, "tuple">;
 

diff  --git a/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir b/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir
index 38d97332f0d7..9e4b9f39f7fb 100644
--- a/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir
+++ b/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir
@@ -22,7 +22,7 @@ func @main() {
   %C = constant dense<1000.0> : tensor<2x4xf32>
 
   %D = linalg.matmul ins(%A, %B: tensor<2x3xf32>, tensor<3x4xf32>)
-                     init(%C: tensor<2x4xf32>) -> tensor<2x4xf32>
+                     outs(%C: tensor<2x4xf32>) -> tensor<2x4xf32>
 
   %unranked = tensor.cast %D : tensor<2x4xf32> to tensor<*xf32>
   call @print_memref_f32(%unranked) : (tensor<*xf32>) -> ()

diff  --git a/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp b/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp
index ca2d16e8de86..1042930b1ef7 100644
--- a/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp
+++ b/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp
@@ -13,6 +13,7 @@
 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
+#include "mlir/IR/BuiltinOps.h"
 
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
@@ -113,15 +114,16 @@ LinalgDependenceGraph::LinalgDependenceGraph(Aliases &aliases,
 }
 
 void LinalgDependenceGraph::addDependenceElem(DependenceType dt,
-                                              LinalgOpView indexingOpView,
-                                              LinalgOpView dependentOpView) {
+                                              OpOperand *indexingOpView,
+                                              OpOperand *dependentOpView) {
   LLVM_DEBUG(dbgs() << "\nAdd dep type " << getDependenceTypeStr(dt) << ":\t ("
-                    << *indexingOpView.op << ", " << indexingOpView.operandIndex
-                    << ") -> \n\t\t(" << *dependentOpView.op << ", "
-                    << dependentOpView.operandIndex << ")");
-  dependencesFromGraphs[dt][indexingOpView.op].push_back(
+                    << indexingOpView->get() << " @"
+                    << indexingOpView->getOperandNumber() << ") -> \n\t\t("
+                    << dependentOpView->get() << " @"
+                    << dependentOpView->getOperandNumber() << ")");
+  dependencesFromGraphs[dt][indexingOpView->getOwner()].push_back(
       LinalgDependenceGraphElem{dependentOpView, indexingOpView, dt});
-  dependencesIntoGraphs[dt][dependentOpView.op].push_back(
+  dependencesIntoGraphs[dt][dependentOpView->getOwner()].push_back(
       LinalgDependenceGraphElem{indexingOpView, dependentOpView, dt});
 }
 
@@ -156,57 +158,25 @@ LinalgDependenceGraph::getDependencesInto(
 }
 
 void LinalgDependenceGraph::addDependencesBetween(LinalgOp src, LinalgOp dst) {
-  for (auto srcView : llvm::enumerate(src.getOutputBuffers())) { // W
-    unsigned srcIndex =
-        src.getOperandIndexForOutputIndex(srcView.index()).getValue();
+  for (OpOperand *srcOpOperand : src.getOutputBuffersOpOperands()) { // W
     // RAW graph
-    for (auto dstView : llvm::enumerate(dst.getInputBuffers())) { // R
-      if (aliases.alias(srcView.value(),
-                        dstView.value())) { // if alias, fill RAW
-        unsigned dstIndex =
-            dst.getOperandIndexForInputIndex(dstView.index()).getValue();
-        addDependenceElem(DependenceType::RAW,
-                          LinalgOpView{src.getOperation(), srcIndex},
-                          LinalgOpView{dst.getOperation(), dstIndex});
-      }
-    }
+    for (OpOperand *dstOpOperand : dst.getInputBuffersOpOperands()) // R
+      if (aliases.alias(srcOpOperand->get(), dstOpOperand->get()))  // RAW alias
+        addDependenceElem(DependenceType::RAW, srcOpOperand, dstOpOperand);
     // WAW graph
-    for (auto dstView : llvm::enumerate(dst.getOutputBuffers())) { // W
-      if (aliases.alias(srcView.value(),
-                        dstView.value())) { // if alias, fill WAW
-        unsigned dstIndex =
-            dst.getOperandIndexForOutputIndex(dstView.index()).getValue();
-        addDependenceElem(DependenceType::WAW,
-                          LinalgOpView{src.getOperation(), srcIndex},
-                          LinalgOpView{dst.getOperation(), dstIndex});
-      }
-    }
+    for (OpOperand *dstOpOperand : dst.getOutputBuffersOpOperands()) // W
+      if (aliases.alias(srcOpOperand->get(), dstOpOperand->get())) // WAW alias
+        addDependenceElem(DependenceType::WAW, srcOpOperand, dstOpOperand);
   }
-  for (auto srcView : llvm::enumerate(src.getInputBuffers())) { // R
-    unsigned srcIndex =
-        src.getOperandIndexForInputIndex(srcView.index()).getValue();
+  for (OpOperand *srcOpOperand : src.getInputBuffersOpOperands()) { // R
     // RAR graph
-    for (auto dstView : llvm::enumerate(dst.getInputBuffers())) { // R
-      if (aliases.alias(srcView.value(),
-                        dstView.value())) { // if alias, fill RAR
-        unsigned dstIndex =
-            dst.getOperandIndexForInputIndex(dstView.index()).getValue();
-        addDependenceElem(DependenceType::RAR,
-                          LinalgOpView{src.getOperation(), srcIndex},
-                          LinalgOpView{dst.getOperation(), dstIndex});
-      }
-    }
+    for (OpOperand *dstOpOperand : dst.getInputBuffersOpOperands()) // R
+      if (aliases.alias(srcOpOperand->get(), dstOpOperand->get()))  // RAR alias
+        addDependenceElem(DependenceType::RAR, srcOpOperand, dstOpOperand);
     // WAR graph
-    for (auto dstView : llvm::enumerate(dst.getOutputBuffers())) { // W
-      if (aliases.alias(srcView.value(),
-                        dstView.value())) { // if alias, fill WAR
-        unsigned dstIndex =
-            dst.getOperandIndexForOutputIndex(dstView.index()).getValue();
-        addDependenceElem(DependenceType::WAR,
-                          LinalgOpView{src.getOperation(), srcIndex},
-                          LinalgOpView{dst.getOperation(), dstIndex});
-      }
-    }
+    for (OpOperand *dstOpOperand : dst.getOutputBuffersOpOperands()) // W
+      if (aliases.alias(srcOpOperand->get(), dstOpOperand->get())) // WAR alias
+        addDependenceElem(DependenceType::WAR, srcOpOperand, dstOpOperand);
   }
 }
 
@@ -248,17 +218,15 @@ LinalgDependenceGraph::findOperationsWithCoveringDependences(
   // TODO: we are not considering paths yet, just interleaved positions.
   for (auto dt : types) {
     for (auto dependence : getDependencesFrom(src, dt)) {
-      auto interimPos = linalgOpPositions.lookup(dependence.dependentOpView.op);
+      auto interimPos =
+          linalgOpPositions.lookup(dependence.dependentOpView->getOwner());
       // Skip if not interleaved.
       if (interimPos >= dstPos || interimPos <= srcPos)
         continue;
-      linalg::LinalgOp consumer =
-          cast<linalg::LinalgOp>(dependence.indexingOpView.op);
-      Value consumerView =
-          consumer.getShapedOperand(dependence.indexingOpView.operandIndex);
+      Value consumerView = dependence.indexingOpView->get();
       if (view && !aliases.alias(view, consumerView))
         continue;
-      auto *op = dependence.dependentOpView.op;
+      auto *op = dependence.dependentOpView->getOwner();
       LLVM_DEBUG(dbgs() << "\n***Found covering dependence of type "
                         << getDependenceTypeStr(dt) << ": " << *src << " -> "
                         << *op << " on " << consumerView);
@@ -271,12 +239,10 @@ LinalgDependenceGraph::findOperationsWithCoveringDependences(
 bool LinalgDependenceGraph::hasDependenceFrom(
     LinalgOp srcLinalgOp, LinalgOp dstLinalgOp,
     ArrayRef<LinalgDependenceGraph::DependenceType> depTypes) const {
-  for (auto dep : depTypes) {
-    for (auto dependence : getDependencesInto(dstLinalgOp, dep)) {
-      if (dependence.dependentOpView.op == srcLinalgOp)
+  for (auto dep : depTypes)
+    for (auto dependence : getDependencesInto(dstLinalgOp, dep))
+      if (dependence.dependentOpView->getOwner() == srcLinalgOp)
         return true;
-    }
-  }
   return false;
 }
 

diff  --git a/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp b/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
index 0ae1efe10b7f..3c3b2777d6c1 100644
--- a/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
+++ b/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
@@ -23,36 +23,25 @@ using namespace mlir::scf;
 
 Operation *mlir::edsc::makeGenericLinalgOp(
     ArrayRef<IteratorType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
-    ArrayRef<StructuredIndexed> outputBuffers, ArrayRef<Value> initTensors,
-    ArrayRef<StructuredIndexed> resultTensorTypes,
+    ArrayRef<StructuredIndexed> outputs, TypeRange resultTensorTypes,
     function_ref<void(ValueRange)> regionBuilder, ArrayRef<Value> otherValues,
     ArrayRef<Attribute> otherAttributes) {
   OpBuilder &builder = edsc::ScopedContext::getBuilderRef();
 
   // Build maps
   SmallVector<SmallVector<AffineExpr, 4>, 4> exprsList;
-  exprsList.reserve(inputs.size() + outputBuffers.size() + initTensors.size());
-  for (auto container : {inputs, outputBuffers, resultTensorTypes})
+  exprsList.reserve(inputs.size() + outputs.size());
+
+  for (auto container : {inputs, outputs})
     for (const StructuredIndexed &s : container)
       exprsList.emplace_back(s.getExprs().begin(), s.getExprs().end());
   auto maps = AffineMap::inferFromExprList(exprsList);
 
-  SmallVector<Type, 4> types;
-  assert(llvm::all_of(resultTensorTypes, [](const StructuredIndexed &s) {
-    return !s.hasValue();
-  }));
-  std::copy(resultTensorTypes.begin(), resultTensorTypes.end(),
-            std::back_inserter(types));
-
-  SmallVector<Value, 4> inputValues, outputBufferValues, initTensorValues;
+  SmallVector<Value, 4> inputValues, outputValues;
   inputValues.reserve(inputs.size());
-  outputBufferValues.reserve(outputBuffers.size());
-  initTensorValues.reserve(initTensors.size());
+  outputValues.reserve(outputs.size());
   std::copy(inputs.begin(), inputs.end(), std::back_inserter(inputValues));
-  std::copy(outputBuffers.begin(), outputBuffers.end(),
-            std::back_inserter(outputBufferValues));
-  std::copy(initTensors.begin(), initTensors.end(),
-            std::back_inserter(initTensorValues));
+  std::copy(outputs.begin(), outputs.end(), std::back_inserter(outputValues));
 
   auto iteratorStrTypes =
       llvm::to_vector<8>(llvm::map_range(iteratorTypes, toString));
@@ -61,10 +50,9 @@ Operation *mlir::edsc::makeGenericLinalgOp(
       edsc::ScopedContext::getBuilderRef()
           .create<linalg::GenericOp>(
               edsc::ScopedContext::getLocation(),
-              types,
+              resultTensorTypes,
               inputValues,
-              outputBufferValues,
-              initTensorValues,
+              outputValues,
               builder.getAffineMapArrayAttr(maps),
               builder.getStrArrayAttr(iteratorStrTypes),
               StringAttr() /*doc*/,
@@ -77,12 +65,10 @@ Operation *mlir::edsc::makeGenericLinalgOp(
 
   using namespace edsc;
   SmallVector<Type, 4> blockTypes;
-  blockTypes.reserve(inputs.size() + outputBuffers.size() + initTensors.size());
-  for (auto container : {inputs, outputBuffers})
+  blockTypes.reserve(inputs.size() + outputs.size());
+  for (auto container : {inputs, outputs})
     for (const StructuredIndexed &s : container)
       blockTypes.push_back(getElementTypeOrSelf(s.getType()));
-  for (Value v : initTensors)
-    blockTypes.push_back(getElementTypeOrSelf(v.getType()));
 
   assert(op->getNumRegions() == 1);
   assert(op->getRegion(0).empty());
@@ -119,11 +105,10 @@ Operation *mlir::edsc::ops::linalg_generic_pointwise(
     linalg_yield(unaryOp(a));
   };
   if (O.getType().isa<RankedTensorType>())
-    return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputBuffers=*/{},
-                               /*initTensors=*/{}, /*resultTensorTypes=*/{O},
-                               fun);
-  return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputBuffers=*/{O},
-                             /*initTensors=*/{}, /*resultTensorTypes=*/{}, fun);
+    return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O},
+                               /*resultTensorTypes=*/{O}, fun);
+  return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O},
+                             /*resultTensorTypes=*/{}, fun);
 }
 
 Operation *mlir::edsc::ops::linalg_generic_pointwise_tanh(StructuredIndexed I,
@@ -144,12 +129,10 @@ Operation *mlir::edsc::ops::linalg_generic_pointwise(
     linalg_yield(binaryOp(a, b));
   };
   if (O.getType().isa<RankedTensorType>())
-    return makeGenericLinalgOp(
-        iterTypes, /*inputs=*/{I1, I2}, /*outputBuffers=*/{},
-        /*initTensors=*/{}, /*resultTensorTypes=*/{O}, fun);
+    return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2}, /*outputs=*/{O},
+                               /*resultTensorTypes=*/{O}, fun);
   return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2},
-                             /*outputBuffers=*/{O},
-                             /*initTensors=*/{}, /*resultTensorTypes=*/{}, fun);
+                             /*outputs=*/{O}, /*resultTensorTypes=*/{}, fun);
 }
 
 Operation *mlir::edsc::ops::linalg_generic_pointwise_add(StructuredIndexed I1,
@@ -181,8 +164,7 @@ mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
   return makeGenericLinalgOp(
     {IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
     /*inputs=*/{A({m, k}), B({k, n})},
-    /*outputBuffers=*/{C({m, n})},
-    /*initTensors=*/{},
+    /*outputs=*/{C({m, n})},
     /*resultTensorTypes=*/{},
     regionBuilder);
   // clang-format on
@@ -199,8 +181,7 @@ mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
   return makeGenericLinalgOp(
     {IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
     /*inputs=*/{A({m, k}), B({k, n})},
-    /*outputBuffers=*/{},
-    /*initTensors=*/{C({m, n})},
+    /*outputs=*/{C({m, n})},
     /*resultTensorTypes=*/{D({m, n})},
     regionBuilder);
   // clang-format on
@@ -236,8 +217,7 @@ Operation *mlir::edsc::ops::linalg_generic_conv_nhwc(Value vI, Value vW,
          simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
          c}),
       W({kh, kw, c, f}) },
-    /*outputBuffers=*/{ O({b, h, w, f}) },
-    /*initTensors=*/{},
+    /*outputs=*/{ O({b, h, w, f}) },
     /*resultTensorTypes=*/{},
     macRegionBuilder);
   // clang-format on
@@ -272,9 +252,8 @@ Operation *mlir::edsc::ops::linalg_generic_dilated_conv_nhwc(
          simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
          c}),
       W({kh, kw, c, dm})},
-    /*outputBuffers=*/{
+    /*outputs=*/{
       O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})},
-    /*initTensors=*/{},
     /*resultTensorTypes=*/{},
     macRegionBuilder);
   // clang-format on

diff  --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 3a7249df8e79..bcbd6d903612 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -88,22 +88,20 @@ SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
 
 /// Forward declarations.
 template <typename NamedStructuredOpType>
-static void buildNamedStructuredOpRegionAndAttributes(
-    OpBuilder &opBuilder, OperationState &result, TypeRange inputTypes,
-    TypeRange outputBufferTypes, TypeRange initTensorTypes,
-    TypeRange resultTypes);
+static void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
+                                                      OperationState &result,
+                                                      TypeRange inputTypes,
+                                                      TypeRange outputTypes);
 
 static ParseResult
 parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
                              SmallVectorImpl<Type> &inputTypes,
-                             SmallVectorImpl<Type> &outputBufferTypes,
-                             SmallVectorImpl<Type> &initTensorTypes);
+                             SmallVectorImpl<Type> &outputTypes);
 
 template <typename NamedStructuredOpType>
 static ParseResult
 parseNamedStructuredOpRegion(OpAsmParser &parser, Region &region,
-                             TypeRange inputTypes, TypeRange outputBufferTypes,
-                             TypeRange initTensorTypes, TypeRange resultTypes);
+                             TypeRange inputTypes, TypeRange outputTypes);
 static ParseResult
 parseNamedStructuredOpResults(OpAsmParser &parser,
                               SmallVectorImpl<Type> &resultTypes);
@@ -122,9 +120,6 @@ static void printNamedStructuredOpResults(OpAsmPrinter &p,
 template <typename NamedStructuredOpType>
 static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op);
 
-template <typename NamedStructuredOpType>
-static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op);
-
 /// This is a common class used for patterns of the form
 /// ```
 ///    someop(memrefcast) -> someop
@@ -152,11 +147,10 @@ static LogicalResult foldMemRefCast(Operation *op) {
 //===----------------------------------------------------------------------===//
 void GenericOp::build(
     OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
-    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
-    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
-    StringRef doc, StringRef libraryCall,
+    ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
+    ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
-  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
+  build(builder, result, resultTensorTypes, inputs, outputs,
         builder.getAffineMapArrayAttr(indexingMaps),
         builder.getStrArrayAttr(iteratorTypes),
         doc.empty() ? StringAttr() : builder.getStringAttr(doc),
@@ -166,7 +160,7 @@ void GenericOp::build(
     return;
 
   SmallVector<Type, 4> blockArgTypes;
-  for (ValueRange container : {inputs, outputBuffers, initTensors})
+  for (ValueRange container : {inputs, outputs})
     for (Value v : container)
       blockArgTypes.push_back(v.getType().cast<ShapedType>().getElementType());
 
@@ -178,41 +172,40 @@ void GenericOp::build(
 
 void GenericOp::build(
     OpBuilder &builder, OperationState &result, ValueRange inputs,
-    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
+    ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
     ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
-  build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
-        indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
+  build(builder, result, TypeRange{}, inputs, outputs, indexingMaps,
+        iteratorTypes, doc, libraryCall, bodyBuild);
 }
 
 void GenericOp::build(
     OpBuilder &builder, OperationState &result, ValueRange inputs,
-    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
+    ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
     ArrayRef<StringRef> iteratorTypes,
     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
-  build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
+  build(builder, result, inputs, outputs, indexingMaps, iteratorTypes,
         /*doc=*/"",
         /*libraryCall=*/"", bodyBuild);
 }
 
 void GenericOp::build(
     OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
-    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
-    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
+    ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
+    ArrayRef<StringRef> iteratorTypes,
     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
-  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
-        indexingMaps, iteratorTypes,
+  build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
+        iteratorTypes,
         /*doc=*/"",
         /*libraryCall=*/"", bodyBuild);
 }
 void IndexedGenericOp::build(
     OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
-    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
-    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
-    StringRef doc, StringRef libraryCall,
+    ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
+    ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
     function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
         bodyBuild) {
-  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
+  build(builder, result, resultTensorTypes, inputs, outputs,
         builder.getAffineMapArrayAttr(indexingMaps),
         builder.getStrArrayAttr(iteratorTypes),
         doc.empty() ? StringAttr() : builder.getStringAttr(doc),
@@ -223,7 +216,7 @@ void IndexedGenericOp::build(
 
   unsigned nLoops = iteratorTypes.size();
   SmallVector<Type, 4> blockArgTypes(nLoops, builder.getIndexType());
-  for (ValueRange container : {inputs, outputBuffers, initTensors})
+  for (ValueRange container : {inputs, outputs})
     for (Value v : container)
       blockArgTypes.push_back(v.getType().cast<ShapedType>().getElementType());
 
@@ -237,32 +230,32 @@ void IndexedGenericOp::build(
 
 void IndexedGenericOp::build(
     OpBuilder &builder, OperationState &result, ValueRange inputs,
-    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
+    ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
     ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
     function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
         bodyBuild) {
-  build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
-        indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
+  build(builder, result, TypeRange{}, inputs, outputs, indexingMaps,
+        iteratorTypes, doc, libraryCall, bodyBuild);
 }
 
 void IndexedGenericOp::build(
     OpBuilder &builder, OperationState &result, ValueRange inputs,
-    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
+    ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
     ArrayRef<StringRef> iteratorTypes,
     function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
         bodyBuild) {
-  build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
+  build(builder, result, inputs, outputs, indexingMaps, iteratorTypes,
         /*doc=*/"", /*libraryCall=*/"", bodyBuild);
 }
 
 void IndexedGenericOp::build(
     OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
-    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
-    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
+    ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
+    ArrayRef<StringRef> iteratorTypes,
     function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
         bodyBuild) {
-  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
-        indexingMaps, iteratorTypes,
+  build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
+        iteratorTypes,
         /*doc=*/"",
         /*libraryCall=*/"", bodyBuild);
 }
@@ -327,9 +320,8 @@ static ParseResult parseGenericOp(OpAsmParser &parser, OperationState &result) {
                            dictAttr.getValue().end());
 
   // Parsing is shared with named ops, except for the region.
-  SmallVector<Type, 1> inputTypes, outputBufferTypes, initTensorTypes;
-  if (parseCommonStructuredOpParts(parser, result, inputTypes,
-                                   outputBufferTypes, initTensorTypes))
+  SmallVector<Type, 1> inputTypes, outputTypes;
+  if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
     return failure();
 
   // Optional attributes may be added.
@@ -360,7 +352,7 @@ static ParseResult parseGenericOp(OpAsmParser &parser, OperationState &result) {
 static void getGenericEffectsImpl(
     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
         &effects,
-    ValueRange results, ValueRange inputBuffers, ValueRange outputBuffers) {
+    ValueRange results, ValueRange inputBuffers, ValueRange outputs) {
   for (Value value : results) {
     effects.emplace_back(MemoryEffects::Allocate::get(), value,
                          SideEffects::DefaultResource::get());
@@ -369,7 +361,7 @@ static void getGenericEffectsImpl(
     effects.emplace_back(MemoryEffects::Read::get(), value,
                          SideEffects::DefaultResource::get());
   }
-  for (Value value : outputBuffers) {
+  for (Value value : outputs) {
     effects.emplace_back(MemoryEffects::Read::get(), value,
                          SideEffects::DefaultResource::get());
     effects.emplace_back(MemoryEffects::Write::get(), value,
@@ -391,65 +383,150 @@ void IndexedGenericOp::getEffects(
                         getInputBuffers(), getOutputBuffers());
 }
 
-namespace {
+LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
+  LinalgOp linalgOp = cast<LinalgOp>(op);
+  // Expect at least one shaped operand.
+  // This means an op that constructs a tensor out of indices cannot be a
+  // LinalgOp at the moment. For now this will have to be a special op until we
+  // have output shape operands that are not tensors.
+  auto nShapedOperands = linalgOp.getNumShapedOperands();
+  if (nShapedOperands == 0)
+    return linalgOp.emitOpError("expected at least 1 Shaped operand");
+  if (failed(OpTrait::impl::verifyAtLeastNOperands(op, nShapedOperands)))
+    return failure();
+  // Should have at least one output tensor per result tensor.
+  // Can also have outbut buffers that do not correspond to results.
+  if (op->getNumResults() > linalgOp.getNumOutputTensors())
+    return op->emitError("unexpected #results > #outputs");
+
+  // All shaped operands must be indexed.
+  if (linalgOp.indexing_maps().size() != linalgOp.getNumShapedOperands())
+    return linalgOp.emitOpError("expected the number of indexing_map (")
+           << linalgOp.indexing_maps().size()
+           << ") to be equal to the number of shaped operands ("
+           << linalgOp.getNumShapedOperands() << ")";
 
-template <typename GenericOpType>
-struct BlockArgsVerifier {
-  static LogicalResult verify(GenericOpType op, Block &block);
-};
+  SmallVector<AffineMap, 4> indexingMaps;
+  indexingMaps.reserve(linalgOp.indexing_maps().size());
+  for (auto en : llvm::enumerate(linalgOp.indexing_maps())) {
+    auto idx = en.index();
+    auto m = en.value().template cast<AffineMapAttr>().getValue();
+    indexingMaps.push_back(m); // Save reference to map for further checks.
+    auto shapedValue = linalgOp.getShapedType(idx);
 
-template <typename GenericOpType>
-LogicalResult BlockArgsVerifier<GenericOpType>::verify(GenericOpType op,
-                                                       Block &block) {
-  auto nOperands = op.getNumOperands();
-  if (block.getNumArguments() != nOperands)
-    return op.emitOpError("expected number of block arguments to match number "
-                          "of operands");
+    // Symbols disallowed.
+    if (m.getNumSymbols() != 0)
+      return linalgOp.emitOpError("unexpected symbols in indexing_map #")
+             << idx;
 
-  // Note: the number and type of yield values are checked in the YieldOp.
-  auto nInputViews = op.getNumInputs();
-  for (unsigned i = 0; i < nOperands; ++i) {
-    auto viewType = op.getShapedType(i);
-    if (viewType.getElementType() != block.getArgument(i).getType())
-      return op.emitOpError("expected block argument ")
-             << (i + 1) << " of the same type as elemental type of "
-             << ((i < nInputViews) ? "input " : "output ")
-             << "operand: " << viewType;
+    // Domain must be consistent.
+    auto nLoops = linalgOp.getNumLoops();
+    if (m.getNumDims() != nLoops)
+      return linalgOp.emitOpError("expected indexing_map #")
+             << idx << " to have " << nLoops
+             << " dim(s) to match the number of loops";
+
+    if (m.getNumResults() != shapedValue.getRank())
+      return linalgOp.emitOpError("expected shaped value rank (")
+             << shapedValue.getRank()
+             << ") to match the result rank of indexing_map #" << idx << " ("
+             << m.getNumResults() << ")";
   }
-  return success();
-}
 
-template <>
-LogicalResult BlockArgsVerifier<IndexedGenericOp>::verify(IndexedGenericOp op,
-                                                          Block &block) {
-  auto nInputViews = op.getNumInputs();
-  auto nLoops = op.getNumLoops();
-  auto nOperands = op.getNumOperands();
-  if (block.getNumArguments() != nOperands + nLoops)
-    return op.emitOpError(
-        "expected number of block arguments to match number of operands + "
-        "number of loops");
+  SmallVector<AffineExpr, 4> redDims;
+  linalgOp.getReductionDims(redDims);
+
+  // Simplifying assumption: either full tensor or full buffer mode.
+  // This allows simpler verification of output operands vs result types
+  // without premature tracking of which operand is what in mixed-mode.
+  // TODO: relax when mixed-mode needs to pass verification.
+  if (linalgOp.getNumOutputBuffers() > 0 && linalgOp.getNumOutputTensors() > 0)
+    return op->emitError("expected output operands to all have tensor type or "
+                         "all have buffer type");
+
+  for (auto it :
+       llvm::zip(linalgOp.getOutputOpOperands(), op->getResultTypes())) {
+    if (!std::get<0>(it).get().getType().isa<RankedTensorType>())
+      continue;
+    if (std::get<0>(it).get().getType() != std::get<1>(it))
+      return op->emitError("expected type of operand #")
+             << std::get<0>(it).getOperandNumber() << " ("
+             << std::get<0>(it).get().getType() << ")"
+             << " to match type of corresponding result (" << std::get<1>(it)
+             << ")";
+  }
+
+  // Output tensor indexing map may not depend on reduction indices.
+  for (OpOperand &opOperand : linalgOp.getOutputOpOperands()) {
+    AffineMap outputMap = linalgOp.getIndexingMap(opOperand.getOperandNumber());
+    for (auto expr : outputMap.getResults()) {
+      for (auto dim : redDims) {
+        unsigned pos = dim.cast<AffineDimExpr>().getPosition();
+        if (expr.isFunctionOfDim(pos)) {
+          std::string exprStr;
+          {
+            llvm::raw_string_ostream os(exprStr);
+            os << expr;
+          }
+          return op->emitError(
+                     "unexpected output tensor expression in indexing map #")
+                 << (opOperand.getOperandNumber() - linalgOp.getNumInputs())
+                 << " a.k.a '" << exprStr
+                 << "' is function of reduction iterator 'd" << pos << "'";
+        }
+      }
+    }
+  }
+
+  // Named ops that are defined manually have a region builder but no region at
+  // this time. Assume the region is well-formed by specification.
+  // TODO: use linalg-ods-gen for all ops when we have enough expressive power.
+  if (linalgOp->getNumRegions() == 0) {
+    assert(!linalgOp.getRegionBuilder() && "regionBuilder but no region");
+    return success();
+  }
+
+  auto &region = linalgOp->getRegion(0);
+  if (linalgOp->getNumRegions() > 1 || !llvm::hasSingleElement(region))
+    return op->emitOpError("expected 1 region with 1 block");
+
+  if (!linalgOp.getShapesToLoopsMap())
+    return op->emitOpError("expected the shape-to-loops map to be non-null");
+
+  // Simplifying assumption: bbargs match 1-1 with shape operands elemental
+  // types.
+  // TODO: once ranked shape types are plugged in, we may want to drop the
+  // corresponding bbargs, that can never be read from. This will be subject to
+  // consistency discussions (i.e. what to do with output tensors whose bbarg is
+  // not used).
+  Block &block = linalgOp->getRegion(0).front();
+  unsigned numBBIvs = linalgOp.getNumPayloadInductionVariables();
+
+  if (linalgOp.getNumShapedOperands() + numBBIvs != block.getNumArguments())
+    return op->emitError("expected as many non-induction variable region "
+                         "arguments as the number of shaped operands");
 
   // Note: the number and type of yield values are checked in the YieldOp.
-  for (unsigned i = 0; i < nLoops; ++i)
+  for (unsigned i = 0; i < numBBIvs; ++i)
     if (!block.getArgument(i).getType().isIndex())
-      return op.emitOpError("expected block argument ")
-             << (i + 1) << " to be an index";
-
-  for (unsigned i = 0; i < nOperands; ++i) {
-    unsigned memrefArgIndex = i + nLoops;
-    auto viewType = op.getShapedType(i);
-    if (viewType.getElementType() !=
-        block.getArgument(memrefArgIndex).getType())
-      return op.emitOpError("expected block argument ")
-             << (memrefArgIndex + 1)
-             << " of the same type as elemental type of "
-             << ((i < nInputViews) ? "input " : "output ")
-             << "operand: " << viewType;
+      return op->emitOpError("expected index block argument #") << i;
+
+  unsigned idx = 0;
+  for (auto it : llvm::zip(linalgOp.getShapedOperandTypes(),
+                           block.getArguments().drop_front(numBBIvs))) {
+    if (std::get<0>(it).getElementType() != std::get<1>(it).getType())
+      return op->emitError("expected type of bb argument #")
+             << (idx + numBBIvs) << " (" << std::get<1>(it).getType() << ")"
+             << " to match element type of corresponding shaped operand ("
+             << std::get<0>(it).getElementType() << ")";
+    ++idx;
   }
+
   return success();
 }
 
+namespace {
+
 template <typename GenericOpType>
 struct AnnotationsVerifier {
   static LogicalResult verify(GenericOpType op) { return success(); }
@@ -465,7 +542,7 @@ LogicalResult AnnotationsVerifier<GenericOp>::verify(GenericOp op) {
     return op.emitOpError("expected sparse annotations on tensors only");
   if (op.getNumOutputs() != 1)
     return op.emitOpError("expected single output tensor");
-  unsigned numTensors = op.getNumInputsAndOutputs();
+  unsigned numTensors = op.getNumShapedOperands();
   if (sparseAttr.size() != numTensors)
     return op.emitOpError("expected one sparse annotation for each tensor");
   for (unsigned t = 0; t < numTensors; t++) {
@@ -497,49 +574,6 @@ LogicalResult AnnotationsVerifier<GenericOp>::verify(GenericOp op) {
 
 template <typename GenericOpType>
 static LogicalResult verifyGenericOp(GenericOpType op) {
-  auto nLoops = op.getNumLoops();
-
-  if (op.inputs().size() + op.output_buffers().size() +
-          op.init_tensors().size() + op.getNumResults() ==
-      0)
-    return op.emitOpError("expected at least 1 Shaped operand or return");
-
-  auto &region = op.region();
-  if (!llvm::hasSingleElement(region))
-    return op.emitOpError("expected region with 1 block");
-  if (failed(BlockArgsVerifier<GenericOpType>::verify(op, region.front())))
-    return failure();
-
-  if (op.indexing_maps().size() != op.getNumInputsAndOutputs())
-    return op.emitOpError("expected the number of indexing_map (")
-           << op.indexing_maps().size()
-           << ") to be equal to the number of inputs and outputs ("
-           << op.getNumInputsAndOutputs() << ")";
-
-  SmallVector<AffineMap, 4> indexingMaps;
-  indexingMaps.reserve(op.indexing_maps().size());
-  for (auto en : llvm::enumerate(op.indexing_maps())) {
-    auto idx = en.index();
-    auto m = en.value().template cast<AffineMapAttr>().getValue();
-    indexingMaps.push_back(m); // Save reference to map for further checks.
-    auto view = op.getShapedType(idx);
-
-    if (m.getNumSymbols() != 0)
-      return op.emitOpError("unexpected symbols in indexing_map #") << idx;
-
-    if (m.getNumDims() != nLoops)
-      return op.emitOpError("expected indexing_map #")
-             << idx << " to have " << nLoops
-             << " dim(s) to match the number of loops";
-
-    if (m.getNumResults() != view.getRank())
-      return op.emitOpError("expected indexing_map #")
-             << idx << " results to match view rank: " << view;
-  }
-
-  if (!op.getShapesToLoopsMap())
-    return op.emitOpError("expected the shape-to-loops map to be non-null");
-
   if (failed(AnnotationsVerifier<GenericOpType>::verify(op)))
     return failure();
 
@@ -1380,8 +1414,6 @@ static LogicalResult verify(ConvOp op) {
     return op.emitOpError("expects memref elemental types to match");
   if (oType.getRank() != iType.getRank() || oType.getRank() != fType.getRank())
     return op.emitOpError("expects memref ranks to match");
-  if (oType.getRank() <= 2)
-    return op.emitOpError("expects memref ranks to be greater than 2");
   if (auto strides = op.strides()) {
     if (failed(
             verifyStrideOrDilation(op, strides->getValue(), /*isStride=*/true)))
@@ -1591,13 +1623,12 @@ OpFoldResult TensorReshapeOp::fold(ArrayRef<Attribute> operands) {
 template <typename NamedStructuredOpType>
 static void buildNamedStructuredOpRegionAndAttributesImpl(
     OpBuilder &opBuilder, Region &region, TypeRange inputTypes,
-    TypeRange outputBufferTypes, TypeRange initTensorTypes,
-    TypeRange resultTypes,
+    TypeRange outputTypes,
     std::function<void(unsigned, unsigned)> errorHandler) {
   // TODO: atm all operands go through getElementTypeOrSelf,
   // reconsider when we have evidence we need to.
   SmallVector<Type, 8> argTypes;
-  for (auto containers : {inputTypes, outputBufferTypes, resultTypes})
+  for (auto containers : {inputTypes, outputTypes})
     for (auto t : containers)
       argTypes.push_back(getElementTypeOrSelf(t));
 
@@ -1622,13 +1653,11 @@ template <typename NamedStructuredOpType>
 void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
                                                OperationState &result,
                                                TypeRange inputTypes,
-                                               TypeRange outputBufferTypes,
-                                               TypeRange initTensorTypes,
-                                               TypeRange resultTypes) {
+                                               TypeRange outputTypes) {
   Region &region = *result.addRegion();
   buildNamedStructuredOpRegionAndAttributesImpl<NamedStructuredOpType>(
-      opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
-      resultTypes, [&](unsigned expected, unsigned actual) {
+      opBuilder, region, inputTypes, outputTypes,
+      [&](unsigned expected, unsigned actual) {
         llvm::errs() << "region expects " << expected << " args, got "
                      << actual;
         assert(expected != actual && "incorrect number of arguments");
@@ -1638,13 +1667,12 @@ void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
 template <typename NamedStructuredOpType>
 static ParseResult
 parseNamedStructuredOpRegion(OpAsmParser &parser, Region &region,
-                             TypeRange inputTypes, TypeRange outputBufferTypes,
-                             TypeRange initTensorTypes, TypeRange resultTypes) {
+                             TypeRange inputTypes, TypeRange outputTypes) {
   ParseResult res = success();
   OpBuilder opBuilder(parser.getBuilder().getContext());
   buildNamedStructuredOpRegionAndAttributesImpl<NamedStructuredOpType>(
-      opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
-      resultTypes, [&](unsigned expected, unsigned actual) {
+      opBuilder, region, inputTypes, outputTypes,
+      [&](unsigned expected, unsigned actual) {
         res = parser.emitError(parser.getCurrentLocation(),
                                llvm::formatv("region expects {0} args, got {1}",
                                              expected, actual));
@@ -1664,12 +1692,9 @@ parseNamedStructuredOpResults(OpAsmParser &parser,
 static ParseResult
 parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
                              SmallVectorImpl<Type> &inputTypes,
-                             SmallVectorImpl<Type> &outputBufferTypes,
-                             SmallVectorImpl<Type> &initTensorTypes) {
-  llvm::SMLoc inputsOperandsLoc, outputBuffersOperandsLoc,
-      initTensorsOperandsLoc;
-  SmallVector<OpAsmParser::OperandType, 4> inputsOperands,
-      outputBuffersOperands, initTensorsOperands;
+                             SmallVectorImpl<Type> &outputTypes) {
+  llvm::SMLoc inputsOperandsLoc, outputsOperandsLoc;
+  SmallVector<OpAsmParser::OperandType, 4> inputsOperands, outputsOperands;
 
   parser.parseOptionalAttrDict(result.attributes);
 
@@ -1684,41 +1709,30 @@ parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
   }
 
   if (succeeded(parser.parseOptionalKeyword("outs"))) {
-    outputBuffersOperandsLoc = parser.getCurrentLocation();
-    if (parser.parseLParen() ||
-        parser.parseOperandList(outputBuffersOperands) ||
-        parser.parseColonTypeList(outputBufferTypes) || parser.parseRParen())
-      return failure();
-  }
-  if (succeeded(parser.parseOptionalKeyword("init"))) {
-    initTensorsOperandsLoc = parser.getCurrentLocation();
-    if (parser.parseLParen() || parser.parseOperandList(initTensorsOperands) ||
-        parser.parseColonTypeList(initTensorTypes) || parser.parseRParen())
+    outputsOperandsLoc = parser.getCurrentLocation();
+    if (parser.parseLParen() || parser.parseOperandList(outputsOperands) ||
+        parser.parseColonTypeList(outputTypes) || parser.parseRParen())
       return failure();
   }
 
   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
                              result.operands) ||
-      parser.resolveOperands(outputBuffersOperands, outputBufferTypes,
-                             outputBuffersOperandsLoc, result.operands) ||
-      parser.resolveOperands(initTensorsOperands, initTensorTypes,
-                             initTensorsOperandsLoc, result.operands))
+      parser.resolveOperands(outputsOperands, outputTypes, outputsOperandsLoc,
+                             result.operands))
     return failure();
 
   result.addAttribute("operand_segment_sizes",
                       parser.getBuilder().getI32VectorAttr(
                           {static_cast<int32_t>(inputsOperands.size()),
-                           static_cast<int32_t>(outputBuffersOperands.size()),
-                           static_cast<int32_t>(initTensorsOperands.size())}));
+                           static_cast<int32_t>(outputsOperands.size())}));
   return success();
 }
 
 template <typename NamedStructuredOpType>
 static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
                                           OperationState &result) {
-  SmallVector<Type, 1> inputTypes, outputBufferTypes, initTensorTypes;
-  if (parseCommonStructuredOpParts(parser, result, inputTypes,
-                                   outputBufferTypes, initTensorTypes))
+  SmallVector<Type, 1> inputTypes, outputTypes;
+  if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
     return failure();
 
   // TODO: consider merging results parsing into region parsing.
@@ -1730,8 +1744,7 @@ static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
 
   std::unique_ptr<Region> region = std::make_unique<Region>();
   if (parseNamedStructuredOpRegion<NamedStructuredOpType>(
-          parser, *region, inputTypes, outputBufferTypes, initTensorTypes,
-          outputTensorsTypes))
+          parser, *region, inputTypes, outputTypes))
     return failure();
   result.addRegion(std::move(region));
 
@@ -1750,12 +1763,8 @@ static void printCommonStructuredOpParts(OpAsmPrinter &p,
                                          NamedStructuredOpType op) {
   if (!op.inputs().empty())
     p << " ins(" << op.inputs() << " : " << op.inputs().getTypes() << ")";
-  if (!op.output_buffers().empty())
-    p << " outs(" << op.output_buffers() << " : "
-      << op.output_buffers().getTypes() << ")";
-  if (!op.init_tensors().empty())
-    p << " init(" << op.init_tensors() << " : " << op.init_tensors().getTypes()
-      << ") ";
+  if (!op.outputs().empty())
+    p << " outs(" << op.outputs() << " : " << op.outputs().getTypes() << ")";
 }
 
 template <typename NamedStructuredOpType>
@@ -1789,7 +1798,7 @@ struct EraseDeadLinalgOp : public RewritePattern {
     auto linalgOp = dyn_cast<LinalgOp>(op);
     if (!linalgOp)
       return failure();
-    for (Value v : linalgOp.getInputsAndOutputBuffers()) {
+    for (Value v : linalgOp.getShapedOperands()) {
       // Linalg "inputs" may be either tensor or memref type.
       // tensor<0xelt_type> is a convention that may not always mean
       // "0 iterations". Only erase in cases we see memref<...x0x...>.
@@ -1836,11 +1845,8 @@ struct FoldTensorCastOp : public RewritePattern {
       newOperands.push_back(
           canFoldIntoConsumerOp(tensorCastOp) ? tensorCastOp.source() : v);
     }
-    // Output buffers are memrefs, they don't fold.
-    newOperands.append(linalgOp.getOutputBuffers().begin(),
-                       linalgOp.getOutputBuffers().end());
     // Init tensors may fold, in which case the resultType must also change.
-    for (Value v : linalgOp.getInitTensors()) {
+    for (Value v : linalgOp.getOutputs()) {
       auto tensorCastOp = v.getDefiningOp<tensor::CastOp>();
       bool fold = canFoldIntoConsumerOp(tensorCastOp);
       newOperands.push_back(fold ? tensorCastOp.getOperand() : v);
@@ -1904,8 +1910,7 @@ struct DeduplicateInputs : public RewritePattern {
     for (auto v : llvm::enumerate(linalgOp.getInputs()))
       if (canonicalInputIndices[v.index()] == static_cast<int>(v.index()))
         newOperands.push_back(v.value());
-    llvm::append_range(newOperands, linalgOp.getOutputBuffers());
-    llvm::append_range(newOperands, linalgOp.getInitTensors());
+    llvm::append_range(newOperands, linalgOp.getOutputs());
     llvm::append_range(newOperands, linalgOp.getAssumedNonShapedOperands());
 
     // Clone the old op with new operands.
@@ -1929,11 +1934,8 @@ struct DeduplicateInputs : public RewritePattern {
     newLinalgOp.setNumInputs(canonicalInput.size());
 
     // linalg.indexed_generic payloads have additional arguments prepended to
-    // the block arg list. The number of such args is one per dimension of the
-    // iteration space.
-    int bbArgBaseOffset = 0;
-    if (isa<IndexedGenericOp>(op))
-      bbArgBaseOffset = newIndexingMaps[0].getNumInputs();
+    // the block arg list.
+    int bbArgBaseOffset = newLinalgOp.getNumPayloadInductionVariables();
 
     // Repair the payload entry block by RAUW'ing redundant arguments and
     // erasing them.

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
index b36d74bad3fb..a3ab6f45b26e 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp
@@ -21,21 +21,22 @@
 using namespace ::mlir;
 using namespace ::mlir::linalg;
 
-static Value maybeConvertToIndex(Location loc, Value val, OpBuilder &b) {
-  if (val.getType().isIndex())
-    return val;
-  return b.create<IndexCastOp>(loc, val, b.getIndexType());
-}
-
-static Value cloneMemref(Location loc, Value memref, OpBuilder &b) {
-  auto memrefType = memref.getType().cast<MemRefType>();
+static SmallVector<Value, 4> getDynOperands(Location loc, Value val,
+                                            OpBuilder &b) {
   SmallVector<Value, 4> dynOperands;
-  for (auto dim : llvm::enumerate(memrefType.getShape())) {
+  auto shapedType = val.getType().cast<ShapedType>();
+  for (auto dim : llvm::enumerate(shapedType.getShape())) {
     if (dim.value() == TensorType::kDynamicSize) {
-      dynOperands.push_back(b.create<DimOp>(loc, memref, dim.index()));
+      dynOperands.push_back(b.create<DimOp>(loc, val, dim.index()));
     }
   }
-  auto alloc = b.create<AllocOp>(loc, memrefType, dynOperands);
+  return dynOperands;
+}
+
+static Value cloneMemref(Location loc, Value memref, OpBuilder &b) {
+  auto memrefType = memref.getType().cast<MemRefType>();
+  auto alloc =
+      b.create<AllocOp>(loc, memrefType, getDynOperands(loc, memref, b));
   b.create<linalg::CopyOp>(loc, memref, alloc);
   return alloc;
 }
@@ -48,6 +49,7 @@ allocateBuffersForResults(Location loc, LinalgOp linalgOp,
   SmallVector<Range, 4> loopRanges;
 
   // Allocate a buffer for every tensor result.
+  assert(linalgOp.getNumOutputs() == linalgOp->getNumResults());
   for (auto en : llvm::enumerate(linalgOp->getResultTypes())) {
     size_t resultIndex = en.index();
     Type resultType = en.value();
@@ -60,46 +62,26 @@ allocateBuffersForResults(Location loc, LinalgOp linalgOp,
     }
     auto tensorShape = tensorType.getShape();
     auto memrefType = MemRefType::get(tensorShape, tensorType.getElementType());
+    Value resultTensor = adaptor.outputs()[resultIndex];
 
-    // Allocate buffers for init tensors that are assumed to fold onto the first
-    // results.
-    // TODO: update this assumption because the reality is more complex
-    // under linalg on tensor based transformations.
-    bool hasInitTensor = resultIndex < linalgOp.getNumInitTensors();
-    if (hasInitTensor) {
-      resultBuffers.push_back(
-          cloneMemref(loc, adaptor.init_tensors()[resultIndex], b));
+    // Clone output buffers whose value is actually used.
+    if (linalgOp.payloadUsesValueFromOutputOperandIndex(resultIndex)) {
+      resultBuffers.push_back(cloneMemref(loc, resultTensor, b));
       continue;
     }
 
+    if (auto alloc = resultTensor.getDefiningOp<AllocOp>()) {
+      resultBuffers.push_back(resultTensor);
+      continue;
+    }
     // Allocate buffers for statically-shaped results.
     if (memrefType.hasStaticShape()) {
       resultBuffers.push_back(b.create<AllocOp>(loc, memrefType));
       continue;
     }
 
-    // Perform a naive shape inference for the dynamically-shaped results.
-    // Extract the required element out of the vector.
-    SmallVector<Value, 4> dynOperands;
-    auto resultIndexingMap = linalgOp.getOutputIndexingMap(resultIndex);
-    for (auto shapeElement : llvm::enumerate(tensorType.getShape())) {
-      if (loopRanges.empty())
-        loopRanges = linalgOp.createLoopRanges(b, loc);
-      if (shapeElement.value() != ShapedType::kDynamicSize)
-        continue;
-      AffineExpr expr = resultIndexingMap.getResult(shapeElement.index());
-      switch (expr.getKind()) {
-      case AffineExprKind::DimId: {
-        int64_t loopIndex = expr.cast<AffineDimExpr>().getPosition();
-        Value size = maybeConvertToIndex(loc, loopRanges[loopIndex].size, b);
-        dynOperands.push_back(size);
-        break;
-      }
-      default:
-        return failure();
-      }
-    }
-    resultBuffers.push_back(b.create<AllocOp>(loc, memrefType, dynOperands));
+    resultBuffers.push_back(b.create<AllocOp>(
+        loc, memrefType, getDynOperands(loc, resultTensor, b)));
   }
   return success();
 }
@@ -119,8 +101,7 @@ finalizeBufferAllocationForGenericOp(ConversionPatternRewriter &rewriter,
       genericOp.getLoc(),
       /*resultTensorTypes=*/llvm::None,
       /*inputs=*/inputs,
-      /*outputBuffers=*/outputs,
-      /*initTensors=*/llvm::None, genericOp.indexing_maps(),
+      /*outputs=*/outputs, genericOp.indexing_maps(),
       genericOp.iterator_types(), genericOp.docAttr(),
       genericOp.library_callAttr(), genericOp.sparseAttr());
 
@@ -130,10 +111,6 @@ finalizeBufferAllocationForGenericOp(ConversionPatternRewriter &rewriter,
   Block *newBlock = rewriter.createBlock(&newRegion, newRegion.begin(),
                                          oldBlock->getArgumentTypes());
 
-  // Add the result arguments to the new block.
-  for (Value v : ValueRange(outputs).drop_front(genericOp.getNumInitTensors()))
-    newBlock->addArgument(v.getType().cast<MemRefType>().getElementType());
-
   // Clone the body of the old block to the new block.
   BlockAndValueMapping mapping;
   mapping.map(oldBlock->getArguments(), newBlock->getArguments());
@@ -159,12 +136,8 @@ static void finalizeBufferAllocation(ConversionPatternRewriter &rewriter,
   newOperands.append(outputs.begin(), outputs.end());
   auto otherOperands = linalgOp.getAssumedNonShapedOperands();
   newOperands.append(otherOperands.begin(), otherOperands.end());
-  LinalgOp res = cast<LinalgOp>(linalgOp.clone(rewriter, linalgOp.getLoc(),
-                                               /*resultTypes=*/ArrayRef<Type>{},
-                                               newOperands));
-  // Need to mutate the operands_segment_sizes in the resulting op.
-  res.setNumOutputBuffers(outputs.size());
-  res.setNumInitTensors(0);
+  linalgOp.clone(rewriter, linalgOp.getLoc(),
+                 /*resultTypes=*/ArrayRef<Type>{}, newOperands);
   // Replace the results of the old op with the new output buffers.
   rewriter.replaceOp(linalgOp, outputs);
 }
@@ -174,6 +147,24 @@ static void finalizeBufferAllocation(ConversionPatternRewriter &rewriter,
 //===----------------------------------------------------------------------===//
 
 namespace {
+
+/// Generic conversion pattern that matches any LinalgOp. This avoids template
+/// instantiating one pattern for each LinalgOp.
+class BufferizeInitTensorOp : public OpConversionPattern<InitTensorOp> {
+public:
+  using OpConversionPattern<InitTensorOp>::OpConversionPattern;
+
+  LogicalResult
+  matchAndRewrite(InitTensorOp op, ArrayRef<Value> operands,
+                  ConversionPatternRewriter &rewriter) const final {
+    linalg::InitTensorOpAdaptor adaptor(operands, op->getAttrDictionary());
+    rewriter.replaceOpWithNewOp<AllocOp>(
+        op, getTypeConverter()->convertType(op.getType()).cast<MemRefType>(),
+        adaptor.sizes());
+    return success();
+  }
+};
+
 /// Generic conversion pattern that matches any LinalgOp. This avoids template
 /// instantiating one pattern for each LinalgOp.
 class BufferizeAnyLinalgOp : public ConversionPattern {
@@ -190,13 +181,12 @@ class BufferizeAnyLinalgOp : public ConversionPattern {
       return failure();
 
     // We abuse the GenericOpAdaptor here.
-    // TODO: Manually create an Adaptor that captures inputs, output_buffers and
-    // init_tensors for all linalg::LinalgOp interface ops.
+    // TODO: Manually create an Adaptor that captures inputs and outputs for all
+    // linalg::LinalgOp interface ops.
     linalg::GenericOpAdaptor adaptor(operands, op->getAttrDictionary());
 
     Location loc = linalgOp.getLoc();
-    SmallVector<Value, 2> newOutputBuffers(adaptor.output_buffers().begin(),
-                                           adaptor.output_buffers().end());
+    SmallVector<Value, 2> newOutputBuffers;
 
     if (failed(allocateBuffersForResults(loc, linalgOp, adaptor,
                                          newOutputBuffers, rewriter))) {
@@ -327,7 +317,7 @@ struct LinalgBufferizePass : public LinalgBufferizeBase<LinalgBufferizePass> {
 
     // Mark all Standard operations legal.
     target.addLegalDialect<AffineDialect, StandardOpsDialect>();
-    target.addIllegalOp<SubTensorOp, SubTensorInsertOp>();
+    target.addIllegalOp<InitTensorOp, SubTensorOp, SubTensorInsertOp>();
 
     // Mark all Linalg operations illegal as long as they work on tensors.
     auto isLegalOperation = [&](Operation *op) {
@@ -354,10 +344,11 @@ void mlir::linalg::populateLinalgBufferizePatterns(
     OwningRewritePatternList &patterns) {
   patterns.insert<BufferizeAnyLinalgOp>(typeConverter);
   // TODO: Drop this once tensor constants work in standard.
+  // clang-format off
   patterns.insert<
-      // clang-format off
+      BufferizeInitTensorOp,
       SubTensorOpConverter,
       SubTensorInsertOpConverter
-      // clang-format on
-      >(typeConverter, context);
+    >(typeConverter, context);
+  // clang-format on
 }

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index bf488f827f89..8d09d58b9d7a 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -189,7 +189,7 @@ struct FoldUnitDimLoops : public OpRewritePattern<GenericOpTy> {
     if (!invertedMap)
       return failure();
     SmallVector<int64_t, 4> dims;
-    for (ShapedType shapedType : op.getInputOutputShapedTypes())
+    for (ShapedType shapedType : op.getShapedOperandTypes())
       dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
     DenseSet<unsigned> unitDims;
     ArrayAttr iteratorTypes = op.iterator_types();
@@ -295,7 +295,7 @@ struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
   LogicalResult matchAndRewrite(GenericOpTy op,
                                 PatternRewriter &rewriter) const override {
     // TODO: support init_tensors and reductions.
-    if (!op.hasTensorSemantics() || !op.init_tensors().empty())
+    if (!op.hasTensorSemantics() || op.getNumInitTensors() != 0)
       return failure();
 
     MLIRContext *context = rewriter.getContext();
@@ -306,7 +306,7 @@ struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
     SmallVector<ShapedType, 4> newInputOutputTypes;
     bool doCanonicalization = false;
     for (auto it :
-         llvm::zip(op.getIndexingMaps(), op.getInputOutputShapedTypes())) {
+         llvm::zip(op.getIndexingMaps(), op.getShapedOperandTypes())) {
       auto replacementInfo = replaceUnitExtents(
           std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(),
           context);
@@ -342,19 +342,16 @@ struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
     };
 
     SmallVector<Value, 4> newInputs = insertReshapes(op.inputs());
-    SmallVector<Value, 4> newOutputBuffers =
-        insertReshapes(op.output_buffers());
-    SmallVector<Value, 4> newInitTensors = insertReshapes(op.init_tensors());
+    SmallVector<Value, 4> newOutputs = insertReshapes(op.outputs());
 
-    // If any result type change, insert a reshape to convert from the original
+    // If any result type changes, insert a reshape to convert from the original
     // type to the new type.
     SmallVector<Type, 4> resultTypes;
     resultTypes.reserve(op.getNumResults());
     for (unsigned i : llvm::seq<unsigned>(0, op.getNumResults()))
       resultTypes.push_back(newInputOutputTypes[i + op.getNumInputs()]);
     GenericOpTy replacementOp = rewriter.create<GenericOpTy>(
-        loc, resultTypes, newInputs, newOutputBuffers, newInitTensors,
-        newIndexingMaps,
+        loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
         llvm::to_vector<4>(
             op.iterator_types().template getAsValueRange<StringAttr>()));
     rewriter.inlineRegionBefore(op.region(), replacementOp.region(),
@@ -364,7 +361,7 @@ struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
     // the original shape.
     SmallVector<Value, 4> resultReplacements;
     for (auto result : llvm::enumerate(replacementOp.getResults())) {
-      unsigned index = result.index() + replacementOp.getNumOperands();
+      unsigned index = result.index() + replacementOp.getNumInputs();
       RankedTensorType origResultType = op.getResult(result.index())
                                             .getType()
                                             .template cast<RankedTensorType>();

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseToLinalg.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseToLinalg.cpp
index 8ee1b389dee8..ada9f8c02b89 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseToLinalg.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseToLinalg.cpp
@@ -25,6 +25,61 @@ static bool isElementwiseMappableOpOnRankedTensors(Operation *op) {
                       [](Type type) { return type.isa<RankedTensorType>(); });
 }
 
+/// Given `op` assumed `isElementwiseMappableOpOnRankedTensors`, iterate over
+/// the result types and return a list of values such that, for each result type
+/// `t` and value `v` at the same index `idx`:
+///   1. `v.getType() == t`
+///   2. If an operand of `op` has type `t`, let `operand_first` be the first
+///      such operand. Then`v == operand_first`.
+///   3. Otherwise, v is a newly created `linalg::InitTensorOp` with:
+///        a. Static and dynamic dims extracted from the first operand of `op`.
+///        b. Elemental type equal to the elemental type of `t`.
+///
+/// This is sufficient because ElementwiseMappable guarantees that "The static
+/// types of all vector (resp. tensor) operands and results must have the same
+/// shape".
+static SmallVector<Value, 4>
+getOrCreateOperandsMatchingResultTypes(OpBuilder &b, Operation *op) {
+  assert(isElementwiseMappableOpOnRankedTensors(op));
+  Location loc = op->getLoc();
+  ValueRange operands = op->getOperands();
+  TypeRange rankedTensorTypes = op->getResultTypes();
+  SmallVector<Value, 4> res;
+  res.reserve(rankedTensorTypes.size());
+  for (Type t : rankedTensorTypes) {
+    // Try to find an operand with type matching the result tensor.
+    bool found = false;
+    for (Value v : operands) {
+      if (v.getType() == t) {
+        found = true;
+        res.push_back(v);
+        break;
+      }
+    }
+    if (found)
+      continue;
+
+    // Extract static / dynamic shape mix from the first operand.
+    Value firstOperand = operands.front();
+    auto rankedTensorType = t.cast<RankedTensorType>();
+    SmallVector<Value, 8> dynamicShape;
+    SmallVector<int64_t, 8> staticShape;
+    dynamicShape.reserve(rankedTensorType.getRank());
+    staticShape.reserve(rankedTensorType.getRank());
+    unsigned idx = 0;
+    for (auto shape : rankedTensorType.getShape()) {
+      staticShape.push_back(shape);
+      if (rankedTensorType.isDynamicDim(idx))
+        dynamicShape.push_back(b.create<DimOp>(loc, firstOperand, idx));
+      ++idx;
+    }
+    // Create init tensor.
+    res.push_back(b.create<linalg::InitTensorOp>(
+        loc, dynamicShape, staticShape, rankedTensorType.getElementType()));
+  }
+  return res;
+}
+
 namespace {
 struct ConvertAnyElementwiseMappableOpOnRankedTensors : public RewritePattern {
   ConvertAnyElementwiseMappableOpOnRankedTensors()
@@ -41,18 +96,19 @@ struct ConvertAnyElementwiseMappableOpOnRankedTensors : public RewritePattern {
         rewriter.getMultiDimIdentityMap(rank));
     SmallVector<StringRef, 6> iteratorTypes(rank,
                                             getParallelIteratorTypeName());
+    auto outputs = getOrCreateOperandsMatchingResultTypes(rewriter, op);
     rewriter.replaceOpWithNewOp<linalg::GenericOp>(
         op, /*resultTensorTypes=*/op->getResultTypes(),
         /*inputs=*/op->getOperands(),
-        /*outputBuffers=*/ValueRange(),
-        /*initTensors=*/ValueRange(),
+        /*outputs=*/outputs,
         /*indexingMaps=*/indexingMaps,
         /*iteratorTypes=*/iteratorTypes,
         /*bodyBuilder=*/
         [&](OpBuilder &builder, Location loc, ValueRange regionArgs) {
           OperationState state(loc, op->getName());
           state.addAttributes(op->getAttrs());
-          state.addOperands(regionArgs);
+          // Only take the input operands in the cloned elementwise op.
+          state.addOperands(regionArgs.take_front(op->getNumOperands()));
           auto resultTypes = llvm::to_vector<6>(
               llvm::map_range(op->getResultTypes(), [](Type type) {
                 return type.cast<TensorType>().getElementType();

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
index d9ea7d8ccb29..b525108d22ab 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
@@ -169,8 +169,7 @@ getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
   auto maps = op.indexing_maps();
   // Iterate over the inputs and outputs in order.
   // Extract the subranges from the linearized ranges.
-  SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
-  for (auto en : llvm::enumerate(ios)) {
+  for (auto en : llvm::enumerate(op.getShapedOperands())) {
     // The method `getRangeFromOperandShape` requires using SubViewOp or
     // SubTensorOps. If the value isnt defined from there continue.
     // todo: The method should be adapted to get the values from
@@ -381,6 +380,8 @@ static bool isSameSubView(Value a, Value b) {
 static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
 findFusableProducer(LinalgOp consumer, unsigned consumerIdx,
                     const LinalgDependenceGraph &dependenceGraph) {
+  assert(consumer.hasBufferSemantics() && "revisit usage of shaped operand");
+
   // Only consider RAW and WAW atm.
   for (auto depType : {
            LinalgDependenceGraph::DependenceType::RAW,
@@ -390,26 +391,25 @@ findFusableProducer(LinalgOp consumer, unsigned consumerIdx,
              dependenceGraph.getDependencesInto(consumer, depType),
              [consumerIdx](
                  LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
-               return elem.indexingOpView.operandIndex == consumerIdx;
+               return elem.indexingOpView->getOperandNumber() == consumerIdx;
              })) {
-      auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
 
       // Check that the dependence is indeed on the input `consumerIdx` view.
-      auto consumedView =
-          consumer.getBuffer(dependence.indexingOpView.operandIndex);
-      if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView))
+      Value consumedView = dependence.indexingOpView->get();
+      if (!isSameSubView(consumer.getShapedOperand(consumerIdx), consumedView))
         continue;
 
       // Consumer consumes this view, `isStructurallyFusableProducer` also
       // checks whether it is a strict subview of the producer view.
-      auto producedView =
-          producer.getBuffer(dependence.dependentOpView.operandIndex);
+      auto producer = cast<LinalgOp>(dependence.dependentOpView->getOwner());
+      Value producedView = dependence.dependentOpView->get();
       LLVM_DEBUG(llvm::dbgs()
                  << "\n"
                  << LinalgDependenceGraph::getDependenceTypeStr(depType)
-                 << "producer: " << *producer.getOperation()
-                 << " view: " << producedView << " output index: "
-                 << dependence.dependentOpView.operandIndex -
+                 << "producer: " << *dependence.dependentOpView->getOwner()
+                 << " view: " << dependence.dependentOpView->get()
+                 << " output index: "
+                 << dependence.dependentOpView->getOperandNumber() -
                         producer.getNumInputs()
                  << "\n");
       (void)producedView;
@@ -433,13 +433,15 @@ mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, LinalgOp consumer,
   if (!fusableDependence)
     return {};
 
-  LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
+  LinalgOp producerOp =
+      cast<LinalgOp>(fusableDependence->dependentOpView->getOwner());
   // If producer is already in the same block as consumer, we are done.
   if (consumer->getBlock() == producerOp->getBlock())
     return {};
 
-  unsigned producerIdx = fusableDependence->dependentOpView.operandIndex -
-                         producerOp.getNumInputs();
+  unsigned producerIdx =
+      fusableDependence->dependentOpView->getOperandNumber() -
+      producerOp.getNumInputs();
   Value consumerView = consumer.getShapedOperand(consumerIdx);
 
   // Must be a subview or a slice to guarantee there are loops we can fuse
@@ -548,12 +550,12 @@ static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
 ///       inverse(producerIndexMap).compose(consumerIndexMap)
 static Optional<AffineMap> getConsumerLoopToProducerLoopMap(
     LinalgDependenceGraph::LinalgDependenceGraphElem dependence) {
-  auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
+  auto producer = cast<LinalgOp>(dependence.dependentOpView->getOwner());
   AffineMap producerIndexingMap =
-      producer.getIndexingMap(dependence.dependentOpView.operandIndex);
-  auto consumer = cast<LinalgOp>(dependence.indexingOpView.op);
+      producer.getIndexingMap(dependence.dependentOpView->getOperandNumber());
+  auto consumer = cast<LinalgOp>(dependence.indexingOpView->getOwner());
   AffineMap consumerIndexingMap =
-      consumer.getIndexingMap(dependence.indexingOpView.operandIndex);
+      consumer.getIndexingMap(dependence.indexingOpView->getOperandNumber());
 
   AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
       producer.iterator_types().getValue(), producerIndexingMap);
@@ -733,14 +735,14 @@ FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
   DenseMap<Operation *, AffineMap> fusedProducerIndexingMap;
   for (LinalgOp op : reverse(ops)) {
     for (auto operandIndex :
-         llvm::seq<unsigned>(0, op.getNumInputsAndOutputBuffers())) {
+         llvm::seq<unsigned>(0, op.getNumShapedOperands())) {
       Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
           fusableDependence =
               findFusableProducer(op, operandIndex, dependenceGraph);
       if (!fusableDependence)
         continue;
       LinalgOp producerOp =
-          cast<LinalgOp>(fusableDependence->dependentOpView.op);
+          cast<LinalgOp>(fusableDependence->dependentOpView->getOwner());
       // Do not fuse dependences that are to operations not in the same basic
       // block. This avoid moving fused operations across loops that might
       // themselves carry dependency making the fusion illegal.
@@ -750,7 +752,8 @@ FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
       }
       // Make sure that the indexing map of the view used for fusion in the
       // producer is a projected permutation.
-      unsigned producerIdx = fusableDependence->dependentOpView.operandIndex;
+      unsigned producerIdx =
+          fusableDependence->dependentOpView->getOperandNumber();
       AffineMap producerMap = producerOp.getIndexingMap(producerIdx);
       if (!producerMap.isProjectedPermutation()) {
         op.emitRemark(
@@ -760,7 +763,8 @@ FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
         return FusableOpDependencesTy{};
       }
 
-      unsigned consumerIdx = fusableDependence->indexingOpView.operandIndex;
+      unsigned consumerIdx =
+          fusableDependence->indexingOpView->getOperandNumber();
       AffineMap consumerMap = op.getIndexingMap(consumerIdx);
       if (!consumerMap.isProjectedPermutation()) {
         op.emitRemark(

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp b/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
index 22e03c1e2f92..b1ea07309b4f 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/FusionOnTensors.cpp
@@ -128,7 +128,9 @@ static void generateFusedTensorOpRegion(PatternRewriter &rewriter,
   for (auto consumerArg : llvm::enumerate(consumerBlock.getArguments())) {
     if (consumerArg.index() == consumerIdx + numConsumerIndices) {
       // Map the arguments for the args from the producer.
-      for (auto producerArg : llvm::enumerate(producerBlock.getArguments())) {
+      for (auto producerArg :
+           llvm::enumerate(producerBlock.getArguments().take_front(
+               producer.getNumInputs() + numProducerIndices))) {
         // If producer is an indexed_generic op, map the indices from consumer
         // loop to producer loop (because the fusedOp is built based on
         // consumer's perspective).
@@ -213,7 +215,6 @@ fuseTensorOpsImpl(LinalgOp producer, LinalgOp consumer, unsigned consumerIdx,
                         consumerIndexMaps.end());
 
   // Generate the fused op.
-  // Tensor-level fusion is only on ops without initTensors and outputBuffers.
   LinalgOp fusedOp;
   if (isa<GenericOp>(producer.getOperation()) &&
       isa<GenericOp>(consumer.getOperation())) {
@@ -221,8 +222,8 @@ fuseTensorOpsImpl(LinalgOp producer, LinalgOp consumer, unsigned consumerIdx,
         rewriter
             .create<GenericOp>(consumer.getLoc(), consumer->getResultTypes(),
                                /*inputs=*/fusedOperands,
-                               /*outputBuffers=*/ValueRange{},
-                               /*initTensors=*/ValueRange{},
+                               // TODO: handle outputs.
+                               consumer.getOutputs(),
                                rewriter.getArrayAttr(fusedIndexMaps),
                                consumer.iterator_types(),
                                /*doc=*/nullptr,
@@ -230,18 +231,18 @@ fuseTensorOpsImpl(LinalgOp producer, LinalgOp consumer, unsigned consumerIdx,
                                /*sparse=*/nullptr)
             .getOperation();
   } else {
-    fusedOp = rewriter
-                  .create<IndexedGenericOp>(
-                      consumer.getLoc(), consumer->getResultTypes(),
-                      /*inputs=*/fusedOperands,
-                      /*outputBuffers=*/ValueRange{},
-                      /*initTensors=*/ValueRange{},
-                      rewriter.getArrayAttr(fusedIndexMaps),
-                      consumer.iterator_types(),
-                      /*doc=*/nullptr,
-                      /*library_call=*/nullptr,
-                      /*sparse=*/nullptr)
-                  .getOperation();
+    fusedOp =
+        rewriter
+            .create<IndexedGenericOp>(
+                consumer.getLoc(), consumer->getResultTypes(),
+                /*inputs=*/fusedOperands,
+                // TODO: handle outputs.
+                consumer.getOutputs(), rewriter.getArrayAttr(fusedIndexMaps),
+                consumer.iterator_types(),
+                /*doc=*/nullptr,
+                /*library_call=*/nullptr,
+                /*sparse=*/nullptr)
+            .getOperation();
   }
 
   // Construct an AffineMap from consumer loops to producer loops.
@@ -430,6 +431,42 @@ static bool isFusableWithReshapeByDimExpansion(LinalgOp linalgOp,
          });
 }
 
+// Get the output tensor to use for the expanded operation. Creates an
+// `linalg.init_tensor` operation to materialize the tensor that carries the
+// shape information.
+static Value getOutputValueForExpansion(
+    OpBuilder &builder, Location loc, AffineMap outputIndexingMap, Value result,
+    ArrayRef<SmallVector<int64_t, 4>> origDimToExpandedShapeMap) {
+  SmallVector<Value, 4> dynamicDims;
+  SmallVector<int64_t, 4> staticDims;
+  ShapedType resultType = result.getType().cast<ShapedType>();
+  ArrayRef<int64_t> origShape = resultType.getShape();
+  for (AffineExpr expr : outputIndexingMap.getResults()) {
+    unsigned origDimPos = expr.cast<AffineDimExpr>().getPosition();
+    ArrayRef<int64_t> expandedShape(origDimToExpandedShapeMap[origDimPos]);
+    bool foundDynamic = false;
+    int64_t linearizedShape = 1;
+    for (int64_t extent : expandedShape) {
+      if (ShapedType::isDynamic(extent)) {
+        assert(!foundDynamic &&
+               "Expanded dimensions of reshape can have only one dynamic dim");
+        staticDims.push_back(ShapedType::kDynamicSize);
+        foundDynamic = true;
+        continue;
+      }
+      staticDims.push_back(extent);
+      linearizedShape *= extent;
+    }
+    if (ShapedType::isDynamic(origShape[origDimPos])) {
+      Value origDim = builder.create<DimOp>(loc, result, origDimPos);
+      dynamicDims.push_back(builder.create<UnsignedDivIOp>(
+          loc, origDim, builder.create<ConstantIndexOp>(loc, linearizedShape)));
+    }
+  }
+  return builder.create<linalg::InitTensorOp>(loc, dynamicDims, staticDims,
+                                              resultType.getElementType());
+}
+
 /// Implements the fusion of a tensor_reshape op and a generic/indexed_generic
 /// op as explained in `isFusableWithReshapeByExpansion`. Assumes that those
 /// conditions have been satisfied.
@@ -548,7 +585,7 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, TensorReshapeOp reshapeOp,
       expandedOpOperands.push_back(reshapeOp.src());
       continue;
     }
-    AffineMap indexingMap = linalgOp.getIndexingMap(operand.index());
+    AffineMap indexingMap = linalgOp.getInputIndexingMap(operand.index());
     SmallVector<ReassociationIndices, 4> reassociation;
     SmallVector<int64_t, 4> expandedOperandShape;
     getReshapeInfo(indexingMap, reassociation, expandedOperandShape);
@@ -563,17 +600,17 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, TensorReshapeOp reshapeOp,
       expandedOpOperands.push_back(operand.value());
     }
   }
-  SmallVector<Type, 1> resultTypes;
+
+  Location loc = linalgOp.getLoc();
+  SmallVector<Value, 1> outputs;
   SmallVector<SmallVector<ReassociationIndices, 4>, 1> resultReassociation;
-  for (auto result : llvm::enumerate(linalgOp->getResults())) {
-    AffineMap indexingMap =
-        linalgOp.getIndexingMap(linalgOp.getNumInputs() + result.index());
+  for (auto result : llvm::enumerate(linalgOp.getOutputs())) {
+    AffineMap indexingMap = linalgOp.getOutputIndexingMap(result.index());
     SmallVector<ReassociationIndices, 4> reassociation;
     SmallVector<int64_t, 4> expandedResultShape;
     getReshapeInfo(indexingMap, reassociation, expandedResultShape);
-    resultTypes.push_back(RankedTensorType::get(
-        expandedResultShape,
-        result.value().getType().cast<ShapedType>().getElementType()));
+    outputs.push_back(getOutputValueForExpansion(
+        rewriter, loc, indexingMap, result.value(), expandedDimsShape));
     resultReassociation.emplace_back(std::move(reassociation));
   }
 
@@ -581,11 +618,11 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, TensorReshapeOp reshapeOp,
   SmallVector<StringRef, 4> iteratorTypes(remapping.back(),
                                           getParallelIteratorTypeName());
 
+  TypeRange resultTypes = ValueRange(outputs).getTypes();
   LinalgOp fusedOp = createLinalgOpOfSameType(
       linalgOp, rewriter, linalgOp.getLoc(), resultTypes,
-      /*inputs=*/expandedOpOperands,
-      /*outputBuffers=*/ValueRange{},
-      /*initTensors=*/ValueRange{}, expandedOpIndexingMaps, iteratorTypes);
+      /*inputs=*/expandedOpOperands, outputs, expandedOpIndexingMaps,
+      iteratorTypes);
   Region &fusedRegion = fusedOp->getRegion(0);
   Region &originalRegion = linalgOp->getRegion(0);
 
@@ -656,6 +693,47 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, TensorReshapeOp reshapeOp,
   return resultVals;
 }
 
+static Value
+getOutputValueForLinearization(OpBuilder &builder, Location loc,
+                               Value origOutput,
+                               ArrayRef<AffineMap> reassociationMaps) {
+  SmallVector<Value, 4> dynamicDims;
+  SmallVector<int64_t, 4> staticDims;
+  auto shapedType = origOutput.getType().cast<ShapedType>();
+  ArrayRef<int64_t> origShape = shapedType.getShape();
+  for (auto map : reassociationMaps) {
+    Optional<Value> dynamicDim;
+    int64_t staticLinearizedShape = 1;
+    for (AffineDimExpr expr :
+         llvm::map_range(map.getResults(), [](AffineExpr e) {
+           return e.cast<AffineDimExpr>();
+         })) {
+      unsigned pos = expr.getPosition();
+      if (ShapedType::isDynamic(origShape[pos])) {
+        Value dim = builder.create<DimOp>(loc, origOutput, pos);
+        if (dynamicDim) {
+          dynamicDim = builder.create<MulIOp>(loc, dynamicDim.getValue(), dim);
+        } else {
+          dynamicDim = dim;
+        }
+      } else {
+        staticLinearizedShape *= origShape[pos];
+      }
+    }
+    if (dynamicDim) {
+      dynamicDim = builder.create<MulIOp>(
+          loc, dynamicDim.getValue(),
+          builder.create<ConstantIndexOp>(loc, staticLinearizedShape));
+      dynamicDims.push_back(dynamicDim.getValue());
+      staticDims.push_back(ShapedType::kDynamicSize);
+    } else {
+      staticDims.push_back(staticLinearizedShape);
+    }
+  }
+  return builder.create<InitTensorOp>(loc, dynamicDims, staticDims,
+                                      shapedType.getElementType());
+}
+
 namespace {
 
 /// Pattern to fold tensor_reshape op with its consumer by using the source of
@@ -704,6 +782,8 @@ struct FoldProducerReshapeOpByLinearization
       // Compute the fused operands list,
       SmallVector<Value, 2> fusedOperands(linalgOp.getInputs());
       fusedOperands[operand.index()] = reshapeOp.src();
+      fusedOperands.append(linalgOp.getOutputs().begin(),
+                           linalgOp.getOutputs().end());
 
       // Compute indexing_maps for the fused operation. The indexing_maps for
       // the operands of the consumers that arent fused are the same.
@@ -736,7 +816,7 @@ struct FoldProducerReshapeOpByLinearization
         rewriter.eraseOp(reshapeOp);
       return success();
     }
-    return op.emitRemark("no fusion candidates found");
+    return failure();
   }
 };
 
@@ -816,12 +896,15 @@ struct FoldConsumerReshapeOpByLinearization
     if (!inversePermutation(concatAffineMaps(fusedIndexMaps)))
       return reshapeOp.emitRemark("fused op loop bound computation failed");
 
+    Location loc = producer.getLoc();
+    Value output =
+        getOutputValueForLinearization(rewriter, loc, producer.getOutputs()[0],
+                                       reshapeOp.getReassociationMaps());
     LinalgOp fusedOp = createLinalgOpOfSameType(
-        producer, rewriter, rewriter.getUnknownLoc(), reshapeOp.getResultType(),
+        producer, rewriter, loc, reshapeOp.getResultType(),
         /*inputs=*/producer.getInputs(),
-        /*outputBuffers=*/ValueRange{},
-        /*initTensors=*/ValueRange{}, // no init tensors for now.
-        rewriter.getAffineMapArrayAttr(fusedIndexMaps),
+        // TODO: handle outputs.
+        /*outputs=*/output, rewriter.getAffineMapArrayAttr(fusedIndexMaps),
         producer.iterator_types(),
         /*doc=*/nullptr,
         /*library_call=*/nullptr,
@@ -902,8 +985,7 @@ struct FoldSplatConstants : public OpRewritePattern<LinalgOpTy> {
           linalgOp, rewriter, rewriter.getUnknownLoc(),
           linalgOp->getResultTypes(),
           /*inputs=*/fusedOperands,
-          /*outputBuffers=*/ValueRange{},
-          /*initTensors=*/ValueRange{}, // no init tensors for now.
+          /*outputs=*/linalgOp.getOutputs(),
           rewriter.getAffineMapArrayAttr(fusedIndexMaps),
           linalgOp.iterator_types(),
           /*doc=*/nullptr,
@@ -915,7 +997,7 @@ struct FoldSplatConstants : public OpRewritePattern<LinalgOpTy> {
       Region &linalgOpRegion = linalgOp->getRegion(0);
       Block &entryBlock = *linalgOpRegion.begin();
       unsigned argIndex = entryBlock.getNumArguments() -
-                          linalgOp.getNumInputs() + operand.index();
+                          linalgOp.getNumShapedOperands() + operand.index();
       BlockAndValueMapping mapping;
       mapping.map(entryBlock.getArgument(argIndex), scalarConstant);
       Region &fusedRegion = fusedOp->getRegion(0);

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Generalization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Generalization.cpp
index 3496a7796988..454bbbe3578a 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Generalization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Generalization.cpp
@@ -45,8 +45,8 @@ static linalg::GenericOp createGenericOpFromNamedOp(linalg::LinalgOp namedOp,
   SmallVector<Type, 4> types(resultTypes.begin(), resultTypes.end());
 
   return builder.create<linalg::GenericOp>(
-      namedOp.getLoc(), types, namedOp.getInputs(), namedOp.getOutputBuffers(),
-      namedOp.getInitTensors(), indexingMaps, iterators,
+      namedOp.getLoc(), types, namedOp.getInputs(), namedOp.getOutputs(),
+      indexingMaps, iterators,
       [&regionBuilder](OpBuilder &bodyBuilder, Location loc, ValueRange) {
         edsc::ScopedContext scope(bodyBuilder, loc);
         regionBuilder(*bodyBuilder.getBlock());
@@ -153,8 +153,8 @@ linalg::GenericOp GeneralizeConvOp::createGenericOp(linalg::ConvOp convOp,
       llvm::to_vector<4>(convOp.iterator_types().getAsValueRange<StringAttr>());
   return builder.create<linalg::GenericOp>(
       convOp.getLoc(), /*resultTensorTypes=*/ArrayRef<Type>(),
-      convOp.getInputBuffers(), convOp.getOutputBuffers(),
-      /*initTensors=*/ValueRange(), indexingMaps, iterators,
+      convOp.getInputBuffers(), convOp.getOutputBuffers(), indexingMaps,
+      iterators,
       [](OpBuilder &bodyBuilder, Location bodyLoc, ValueRange bodyArgs) {
         Value mul =
             bodyBuilder.create<MulFOp>(bodyLoc, bodyArgs[0], bodyArgs[1]);

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Interchange.cpp b/mlir/lib/Dialect/Linalg/Transforms/Interchange.cpp
index a7f0660281b5..cac0ae0d081c 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Interchange.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Interchange.cpp
@@ -64,7 +64,7 @@ LinalgOp mlir::linalg::interchange(LinalgOp op,
   assert(permutationMap && "expected permutation to be invertible");
   SmallVector<Attribute, 4> newIndexingMaps;
   auto indexingMaps = op.indexing_maps().getValue();
-  for (unsigned i = 0, e = op.getNumInputsAndOutputs(); i != e; ++i) {
+  for (unsigned i = 0, e = op.getNumShapedOperands(); i != e; ++i) {
     AffineMap m = indexingMaps[i].cast<AffineMapAttr>().getValue();
     if (!permutationMap.isEmpty())
       m = m.compose(permutationMap);

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp b/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
index 073673bc33f8..329cc88bd2ae 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Promotion.cpp
@@ -172,7 +172,8 @@ LinalgOpInstancePromotionOptions::LinalgOpInstancePromotionOptions(
     LinalgOp linalgOp, const LinalgPromotionOptions &options)
     : subViews(), dynamicBuffers(options.dynamicBuffers),
       alignment(options.alignment) {
-  unsigned nBuffers = linalgOp.getNumInputsAndOutputBuffers();
+  assert(linalgOp.hasBufferSemantics() && "revisit usage of shaped operand");
+  unsigned nBuffers = linalgOp.getNumShapedOperands();
   auto vUseFullTileBuffers =
       options.useFullTileBuffers.getValueOr(llvm::SmallBitVector());
   vUseFullTileBuffers.resize(nBuffers, options.useFullTileBuffersDefault);
@@ -180,7 +181,7 @@ LinalgOpInstancePromotionOptions::LinalgOpInstancePromotionOptions(
   for (unsigned idx = 0; idx != nBuffers; ++idx) {
     if (options.operandsToPromote && !options.operandsToPromote->count(idx))
       continue;
-    auto *op = linalgOp.getBuffer(idx).getDefiningOp();
+    auto *op = linalgOp.getShapedOperand(idx).getDefiningOp();
     if (auto sv = dyn_cast_or_null<SubViewOp>(op)) {
       subViews[idx] = sv;
       useFullTileBuffers[sv] = vUseFullTileBuffers[idx];
@@ -326,10 +327,10 @@ promoteSubViews(OpBuilder &b, LinalgOp op,
   // operands are not views. This is to support cases such as FillOp taking
   // extra scalars etc.  Keep a reference to output buffers;
   SmallVector<Value, 8> opViews;
-  opViews.reserve(op.getNumInputsAndOutputs());
+  opViews.reserve(op.getNumShapedOperands());
   SmallVector<std::pair<Value, Value>, 8> writebackViews;
   writebackViews.reserve(promotedBuffersAndViews->size());
-  for (auto view : llvm::enumerate(op.getInputsAndOutputBuffers())) {
+  for (auto view : llvm::enumerate(op.getShapedOperands())) {
     if (options.subViews.count(view.index()) != 0) {
       if (options.useFullTileBuffers[view.value()])
         opViews.push_back(
@@ -371,7 +372,7 @@ mlir::linalg::promoteSubviewsPrecondition(Operation *op,
   if (!linOp || !linOp.hasBufferSemantics())
     return failure();
   // Check that at least one of the requested operands is indeed a subview.
-  for (auto en : llvm::enumerate(linOp.getInputsAndOutputBuffers())) {
+  for (auto en : llvm::enumerate(linOp.getShapedOperands())) {
     auto sv = isa_and_nonnull<SubViewOp>(en.value().getDefiningOp());
     if (sv) {
       if (!options.operandsToPromote.hasValue() ||

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp b/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
index fed2eedd41a4..eb940d0f769b 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
@@ -334,7 +334,7 @@ struct CodeGen {
 /// Helper method to inspect sparse annotations in the linalg operation.
 /// Fills the per-dimension sparsity information for all tensors.
 static void findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
-  unsigned numTensors = op.getNumInputsAndOutputs();
+  unsigned numTensors = op.getNumShapedOperands();
   ArrayAttr sparseAttr = op.sparseAttr();
   for (unsigned t = 0; t < numTensors; t++) {
     auto map = op.getIndexingMap(t);
@@ -467,7 +467,7 @@ static unsigned buildLattices(Merger &merger, linalg::GenericOp op,
     // is set to a synthetic tensor with undefined indices only.
     unsigned s = merger.addSet();
     unsigned t = kind == Kind::kTensor ? merger.exp(exp).e0
-                                       : op.getNumInputsAndOutputs();
+                                       : op.getNumShapedOperands() - 1;
     merger.set(s).push_back(merger.addLat(t, idx, exp));
     return s;
   }
@@ -504,7 +504,7 @@ static Type genIntType(PatternRewriter &rewriter, linalg::SparseIntType tp) {
 static void genBuffers(Merger &merger, CodeGen &codegen,
                        PatternRewriter &rewriter, linalg::GenericOp op) {
   Location loc = op.getLoc();
-  unsigned numTensors = op.getNumInputsAndOutputs();
+  unsigned numTensors = op.getNumShapedOperands();
   unsigned numInputs = op.getNumInputs();
   assert(numTensors == numInputs + 1);
 
@@ -544,7 +544,7 @@ static void genBuffers(Merger &merger, CodeGen &codegen,
           up = codegen.sizes[i];
           assert(up); // TODO: what else?
         } else {
-          Value arg = t < numInputs ? op.getInput(t) : op.getInitTensor(0);
+          Value arg = t < numInputs ? op.getInput(t) : op.getInitTensors()[0];
           up = rewriter.create<DimOp>(loc, arg, d);
         }
         args.push_back(up);
@@ -597,7 +597,7 @@ static void genTensorStore(Merger &merger, CodeGen &codegen,
                            PatternRewriter &rewriter, linalg::GenericOp op,
                            unsigned tensor, Value rhs) {
   // Test if this is a scalarized reduction.
-  unsigned lhs = op.getNumInputsAndOutputs() - 1;
+  unsigned lhs = op.getNumShapedOperands() - 1;
   if (lhs == tensor && codegen.redVal) {
     codegen.redVal = rhs;
     return;
@@ -670,7 +670,7 @@ static void genInvariants(Merger &merger, CodeGen &codegen,
         atLevel = true;
     }
     // All exhausted at this level (atLevel denotes exactly at this level).
-    unsigned lhs = op.getNumInputsAndOutputs() - 1;
+    unsigned lhs = op.getNumShapedOperands() - 1;
     if (lhs == tensor) {
       codegen.redExp = hoist ? exp : -1u;
     } else if (atLevel) {
@@ -995,7 +995,7 @@ static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
                     unsigned exp, unsigned at) {
   // At each leaf, assign remaining tensor (sub)expression to output tensor.
   if (at == topSort.size()) {
-    unsigned lhs = op.getNumInputsAndOutputs() - 1;
+    unsigned lhs = op.getNumShapedOperands() - 1;
     Value rhs = genExp(merger, codegen, rewriter, op, exp);
     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
     return;
@@ -1073,7 +1073,7 @@ static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
   Value red = codegen.redVal;
   if (red) {
     codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
-    unsigned lhs = op.getNumInputsAndOutputs() - 1;
+    unsigned lhs = op.getNumShapedOperands() - 1;
     genTensorStore(merger, codegen, rewriter, op, lhs, red);
   }
   codegen.loops[idx] = Value();
@@ -1095,7 +1095,7 @@ struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
     if (!op.hasSparseSemantics())
       return failure();
     assert(op.getNumOutputs() == 1);
-    unsigned numTensors = op.getNumInputsAndOutputs();
+    unsigned numTensors = op.getNumShapedOperands();
     unsigned numLoops = op.iterator_types().getValue().size();
     Merger merger(numTensors, numLoops);
     findSparseAnnotations(merger, op);

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
index 423d687c1eb8..f323d2e50435 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
@@ -375,9 +375,9 @@ tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
   // 2. Create the tiled loops.
   LinalgOp res = op;
   SmallVector<Value, 4> ivs, tensorResults;
-  auto initTensors = op.getInitTensors();
+  auto outputTensors = op.getOutputTensors();
   GenerateLoopNest<LoopTy>::doit(
-      loopRanges, /*iterArgInitValues*/ initTensors, iteratorTypes,
+      loopRanges, /*iterArgInitValues*/ outputTensors, iteratorTypes,
       [&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector {
         auto &b = ScopedContext::getBuilderRef();
         auto loc = ScopedContext::getLocation();
@@ -392,14 +392,16 @@ tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
         else
           interchangedIvs.assign(ivs.begin(), ivs.end());
 
-        assert(op.getNumInitTensors() == iterArgs.size() &&
-               "num init tensors must match number of loop iter arguments");
-        // This uses knowledge about position of the init tensor in the list
-        // of operands.
-        auto operands = llvm::to_vector<4>(op.getShapedOperands());
-        std::copy(iterArgs.begin(), iterArgs.end(),
-                  operands.begin() + op.getNumInputsAndOutputBuffers());
+        assert(op.getNumOutputTensors() == iterArgs.size() &&
+               "num output tensors must match number of loop iter arguments");
 
+        auto operands = llvm::to_vector<4>(op.getInputs());
+        SmallVector<Value, 4> outputBuffers = op.getOutputBuffers();
+        // TODO: thanks to simplifying assumption we do not need to worry about
+        // order of output buffers and tensors: there is only ever one kind.
+        assert(outputBuffers.empty() || iterArgs.empty());
+        operands.append(outputBuffers.begin(), outputBuffers.end());
+        operands.append(iterArgs.begin(), iterArgs.end());
         SmallVector<Value, 4> tiledOperands =
             makeTiledShapes(b, loc, op, operands, shapeSizesToLoopsMap,
                             interchangedIvs, tileSizes, allShapeSizes);
@@ -407,41 +409,31 @@ tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
         tiledOperands.append(nonShapedOperands.begin(),
                              nonShapedOperands.end());
 
-        // If LinalgOp has results, they must all be tied to init tensors.
-        // We enforce this to ensure all tiled ops have been rewritten in
-        // "init tensor" form. This ensures tiling has anchor values into which
-        // to subtensor / subtensor_insert. Otherwise tiling would need to
-        // allocate which is not acceptable.
-        // This would not be the case with a special terminator op that
-        // generates the whole tensor (instead of inserting a subtensor). But
-        // the generator-based abstraction has other issues.
-        assert(op.getNumInitTensors() == op->getNumResults() &&
-               "expected same number of init tensors as number of results");
-
-        // Handle init tensor operands.
-        // This uses knowledge about position of the init tensor in the list
-        // of operands.
-        // TODO: InterfaceAdaptor ?
+        // TODO: use an interface/adaptor to avoid leaking position in
+        // `tiledOperands`.
         SmallVector<Type, 4> resultTensorTypes;
-        for (auto idx : llvm::seq<unsigned>(0, op.getNumInitTensors()))
+        for (OpOperand *opOperand : op.getOutputTensorsOpOperands())
           resultTensorTypes.push_back(
-              tiledOperands[op.getNumInputsAndOutputBuffers() + idx].getType());
+              tiledOperands[opOperand->getOperandNumber()].getType());
 
         res = op.clone(b, loc, resultTensorTypes, tiledOperands);
 
-        // Insert a subtensor_insert for each init subtensor.
-        for (unsigned idx = 0, e = op.getNumInitTensors(); idx != e; ++idx) {
-          Value initTensor =
-              tiledOperands[op.getNumInputsAndOutputBuffers() + idx];
-          if (auto subtensor = initTensor.getDefiningOp<SubTensorOp>()) {
+        // Insert a subtensor_insert for each output tensor.
+        unsigned resultIdx = 0;
+        for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) {
+          // TODO: use an interface/adaptor to avoid leaking position in
+          // `tiledOperands`.
+          Value outputTensor = tiledOperands[opOperand->getOperandNumber()];
+          if (auto subtensor = outputTensor.getDefiningOp<SubTensorOp>()) {
             tensorResults.push_back(b.create<SubTensorInsertOp>(
-                loc, subtensor.source().getType(), res->getResult(idx),
+                loc, subtensor.source().getType(), res->getResult(resultIdx),
                 subtensor.source(), subtensor.offsets(), subtensor.sizes(),
                 subtensor.strides(), subtensor.static_offsets(),
                 subtensor.static_sizes(), subtensor.static_strides()));
           } else {
-            tensorResults.push_back(res->getResult(idx));
+            tensorResults.push_back(res->getResult(resultIdx));
           }
+          ++resultIdx;
         }
         return scf::ValueVector(tensorResults.begin(), tensorResults.end());
       },

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
index 804ae6681f8c..c5d811c41edb 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
@@ -125,17 +125,6 @@ LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase(
   if (failed(marker.checkAndNotify(rewriter, linalgOp)))
     return failure();
 
-  // If LinalgOp has results, they must all be tied to init tensors.
-  // We enforce this to ensure all tiled ops have been rewritten in
-  // "init tensor" form. This ensures tiling has anchor values into which to
-  // subtensor / subtensor_insert. Otherwise tiling would need to allocate which
-  // is not acceptable.
-  // This would not be the case with a special terminator op that generates the
-  // whole tensor (instead of inserting a subtensor). But the generator-based
-  // abstraction has other issues.
-  if (linalgOp.getNumInitTensors() != linalgOp->getNumResults())
-    return failure();
-
   Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
 
   if (!res)
@@ -174,10 +163,10 @@ LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
   producers.insert(linalgOp);
   for (auto dependence : dependenceGraph.getDependentOperations(linalgOp)) {
     if (!fusionOptions.indicesToFuse.count(
-            dependence.indexingOpView.operandIndex))
+            dependence.indexingOpView->getOperandNumber()))
       continue;
-    if (isa<LinalgOp>(dependence.dependentOpView.op))
-      producers.insert(dependence.dependentOpView.op);
+    if (isa<LinalgOp>(dependence.dependentOpView->getOwner()))
+      producers.insert(dependence.dependentOpView->getOwner());
   }
 
   SmallVector<LinalgOp, 1> fusionOps;

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 7165ee775e9c..23e452df9184 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -199,9 +199,8 @@ class GenericVectorizer {
     // block argument.
     auto scalarArg = scalarValue.cast<BlockArgument>();
     assert(scalarArg.getOwner() == &generic.region().front());
-    Value vector_arg =
-        generic.getInputsAndOutputBuffers()[scalarArg.getArgNumber()];
-    Value vectorResult = transferReadVector(builder, vector_arg);
+    Value vectorArg = generic.getShapedOperand(scalarArg.getArgNumber());
+    Value vectorResult = transferReadVector(builder, vectorArg);
     valueCache[scalarArg] = vectorResult;
     return vectorResult;
   }
@@ -277,7 +276,7 @@ static void vectorizeElementwise(linalg::GenericOp op, OpBuilder &builder) {
 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
   auto linalgOp = cast<linalg::LinalgOp>(op);
   // All types must be static shape to go to vector.
-  for (Value operand : linalgOp.getInputsAndOutputBuffers())
+  for (Value operand : linalgOp.getShapedOperands())
     if (!operand.getType().cast<ShapedType>().hasStaticShape())
       return failure();
   for (Type outputTensorType : linalgOp.getOutputTensorTypes())

diff  --git a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
index f44bb6769e61..81bfbc6ecf52 100644
--- a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
+++ b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp
@@ -104,12 +104,6 @@ SmallVector<int64_t, 8> getStaticShape(LinalgOp linalgOp) {
     auto shape = v.getType().cast<ShapedType>().getShape();
     res.append(shape.begin(), shape.end());
   }
-  if (linalgOp.getNumInitTensors())
-    return res;
-  for (Value v : linalgOp.getOperation()->getResults()) {
-    auto shape = v.getType().cast<ShapedType>().getShape();
-    res.append(shape.begin(), shape.end());
-  }
   return res;
 }
 

diff  --git a/mlir/lib/Dialect/StandardOps/IR/Ops.cpp b/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
index c0af06314086..30bf546807c4 100644
--- a/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
+++ b/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
@@ -1477,12 +1477,12 @@ struct DimOfCastOp : public OpRewritePattern<DimOp> {
     return success();
   }
 };
-
 } // end anonymous namespace.
 
 void DimOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                         MLIRContext *context) {
-  results.insert<DimOfMemRefReshape, DimOfCastOp<tensor::CastOp>>(context);
+  results.insert<DimOfMemRefReshape, DimOfCastOp<TensorToMemrefOp>,
+                 DimOfCastOp<tensor::CastOp>>(context);
 }
 
 // ---------------------------------------------------------------------------

diff  --git a/mlir/test/Dialect/Linalg/bufferize.mlir b/mlir/test/Dialect/Linalg/bufferize.mlir
index 368568bdcc4a..08d715f90b5e 100644
--- a/mlir/test/Dialect/Linalg/bufferize.mlir
+++ b/mlir/test/Dialect/Linalg/bufferize.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt -linalg-bufferize -split-input-file %s | FileCheck %s
+// RUN: mlir-opt -linalg-bufferize  -canonicalize -cse -split-input-file %s | FileCheck %s
 
 #map0 = affine_map<(d0) -> (d0)>
 
@@ -26,8 +26,9 @@ func @basic(%arg0: tensor<4xf32>) -> tensor<4xf32> {
     %0 = linalg.generic {
       indexing_maps = [#map0, #map0],
       iterator_types = ["parallel"]
-    } ins(%arg0 : tensor<4xf32>) {
-      ^bb0(%gen_arg1: f32):
+    } ins(%arg0 : tensor<4xf32>)
+      outs(%arg0 : tensor<4xf32>) {
+      ^bb0(%gen_arg1: f32, %out: f32):
         %tmp1 = exp %gen_arg1 : f32
         linalg.yield %tmp1 : f32
     } -> tensor<4xf32>
@@ -35,6 +36,35 @@ func @basic(%arg0: tensor<4xf32>) -> tensor<4xf32> {
 }
 
 
+// -----
+
+#map0 = affine_map<(d0) -> (d0)>
+
+// Same as above but with linalg.init_tensor op.
+
+// CHECK: #map = affine_map<(d0) -> (d0)>
+// CHECK-LABEL: func @init_tensor(
+// CHECK-SAME:      %[[IN:.*]]: tensor<?xf32>, %[[SIZE:.*]]: index)
+// CHECK:         %[[OUT_BUF:.*]] = alloc(%[[SIZE]]) : memref<?xf32>
+// CHECK:         %[[MEMREF:.*]] = tensor_to_memref %[[IN]] : memref<?xf32>
+// CHECK:         linalg.generic
+// CHECK-SAME:    ins(%[[MEMREF]] : memref<?xf32>)
+// CHECK-SAME:    outs(%[[OUT_BUF]] : memref<?xf32>) {
+func @init_tensor(%in : tensor<?xf32>, %size: index) -> tensor<?xf32> {
+  %init = linalg.init_tensor [%size] : tensor<?xf32>
+  %0 = linalg.generic {
+    indexing_maps = [#map0, #map0],
+    iterator_types = ["parallel"]
+  } ins(%in : tensor<?xf32>)
+    outs(%init : tensor<?xf32>) {
+    ^bb0(%gen_arg1: f32, %out: f32):
+      %tmp1 = exp %gen_arg1 : f32
+      linalg.yield %tmp1 : f32
+  } -> tensor<?xf32>
+  return %0 : tensor<?xf32>
+}
+
+
 // -----
 
 #map0 = affine_map<(d0) -> (d0)>
@@ -50,8 +80,9 @@ func @multiple_results(%arg0: tensor<4xf32>) -> (tensor<4xf32>, tensor<4xf32>) {
     %0, %1 = linalg.generic {
       indexing_maps = [#map0, #map0, #map0],
       iterator_types = ["parallel"]
-    } ins(%arg0 : tensor<4xf32>) {
-      ^bb0(%gen_arg1: f32):
+    } ins(%arg0 : tensor<4xf32>)
+      outs (%arg0, %arg0 : tensor<4xf32>, tensor<4xf32>) {
+      ^bb0(%gen_arg1: f32, %out1: f32, %out2: f32):
         %tmp1 = exp %gen_arg1 : f32
         linalg.yield %tmp1, %tmp1 : f32, f32
     } -> tensor<4xf32>, tensor<4xf32>
@@ -74,8 +105,9 @@ func @multiple_results_indexed(%arg0: tensor<4xi32>)
     %0, %1 = linalg.indexed_generic {
       indexing_maps = [#map0, #map0, #map0],
       iterator_types = ["parallel"]
-    } ins(%arg0 : tensor<4xi32>) {
-      ^bb0(%i: index, %gen_arg1: i32):
+    } ins(%arg0 : tensor<4xi32>)
+      outs (%arg0, %arg0 : tensor<4xi32>, tensor<4xi32>) {
+      ^bb0(%i: index, %gen_arg1: i32, %out1: i32, %out2: i32):
         %i_i32 = index_cast %i : index to i32
         %tmp1 = addi %gen_arg1, %i_i32 : i32
         linalg.yield %tmp1, %tmp1 : i32, i32
@@ -86,32 +118,30 @@ func @multiple_results_indexed(%arg0: tensor<4xi32>)
 // -----
 
 #map_2d = affine_map<(d0, d1) -> (d0, d1)>
-#map_2d_inv = affine_map<(d0, d1) -> (d1, d0)>
 
 // Check that the allocs properly consider the 
diff erent shapes of the output
 // operands. The permuted indexing maps translate to 
diff erent output shapes.
 
-// CHECK: #map0 = affine_map<(d0, d1) -> (d0, d1)>
-// CHECK: #map1 = affine_map<(d0, d1) -> (d1, d0)>
 // CHECK-LABEL:   func @dynamic_results(
 // CHECK-SAME:                          %[[ARG:.*]]: tensor<?x?xf32>
-// CHECK:           %[[MEMREF_ARG:.*]] = tensor_to_memref %[[ARG]] : memref<?x?xf32>
 // CHECK:           %[[C0:.*]] = constant 0 : index
-// CHECK:           %[[DIM0:.*]] = dim %[[ARG]], %[[C0]] : tensor<?x?xf32>
 // CHECK:           %[[C1:.*]] = constant 1 : index
+// CHECK:           %[[MEMREF_ARG:.*]] = tensor_to_memref %[[ARG]] : memref<?x?xf32>
+// CHECK:           %[[DIM0:.*]] = dim %[[ARG]], %[[C0]] : tensor<?x?xf32>
 // CHECK:           %[[DIM1:.*]] = dim %[[ARG]], %[[C1]] : tensor<?x?xf32>
 // CHECK:           %[[RESULT0:.*]] = alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
-// CHECK:           %[[RESULT1:.*]] = alloc(%[[DIM1]], %[[DIM0]]) : memref<?x?xf32>
-// CHECK:           linalg.generic {indexing_maps = [#map0, #map0, #map1]
+// CHECK:           %[[RESULT1:.*]] = alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
+// CHECK:           linalg.generic
 // CHECK-SAME:      ins(%[[MEMREF_ARG]] : memref<?x?xf32>)
 // CHECK-SAME:      outs(%[[RESULT0]], %[[RESULT1]] : memref<?x?xf32>, memref<?x?xf32>)
 func @dynamic_results(%arg0: tensor<?x?xf32>)
          -> (tensor<?x?xf32>, tensor<?x?xf32>) {
     %0, %1 = linalg.generic {
-      indexing_maps = [#map_2d, #map_2d, #map_2d_inv],
+      indexing_maps = [#map_2d, #map_2d, #map_2d],
       iterator_types = ["parallel", "parallel"]
-    } ins(%arg0 : tensor<?x?xf32>) {
-      ^bb0(%gen_arg1: f32):
+    } ins(%arg0 : tensor<?x?xf32>)
+      outs (%arg0, %arg0 : tensor<?x?xf32>, tensor<?x?xf32>) {
+      ^bb0(%gen_arg1: f32, %out1: f32, %out2: f32):
         %tmp1 = exp %gen_arg1 : f32
         linalg.yield %tmp1, %tmp1 : f32, f32
     } -> tensor<?x?xf32>, tensor<?x?xf32>
@@ -147,10 +177,9 @@ func @generic_with_init_tensor(%arg0: tensor<2x3x4xvector<3x4xi4>>,
 
   %0 = linalg.generic #trait
     ins(%arg0 : tensor<2x3x4xvector<3x4xi4>>)
-   init(%arg1 : tensor<3x2xf32>) {
+   outs(%arg1 : tensor<3x2xf32>) {
     ^bb(%v0: vector<3x4xi4>, %v1: f32) :
-      %f0 = constant 0.0 : f32
-      linalg.yield %f0 : f32
+      linalg.yield %v1 : f32
   } -> tensor<3x2xf32>
 
   return %0 : tensor<3x2xf32>
@@ -204,16 +233,16 @@ func @bufferize_subtensor_insert(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %
     (tensor<?x?xf32>, tensor<?x?xf32>) {
   %c0 = constant 0 : index
   %c1 = constant 1 : index
-  //      CHECK: %[[IDX:.*]] = call @make_index() : () -> index
+  // CHECK-NEXT: %[[C0:.*]] = constant 0 : index
+  // CHECK-NEXT: %[[C1:.*]] = constant 1 : index
   %i0 = call @make_index() : () -> index
+  // CHECK: %[[IDX:.*]] = call @make_index() : () -> index
 
 
-  //  CHECK-DAG: %[[M0:.*]] = tensor_to_memref %[[T]] : memref<?x?xf32>
-  //  CHECK-DAG: %[[SM0:.*]] = tensor_to_memref %[[ST0]] : memref<2x3xf32>
-  // CHECK-NEXT: %[[C0:.*]] = constant 0 : index
-  // CHECK-NEXT: %[[DIM0:.*]] = dim %[[M0]], %[[C0]] : memref<?x?xf32>
-  // CHECK-NEXT: %[[C1:.*]] = constant 1 : index
-  // CHECK-NEXT: %[[DIM1:.*]] = dim %[[M0]], %[[C1]] : memref<?x?xf32>
+  // CHECK-DAG: %[[M0:.*]] = tensor_to_memref %[[T]] : memref<?x?xf32>
+  // CHECK-DAG: %[[SM0:.*]] = tensor_to_memref %[[ST0]] : memref<2x3xf32>
+  // CHECK-NEXT: %[[DIM0:.*]] = dim %[[T]], %[[C0]] : tensor<?x?xf32>
+  // CHECK-NEXT: %[[DIM1:.*]] = dim %[[T]], %[[C1]] : tensor<?x?xf32>
   // CHECK-NEXT: %[[M0_COPY:.*]] = alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
   // CHECK-NEXT: linalg.copy(%[[M0]], %[[M0_COPY]]) : memref<?x?xf32>, memref<?x?xf32>
   // CHECK-NEXT: %[[SUBVIEW0:.*]] = subview %[[M0_COPY]][0, 0] [2, 3] [1, 1]
@@ -224,10 +253,6 @@ func @bufferize_subtensor_insert(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %
 
   //  CHECK-DAG: %[[M1:.*]] = tensor_to_memref %[[T]] : memref<?x?xf32>
   //  CHECK-DAG: %[[SM1:.*]] = tensor_to_memref %[[ST1]] : memref<2x?xf32>
-  // CHECK-NEXT: %[[C0:.*]] = constant 0 : index
-  // CHECK-NEXT: %[[DIM0:.*]] = dim %[[M1]], %[[C0]] : memref<?x?xf32>
-  // CHECK-NEXT: %[[C1:.*]] = constant 1 : index
-  // CHECK-NEXT: %[[DIM1:.*]] = dim %[[M1]], %[[C1]] : memref<?x?xf32>
   // CHECK-NEXT: %[[M1_COPY:.*]] = alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
   // CHECK-NEXT: linalg.copy(%[[M1]], %[[M1_COPY]]) : memref<?x?xf32>, memref<?x?xf32>
   // CHECK-NEXT: %[[SUBVIEW1:.*]] = subview %[[M1_COPY]][0, %[[IDX]]] [2, %[[IDX]]] [1, 2]
@@ -239,3 +264,4 @@ func @bufferize_subtensor_insert(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %
   //     CHECK: return %[[RT0]], %[[RT1]]
   return %t0, %t1: tensor<?x?xf32>, tensor<?x?xf32>
 }
+

diff  --git a/mlir/test/Dialect/Linalg/canonicalize-duplicate-inputs.mlir b/mlir/test/Dialect/Linalg/canonicalize-duplicate-inputs.mlir
index 8c08fb390b9e..de894b9192fb 100644
--- a/mlir/test/Dialect/Linalg/canonicalize-duplicate-inputs.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize-duplicate-inputs.mlir
@@ -8,10 +8,12 @@
 // CHECK-LABEL: @basic
 func @basic(%arg0: tensor<?xf32>) -> tensor<?xf32> {
   // CHECK: linalg.generic{{.*}}[#[[$MAP]], #[[$MAP]]]
-  // CHECK:   ^bb0(%[[BBARG:.*]]: f32):
+  // CHECK:   ^bb0(%[[BBARG:.*]]: f32, %{{.*}}: f32):
   // CHECK:     addf %[[BBARG]], %[[BBARG]]
-  %0 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg0 : tensor<?xf32>, tensor<?xf32>) {
-  ^bb0(%arg1: f32, %arg2: f32):
+  %0 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
+     ins(%arg0, %arg0 : tensor<?xf32>, tensor<?xf32>)
+    outs(%arg0 : tensor<?xf32>) {
+  ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
     %1 = addf %arg1, %arg2 : f32
     linalg.yield %1 : f32
   } -> tensor<?xf32>
@@ -31,8 +33,10 @@ func @basic(%arg0: tensor<?xf32>) -> tensor<?xf32> {
 // CHECK-LABEL: @distinct_affine_maps
 func @distinct_affine_maps(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> {
   // CHECK: linalg.generic{{.*}}[#[[$MAP0]], #[[$MAP1]], #[[$MAP0]]]
-  %0 = linalg.generic {indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg0 : tensor<?x?xf32>, tensor<?x?xf32>) {
-  ^bb0(%arg1: f32, %arg2: f32):
+  %0 = linalg.generic {indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]}
+     ins(%arg0, %arg0 : tensor<?x?xf32>, tensor<?x?xf32>)
+    outs(%arg0 : tensor<?x?xf32>) {
+  ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
     %1 = addf %arg1, %arg2 : f32
     linalg.yield %1 : f32
   } -> tensor<?x?xf32>
@@ -52,10 +56,12 @@ func @distinct_affine_maps(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> {
 // CHECK-LABEL: @mixed_redundant_non_redundant
 func @mixed_redundant_non_redundant(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> {
   // CHECK: linalg.generic{{.*}}[#[[$MAP0]], #[[$MAP1]], #[[$MAP0]]]
-  // CHECK:   ^bb0(%[[BBARG0:.*]]: f32, %[[BBARG1:.*]]: f32):
+  // CHECK:   ^bb0(%[[BBARG0:.*]]: f32, %[[BBARG1:.*]]: f32, %{{[a-zA-Z0-9]+}}: f32):
   // CHECK:     "test.elementwise_mappable"(%[[BBARG0]], %[[BBARG1]], %[[BBARG0]])
-  %0 = linalg.generic {indexing_maps = [#map0, #map1, #map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg0, %arg0 : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) {
-  ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
+  %0 = linalg.generic {indexing_maps = [#map0, #map1, #map0, #map0], iterator_types = ["parallel", "parallel"]}
+     ins(%arg0, %arg0, %arg0 : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>)
+    outs(%arg0 : tensor<?x?xf32>) {
+  ^bb0(%arg1: f32, %arg2: f32, %arg3: f32, %arg4: f32):
     %1 = "test.elementwise_mappable"(%arg1, %arg2, %arg3) : (f32, f32, f32) -> f32
     linalg.yield %1 : f32
   } -> tensor<?x?xf32>
@@ -72,10 +78,12 @@ func @mixed_redundant_non_redundant(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> {
 // CHECK-LABEL: @multiple_
diff erent_redundant_args
 func @multiple_
diff erent_redundant_args(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
   // CHECK: linalg.generic{{.*}}[#[[$MAP]], #[[$MAP]], #[[$MAP]]]
-  // CHECK:   ^bb0(%[[BBARG0:.*]]: f32, %[[BBARG1:.*]]: f32):
+  // CHECK:   ^bb0(%[[BBARG0:.*]]: f32, %[[BBARG1:.*]]: f32, %{{[a-zA-Z0-9]+}}: f32):
   // CHECK:     "test.elementwise_mappable"(%[[BBARG0]], %[[BBARG1]], %[[BBARG0]], %[[BBARG1]])
-  %0 = linalg.generic {indexing_maps = [#map, #map, #map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1, %arg0, %arg1 : tensor<?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) {
-  ^bb0(%arg2: f32, %arg3: f32, %arg4: f32, %arg5: f32): 
+  %0 = linalg.generic {indexing_maps = [#map, #map, #map, #map, #map], iterator_types = ["parallel"]}
+     ins(%arg0, %arg1, %arg0, %arg1 : tensor<?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>)
+    outs(%arg0 : tensor<?xf32>) {
+  ^bb0(%arg2: f32, %arg3: f32, %arg4: f32, %arg5: f32, %arg6: f32):
     %1 = "test.elementwise_mappable"(%arg2, %arg3, %arg4, %arg5) : (f32, f32, f32, f32) -> f32
     linalg.yield %1 : f32
   } -> tensor<?xf32>
@@ -93,10 +101,12 @@ func @multiple_
diff erent_redundant_args(%arg0: tensor<?xf32>, %arg1: tensor<?xf3
 // CHECK-LABEL: @indexed_generic
 func @indexed_generic(%arg0: tensor<?xf32>) -> tensor<?xf32> {
   // CHECK: linalg.indexed_generic
-  // CHECK:   ^bb0(%{{.*}}: index, %[[BBARG:.*]]: f32):
+  // CHECK:   ^bb0(%{{.*}}: index, %[[BBARG:.*]]: f32, %{{[a-zA-Z0-9]+}}: f32):
   // CHECK:     addf %[[BBARG]], %[[BBARG]]
-  %0 = linalg.indexed_generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg0 : tensor<?xf32>, tensor<?xf32>) {
-  ^bb0(%index: index, %arg1: f32, %arg2: f32):
+  %0 = linalg.indexed_generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
+      ins(%arg0, %arg0 : tensor<?xf32>, tensor<?xf32>)
+     outs(%arg0 : tensor<?xf32>) {
+  ^bb0(%index: index, %arg1: f32, %arg2: f32, %arg3: f32):
     %1 = addf %arg1, %arg2 : f32
     linalg.yield %1 : f32
   } -> tensor<?xf32>

diff  --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir
index 6c12070e07f1..f015d5fd64fd 100644
--- a/mlir/test/Dialect/Linalg/canonicalize.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize.mlir
@@ -232,7 +232,6 @@ func @no_fold_memref_reshape(%arg0 : memref<?x?xf32>) -> memref<?x?xf32>
 // -----
 
 #accesses = [
-  affine_map<(i) -> (i)>,
   affine_map<(i) -> (i)>
 ]
 
@@ -246,7 +245,7 @@ func @dce_zero_memref(%arg0 : memref<0xf32>, %arg1: tensor<0xf32>) -> tensor<0xf
   linalg.copy(%arg0, %arg0): memref<0xf32>, memref<0xf32>
 
   // tensor<0xf32> cannot be dce'ed
-  %1 = linalg.generic #trait ins(%arg1 : tensor<0xf32>) {
+  %1 = linalg.generic #trait outs(%arg1 : tensor<0xf32>) {
   ^bb(%0: f32) :
     linalg.yield %0 : f32
   } -> tensor<0xf32>
@@ -326,9 +325,9 @@ func @tensor.cast(%a : tensor<3x4xf32>, %b : tensor<4x?xf32>, %c : tensor<3x?xf3
   %tc = tensor.cast %c : tensor<3x?xf32> to tensor<?x?xf32>
 
   //      CHECK:  linalg.matmul ins({{.*}}tensor<3x4xf32>, tensor<4x?xf32>)
-  // CHECK-SAME:    init({{.*}}tensor<3x?xf32>) -> tensor<3x?xf32>
+  // CHECK-SAME:    outs({{.*}}tensor<3x?xf32>) -> tensor<3x?xf32>
   %0 = linalg.matmul ins(%ta, %tb: tensor<?x?xf32>, tensor<?x?xf32>)
-               init(%tc: tensor<?x?xf32>) -> tensor<?x?xf32>
+                    outs(%tc: tensor<?x?xf32>) -> tensor<?x?xf32>
 
   %1 = tensor.cast %0 : tensor<?x?xf32> to tensor<3x?xf32>
 
@@ -344,7 +343,7 @@ func @tensor.cast(%a : tensor<3x4xf32>, %b : tensor<4x?xf32>, %c : tensor<3x?xf3
 func @linalg_effects(%a : tensor<?x?xf32>, %b : memref<?x?xf32>, %c : tensor<?x?xf32>) {
   // CHECK-NOT:   %{{.*}} = linalg.matmul
   %t = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
-                    init(%c : tensor<?x?xf32>) -> tensor<?x?xf32>
+                    outs(%c : tensor<?x?xf32>) -> tensor<?x?xf32>
 
   // CHECK-NOT:   %{{.*}} = linalg.matmul
   linalg.matmul ins(%a, %c : tensor<?x?xf32>, tensor<?x?xf32>)

diff  --git a/mlir/test/Dialect/Linalg/convert-elementwise-to-linalg.mlir b/mlir/test/Dialect/Linalg/convert-elementwise-to-linalg.mlir
index 7ea78fef7add..8dca137843bb 100644
--- a/mlir/test/Dialect/Linalg/convert-elementwise-to-linalg.mlir
+++ b/mlir/test/Dialect/Linalg/convert-elementwise-to-linalg.mlir
@@ -1,14 +1,20 @@
 // RUN: mlir-opt -convert-elementwise-to-linalg -split-input-file %s | FileCheck %s
 
 // In-depth checking of the linalg.generic op for a very trivial case.
-// CHECK: #map = affine_map<() -> ()>
-// CHECK-LABEL:   func @addf_rank0
+// CHECK: #[[$MAP:.*]] = affine_map<() -> ()>
+// CHECK-LABEL: func @addf_rank0
+//  CHECK-SAME:   %[[ARG0:[0-9a-zA-Z]*]]: tensor<f32>
+//  CHECK-SAME:   %[[ARG1:[0-9a-zA-Z]*]]: tensor<f32>
 func @addf_rank0(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
-  // CHECK: %{{.*}} = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = []} ins(%{{.*}}, %{{.*}} : tensor<f32>, tensor<f32>) {
-  // CHECK: ^bb0(%[[LHS:.*]]: f32, %[[RHS:.*]]: f32):
-  // CHECK:   %[[YIELD:.*]] = addf %[[LHS]], %[[RHS]] : f32
-  // CHECK:   linalg.yield %[[YIELD]] : f32
-  // CHECK: } -> tensor<f32>
+  //      CHECK: %{{.*}} = linalg.generic
+  // CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]], #[[$MAP]]]
+  // CHECK-SAME: iterator_types = []
+  // CHECK-SAME:  ins(%[[ARG0]], %[[ARG1]]
+  // CHECK-SAME: outs(%[[ARG0]]
+  //      CHECK: ^bb0(%[[LHS:.*]]: f32, %[[RHS:.*]]: f32, %{{.*}}: f32):
+  //      CHECK:   %[[YIELD:.*]] = addf %[[LHS]], %[[RHS]] : f32
+  //      CHECK:   linalg.yield %[[YIELD]] : f32
+  //      CHECK: } -> tensor<f32>
   %0 = addf %arg0, %arg1 : tensor<f32>
   return %0 : tensor<f32>
 }
@@ -16,10 +22,14 @@ func @addf_rank0(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
 // -----
 
 // Check indexing maps and iterator types for the rank > 0 case.
-// CHECK: #map = affine_map<(d0) -> (d0)>
 // CHECK-LABEL: func @addf_rank1
+//  CHECK-SAME:   %[[ARG0:[0-9a-zA-Z]*]]: tensor<?xf32>
+//  CHECK-SAME:   %[[ARG1:[0-9a-zA-Z]*]]: tensor<?xf32>
 func @addf_rank1(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
-  // CHECK: linalg.generic{{.*}}indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]
+  // CHECK: linalg.generic
+  // CHECK-SAME: iterator_types = ["parallel"]
+  // CHECK-SAME:  ins(%[[ARG0]], %[[ARG1]]
+  // CHECK-SAME: outs(%[[ARG0]]
   %0 = addf %arg0, %arg1 : tensor<?xf32>
   return %0 : tensor<?xf32>
 }
@@ -28,9 +38,12 @@ func @addf_rank1(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
 
 // Check a unary op.
 // CHECK-LABEL: func @exp
+//  CHECK-SAME:   %[[ARG0:[0-9a-zA-Z]*]]: tensor<f32>
 func @exp(%arg0: tensor<f32>) -> tensor<f32> {
   // CHECK: linalg.generic
-  // CHECK: ^bb0(%[[SCALAR:.*]]: f32):
+  // CHECK-SAME:  ins(%[[ARG0]]
+  // CHECK-SAME: outs(%[[ARG0]]
+  // CHECK: ^bb0(%[[SCALAR:.*]]: f32, %{{.*}}: f32):
   // CHECK:   %[[YIELD:.*]] = exp %[[SCALAR]] : f32
   // CHECK:   linalg.yield %[[YIELD]] : f32
   %0 = exp %arg0 : tensor<f32>
@@ -41,9 +54,14 @@ func @exp(%arg0: tensor<f32>) -> tensor<f32> {
 
 // Check a case with varying operand types.
 // CHECK-LABEL: func @select
+//  CHECK-SAME:   %[[ARG0:[0-9a-zA-Z]*]]: tensor<i1>
+//  CHECK-SAME:   %[[ARG1:[0-9a-zA-Z]*]]: tensor<i32>
+//  CHECK-SAME:   %[[ARG2:[0-9a-zA-Z]*]]: tensor<i32>
 func @select(%arg0: tensor<i1>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<i32> {
   // CHECK: linalg.generic
-  // CHECK: ^bb0(%[[PRED:.*]]: i1, %[[TRUE_VAL:.*]]: i32, %[[FALSE_VAL:.*]]: i32):
+  // CHECK-SAME:  ins(%[[ARG0]], %[[ARG1]], %[[ARG2]]
+  // CHECK-SAME: outs(%[[ARG1]]
+  // CHECK: ^bb0(%[[PRED:.*]]: i1, %[[TRUE_VAL:.*]]: i32, %[[FALSE_VAL:.*]]: i32, %{{.*}}: i32):
   // CHECK:   select %[[PRED]], %[[TRUE_VAL]], %[[FALSE_VAL]] : i32
   %0 = select %arg0, %arg1, %arg2 : tensor<i1>, tensor<i32>
   return %0 : tensor<i32>
@@ -52,9 +70,41 @@ func @select(%arg0: tensor<i1>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tenso
 // -----
 
 // Spot-check an op that requires copying attributes properly to the created scalar op.
+// Also checks proper init_tensor usage.
 // CHECK-LABEL: func @cmpf(
+//  CHECK-SAME:   %[[ARG0:[0-9a-zA-Z]*]]: tensor<f32>
+//  CHECK-SAME:   %[[ARG1:[0-9a-zA-Z]*]]: tensor<f32>
 func @cmpf(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<i1> {
+  // CHECK: %[[INIT:.*]] = linalg.init_tensor [] : tensor<i1>
+  // CHECK: linalg.generic
+  // CHECK-SAME:  ins(%[[ARG0]], %[[ARG1]]
+  // CHECK-SAME: outs(%[[INIT]]
+  // CHECK: ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: i1):
   // CHECK: cmpf "olt", %{{.*}}, %{{.*}} : f32
   %0 = cmpf "olt", %arg0, %arg1 : tensor<f32>
   return %0 : tensor<i1>
 }
+
+// -----
+
+// Check proper init_tensor usage in a mixed case.
+// CHECK-LABEL: func @cmpf(
+//  CHECK-SAME:   %[[ARG0:[0-9a-zA-Z]*]]: tensor<4x?x?x8x2x?xf32>
+//  CHECK-SAME:   %[[ARG1:[0-9a-zA-Z]*]]: tensor<4x?x?x8x2x?xf32>
+func @cmpf(%arg0: tensor<4x?x?x8x2x?xf32>, %arg1: tensor<4x?x?x8x2x?xf32>) -> tensor<4x?x?x8x2x?xi1> {
+  // CHECK: %[[C1:.*]] = constant 1 : index
+  // CHECK: %[[D1:.*]] = dim %[[ARG0]], %[[C1]] : tensor<4x?x?x8x2x?xf32>
+  // CHECK: %[[C2:.*]] = constant 2 : index
+  // CHECK: %[[D2:.*]] = dim %[[ARG0]], %[[C2]] : tensor<4x?x?x8x2x?xf32>
+  // CHECK: %[[C5:.*]] = constant 5 : index
+  // CHECK: %[[D5:.*]] = dim %[[ARG0]], %[[C5]] : tensor<4x?x?x8x2x?xf32>
+  // CHECK: %[[INIT:.*]] = linalg.init_tensor [4, %[[D1]], %[[D2]], 8, 2, %[[D5]]] : tensor<4x?x?x8x2x?xi1>
+  // CHECK: linalg.generic
+  // CHECK-SAME:  ins(%[[ARG0]], %[[ARG1]]
+  // CHECK-SAME: outs(%[[INIT]]
+  // CHECK: ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: i1):
+  // CHECK: cmpf "olt", %{{.*}}, %{{.*}} : f32
+  %0 = cmpf "olt", %arg0, %arg1 : tensor<4x?x?x8x2x?xf32>
+  return %0 : tensor<4x?x?x8x2x?xi1>
+}
+

diff  --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index e04d03b4e493..17b8bda967b1 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt %s -linalg-fold-unit-extent-dims -split-input-file | FileCheck %s
+// RUN: mlir-opt %s -split-input-file -linalg-fold-unit-extent-dims | FileCheck %s
 
 #accesses = [
   affine_map<(i, j, k, l, m) -> (i, k, m)>,
@@ -11,12 +11,12 @@
   library_call = "some_external_func"
 }
 
-func @drop_one_trip_loops(%arg0 : tensor<?x1x?xf32>) -> tensor<?x1x?x1x?xf32>
-{
+func @drop_one_trip_loops(%arg0 : tensor<?x1x?xf32>, %shape: tensor<?x1x?x1x?xf32>) -> tensor<?x1x?x1x?xf32> {
   %0 = linalg.generic #trait
-    ins(%arg0 : tensor<?x1x?xf32>) {
-       ^bb0(%arg1 : f32) :
-         linalg.yield %arg1 : f32
+     ins(%arg0 : tensor<?x1x?xf32>)
+    outs(%shape : tensor<?x1x?x1x?xf32>) {
+       ^bb0(%arg2 : f32, %arg3 : f32) :
+         linalg.yield %arg2 : f32
        } -> tensor<?x1x?x1x?xf32>
   return %0 : tensor<?x1x?x1x?xf32>
 }
@@ -48,12 +48,13 @@ func @drop_one_trip_loops(%arg0 : tensor<?x1x?xf32>) -> tensor<?x1x?x1x?xf32>
 }
 
 func @drop_one_trip_loops_indexed_generic
-  (%arg0 : tensor<?x1x?xi32>) -> tensor<?x1x?x1x?xi32>
+  (%arg0 : tensor<?x1x?xi32>, %shape: tensor<?x1x?x1x?xi32>) -> tensor<?x1x?x1x?xi32>
 {
   %0 = linalg.indexed_generic #trait
-    ins(%arg0 : tensor<?x1x?xi32>) {
+     ins(%arg0 : tensor<?x1x?xi32>)
+    outs(%shape: tensor<?x1x?x1x?xi32>) {
        ^bb0(%arg1 : index, %arg2 : index, %arg3 : index, %arg4 : index,
-            %arg5 : index, %arg6 : i32) :
+            %arg5 : index, %arg6 : i32, %arg7 : i32) :
 	 %1 = addi %arg1, %arg2 : index
 	 %2 = addi %1, %arg3 : index
 	 %3 = addi %2, %arg4 : index
@@ -68,7 +69,7 @@ func @drop_one_trip_loops_indexed_generic
 //       CHECK:   linalg.indexed_generic
 //       CHECK:   ^{{.+}}(
 //  CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: index, %[[ARG2:[a-zA-Z0-9]+]]: index
-//  CHECK-SAME:     %[[ARG3:[a-zA-Z0-9]+]]: index, %[[ARG4:[a-zA-Z0-9]+]]: i32)
+//  CHECK-SAME:     %[[ARG3:[a-zA-Z0-9]+]]: index, %[[ARG4:[a-zA-Z0-9]+]]: i32, %{{.*}}: i32)
 //       CHECK:     %[[T3:.+]] = addi %[[ARG1]], %[[ARG2]]
 //       CHECK:     %[[T4:.+]] = addi %[[T3]], %[[ARG3]]
 //       CHECK:     %[[T5:.+]] = index_cast %[[T4]] : index to i32
@@ -88,8 +89,9 @@ func @drop_one_trip_loops_indexed_generic
 func @drop_all_loops(%arg0 : tensor<1x1xf32>) -> tensor<1x1xf32>
 {
   %0 = linalg.generic #trait
-    ins(%arg0 : tensor<1x1xf32>) {
-       ^bb0(%arg1: f32) :
+     ins(%arg0 : tensor<1x1xf32>)
+    outs(%arg0 : tensor<1x1xf32>) {
+       ^bb0(%arg1: f32, %arg2: f32) :
          linalg.yield %arg1 : f32
        } -> tensor<1x1xf32>
   return %0 : tensor<1x1xf32>
@@ -112,11 +114,11 @@ func @drop_all_loops(%arg0 : tensor<1x1xf32>) -> tensor<1x1xf32>
 }
 
 func @drop_all_loops_indexed_generic
-  (%arg0 : tensor<1x1xi32>) -> tensor<1x1xi32>
-{
+  (%arg0 : tensor<1x1xi32>) -> tensor<1x1xi32>{
   %0 = linalg.indexed_generic #trait
-    ins(%arg0 : tensor<1x1xi32>) {
-       ^bb0(%arg1 : index, %arg2 : index, %arg3: i32) :
+     ins(%arg0 : tensor<1x1xi32>)
+    outs(%arg0 : tensor<1x1xi32>) {
+       ^bb0(%arg1 : index, %arg2 : index, %arg3: i32, %arg4: i32) :
          %1 = addi %arg1, %arg2 : index
 	 %2 = index_cast %1 : index to i32
 	 %3 = addi %2, %arg3 : i32
@@ -127,7 +129,7 @@ func @drop_all_loops_indexed_generic
 
 // CHECK-LABEL: func @drop_all_loops_indexed_generic
 //       CHECK:   linalg.indexed_generic
-//       CHECK:   ^{{.+}}(%[[ARG1:.+]]: i32)
+//       CHECK:   ^{{.+}}(%[[ARG1:.+]]: i32, %[[ARG2:.+]]: i32)
 //       CHECK:     linalg.yield %[[ARG1]] : i32
 
 // -----
@@ -143,10 +145,11 @@ func @drop_all_loops_indexed_generic
   library_call = "some_external_fn"
 }
 
-func @leading_dim_1_canonicalization(%arg0: tensor<1x5xf32>) -> tensor<5xf32> {
+func @leading_dim_1_canonicalization(%arg0: tensor<1x5xf32>, %shape: tensor<5xf32>) -> tensor<5xf32> {
   %0 = linalg.generic #trait
-    ins(%arg0 : tensor<1x5xf32>) {
-  ^bb0(%arg2: f32):     // no predecessors
+     ins(%arg0 : tensor<1x5xf32>)
+    outs(%shape : tensor<5xf32>) {
+  ^bb0(%arg2: f32, %arg3: f32):     // no predecessors
     linalg.yield %arg2 : f32
   } -> tensor<5xf32>
   return %0 : tensor<5xf32>
@@ -172,16 +175,17 @@ func @leading_dim_1_canonicalization(%arg0: tensor<1x5xf32>) -> tensor<5xf32> {
   library_call = "some_external_fn"
 }
 
-func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> tensor<5x5xf32>
+func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>, %shape : tensor<5x5xf32>) -> tensor<5x5xf32>
 {
   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
        tensor<5xf32> into tensor<1x5xf32>
   %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
        tensor<5xf32> into tensor<5x1xf32>
   %2 = linalg.generic #trait
-    ins(%0, %1 : tensor<1x5xf32>, tensor<5x1xf32>) {
-       ^bb0(%arg2: f32, %arg3: f32):
-         %3 = addf %arg2, %arg3 : f32
+     ins(%0, %1 : tensor<1x5xf32>, tensor<5x1xf32>)
+    outs(%shape : tensor<5x5xf32>) {
+       ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
+         %3 = addf %arg3, %arg4 : f32
          linalg.yield %3 : f32
        } -> tensor<5x5xf32>
   return %2 : tensor<5x5xf32>
@@ -209,12 +213,13 @@ func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> tensor<5x5
   library_call = "some_external_fn"
 }
 
-func @broadcast_scalar(%arg0 : tensor<1x1xf32>) -> tensor<?x?xf32>
+func @broadcast_scalar(%arg0 : tensor<1x1xf32>, %shape : tensor<?x?xf32>) -> tensor<?x?xf32>
 {
    %0 = linalg.generic #trait
-    ins(%arg0 : tensor<1x1xf32>) {
-      ^bb0(%arg1 : f32):
-        linalg.yield %arg1 : f32
+     ins(%arg0 : tensor<1x1xf32>)
+    outs(%shape : tensor<?x?xf32>) {
+      ^bb0(%arg2 : f32, %arg3 : f32):
+        linalg.yield %arg2 : f32
    } -> tensor<?x?xf32>
    return %0 : tensor<?x?xf32>
 }

diff  --git a/mlir/test/Dialect/Linalg/fold-unit-trip-loops.mlir b/mlir/test/Dialect/Linalg/fold-unit-trip-loops.mlir
index 6d75c480b5c6..d0c526e441b6 100644
--- a/mlir/test/Dialect/Linalg/fold-unit-trip-loops.mlir
+++ b/mlir/test/Dialect/Linalg/fold-unit-trip-loops.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt %s -linalg-fold-unit-extent-dims="fold-one-trip-loops-only" -split-input-file | FileCheck %s
+// RUN: mlir-opt %s -split-input-file -linalg-fold-unit-extent-dims="fold-one-trip-loops-only" | FileCheck %s
 
 #accesses = [
   affine_map<(i, j, k, l, m) -> (i, k, m)>,
@@ -11,11 +11,12 @@
   library_call = "some_external_func"
 }
 
-func @drop_one_trip_loops(%arg0 : tensor<?x1x?xf32>) -> tensor<?x1x?x1x?xf32>
+func @drop_one_trip_loops(%arg0 : tensor<?x1x?xf32>, %shape: tensor<?x1x?x1x?xf32>) -> tensor<?x1x?x1x?xf32>
 {
   %0 = linalg.generic #trait
-    ins(%arg0 : tensor<?x1x?xf32>) {
-       ^bb0(%arg1 : f32) :
+    ins(%arg0 : tensor<?x1x?xf32>)
+    outs(%shape : tensor<?x1x?x1x?xf32>) {
+       ^bb0(%arg1 : f32, %arg2 : f32) :
          linalg.yield %arg1 : f32
        } -> tensor<?x1x?x1x?xf32>
   return %0 : tensor<?x1x?x1x?xf32>
@@ -40,8 +41,9 @@ func @drop_one_trip_loops(%arg0 : tensor<?x1x?xf32>) -> tensor<?x1x?x1x?xf32>
 func @drop_all_loops(%arg0 : tensor<1x1xf32>) -> tensor<1x1xf32>
 {
   %0 = linalg.generic #trait
-    ins(%arg0 : tensor<1x1xf32>) {
-       ^bb0(%arg1: f32) :
+     ins(%arg0 : tensor<1x1xf32>)
+    outs(%arg0 : tensor<1x1xf32>) {
+       ^bb0(%arg1: f32, %arg2: f32) :
          linalg.yield %arg1 : f32
        } -> tensor<1x1xf32>
   return %0 : tensor<1x1xf32>
@@ -91,10 +93,11 @@ func @drop_all_loops(%arg0 : memref<1x1xf32>, %arg1 : memref<1x1xf32>)
   library_call = "some_external_fn"
 }
 
-func @leading_dim_1_canonicalization(%arg0: tensor<1x5xf32>) -> tensor<5xf32> {
+func @leading_dim_1_canonicalization(%arg0: tensor<1x5xf32>, %shape: tensor<5xf32>) -> tensor<5xf32> {
   %0 = linalg.generic #trait
-      ins(%arg0 : tensor<1x5xf32>) {
-    ^bb0(%arg2: f32):     // no predecessors
+       ins(%arg0 : tensor<1x5xf32>)
+      outs(%shape : tensor<5xf32>) {
+    ^bb0(%arg2: f32, %arg3: f32):     // no predecessors
       linalg.yield %arg2 : f32
   } -> tensor<5xf32>
   return %0 : tensor<5xf32>

diff  --git a/mlir/test/Dialect/Linalg/fusion-tensor.mlir b/mlir/test/Dialect/Linalg/fusion-tensor.mlir
index ff0394f18249..df7e59d59dde 100644
--- a/mlir/test/Dialect/Linalg/fusion-tensor.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-tensor.mlir
@@ -6,29 +6,36 @@
 // CHECK-LABEL: @add_mul_fusion
 func @add_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
 {
-  %0 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
-      %1 = addf %arg3, %arg4 : f32
-      linalg.yield %1 : f32
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %0 = dim %arg0, %c0 : tensor<?x?xf32>
+  %1 = dim %arg0, %c1 : tensor<?x?xf32>
+  %2 = linalg.init_tensor [%0, %1] : tensor<?x?xf32>
+  %3 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]}
+      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%2 : tensor<?x?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
+      %4 = addf %arg3, %arg4 : f32
+      linalg.yield %4 : f32
   } -> tensor<?x?xf32>
   // CHECK: linalg.generic {
   // CHECK-SAME: indexing_maps = {{\[}}[[$MAP0]], [[$MAP0]], [[$MAP0]], [[$MAP0]]{{\]}}
-  %2 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]}
-      ins(%0, %arg2 : tensor<?x?xf32>, tensor<?x?xf32>) {
+  %4 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]}
+      ins(%3, %arg2 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%2 : tensor<?x?xf32>) {
     // CHECK: ^{{[a-zA-Z0-9_]*}}
     // CHECK-SAME: [[ARG0:%[a-zA-Z0-9_]*]]
     // CHECK-SAME: [[ARG1:%[a-zA-Z0-9_]*]]
     // CHECK-SAME: [[ARG2:%[a-zA-Z0-9_]*]]
-    ^bb0(%arg5: f32, %arg6: f32):       // no predecessors
+    ^bb0(%arg5: f32, %arg6: f32, %arg7: f32):       // no predecessors
       // CHECK: [[T1:%[a-zA-Z0-9_]*]] = addf [[ARG0]], [[ARG1]]
       // CHECK-NOT: linalg.yield
       // CHECK: mulf [[T1]], [[ARG2]]
       // CHECK: linalg.yield
-      %3 = mulf %arg5, %arg6 : f32
-      linalg.yield %3 : f32
+      %5 = mulf %arg5, %arg6 : f32
+      linalg.yield %5 : f32
     } -> tensor<?x?xf32>
-  return %2 : tensor<?x?xf32>
+  return %4 : tensor<?x?xf32>
 }
 
 // -----
@@ -41,21 +48,28 @@ func @add_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : te
 // CHECK-LABEL: @transpose_add_mul_fusion
 func @transpose_add_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
 {
-  %0 = linalg.generic {indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
-      %1 = addf %arg3, %arg4 : f32
-      linalg.yield %1 : f32
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %0 = dim %arg0, %c0 : tensor<?x?xf32>
+  %1 = dim %arg0, %c1 : tensor<?x?xf32>
+  %2 = linalg.init_tensor [%0, %1] : tensor<?x?xf32>
+  %3 = linalg.generic {indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]}
+      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%2 : tensor<?x?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
+      %4 = addf %arg3, %arg4 : f32
+      linalg.yield %4 : f32
   } -> tensor<?x?xf32>
   // CHECK: linalg.generic {
   // CHECK-SAME: indexing_maps = {{\[}}[[$MAP0]], [[$MAP1]], [[$MAP0]], [[$MAP0]]{{\]}}
-  %2 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]}
-      ins(%0, %arg2 : tensor<?x?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg5: f32, %arg6: f32):       // no predecessors
-      %3 = mulf %arg5, %arg6 : f32
-      linalg.yield %3 : f32
+  %4 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]}
+      ins(%3, %arg2 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%2 : tensor<?x?xf32>) {
+    ^bb0(%arg5: f32, %arg6: f32, %arg7: f32):       // no predecessors
+      %5 = mulf %arg5, %arg6 : f32
+      linalg.yield %5 : f32
     } -> tensor<?x?xf32>
-  return %2 : tensor<?x?xf32>
+  return %4 : tensor<?x?xf32>
 }
 
 // -----
@@ -68,21 +82,28 @@ func @transpose_add_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>,
 // CHECK-LABEL: @add_transpose_mul_fusion
 func @add_transpose_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
 {
-  %0 = linalg.generic {indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
-      %1 = addf %arg3, %arg4 : f32
-      linalg.yield %1 : f32
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %0 = dim %arg0, %c0 : tensor<?x?xf32>
+  %1 = dim %arg0, %c1 : tensor<?x?xf32>
+  %2 = linalg.init_tensor [%0, %1] : tensor<?x?xf32>
+  %3 = linalg.generic {indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]}
+      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%2 : tensor<?x?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
+      %4 = addf %arg3, %arg4 : f32
+      linalg.yield %4 : f32
   } -> tensor<?x?xf32>
   // CHECK: linalg.generic {
   // CHECK-SAME: indexing_maps = {{\[}}[[$MAP1]], [[$MAP0]], [[$MAP0]], [[$MAP0]]{{\]}}
-  %2 = linalg.generic {indexing_maps = [#map1, #map0, #map0], iterator_types = ["parallel", "parallel"]}
-      ins(%0, %arg2 : tensor<?x?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg5: f32, %arg6: f32):       // no predecessors
-      %3 = mulf %arg5, %arg6 : f32
-      linalg.yield %3 : f32
+  %4 = linalg.generic {indexing_maps = [#map1, #map0, #map0], iterator_types = ["parallel", "parallel"]}
+      ins(%3, %arg2 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%2 : tensor<?x?xf32>){
+    ^bb0(%arg5: f32, %arg6: f32, %arg7: f32):       // no predecessors
+      %5= mulf %arg5, %arg6 : f32
+      linalg.yield %5 : f32
     } -> tensor<?x?xf32>
-  return %2 : tensor<?x?xf32>
+  return %4 : tensor<?x?xf32>
 }
 
 // -----
@@ -96,21 +117,29 @@ func @add_transpose_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>,
 // CHECK-LABEL: @add_broadcast_mul_fusion
 func @add_broadcast_mul_fusion(%arg0: tensor<?xf32>, %arg1 : tensor<?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
 {
-  %0 = linalg.generic {indexing_maps = [#map2, #map2, #map2], iterator_types = ["parallel"]}
-      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
-      %1 = addf %arg3, %arg4 : f32
-      linalg.yield %1 : f32
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %0 = dim %arg0, %c0 : tensor<?xf32>
+  %1 = linalg.init_tensor [%0] : tensor<?xf32>
+  %2 = linalg.generic {indexing_maps = [#map2, #map2, #map2], iterator_types = ["parallel"]}
+      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
+      outs(%1 : tensor<?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
+      %3 = addf %arg3, %arg4 : f32
+      linalg.yield %3 : f32
   } -> tensor<?xf32>
   // CHECK: linalg.generic {
   // CHECK-SAME: indexing_maps = {{\[}}[[$MAP1]], [[$MAP1]], [[$MAP0]], [[$MAP0]]
-  %2 = linalg.generic {indexing_maps = [#map1, #map0, #map0], iterator_types = ["parallel", "parallel"]}
-      ins(%0, %arg2 : tensor<?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg5: f32, %arg6: f32):       // no predecessors
-      %3 = mulf %arg5, %arg6 : f32
-      linalg.yield %3 : f32
+  %3 = dim %arg2, %c1 : tensor<?x?xf32>
+  %4 = linalg.init_tensor [%0, %3] : tensor<?x?xf32>
+  %5 = linalg.generic {indexing_maps = [#map1, #map0, #map0], iterator_types = ["parallel", "parallel"]}
+      ins(%2, %arg2 : tensor<?xf32>, tensor<?x?xf32>)
+      outs(%4 : tensor<?x?xf32>){
+    ^bb0(%arg5: f32, %arg6: f32, %arg7: f32):       // no predecessors
+      %6 = mulf %arg5, %arg6 : f32
+      linalg.yield %6 : f32
     } -> tensor<?x?xf32>
-  return %2 : tensor<?x?xf32>
+  return %5 : tensor<?x?xf32>
 }
 
 // -----
@@ -121,23 +150,26 @@ func @add_broadcast_mul_fusion(%arg0: tensor<?xf32>, %arg1 : tensor<?xf32>, %arg
 // CHECK-LABEL: @add_mul_scalar_fusion
 func @add_mul_scalar_fusion(%arg0: tensor<f32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<f32>
 {
-  %0 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = []}
-      ins(%arg0, %arg1 : tensor<f32>, tensor<f32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
-      %1 = addf %arg3, %arg4 : f32
-      linalg.yield %1 : f32
+  %0 = linalg.init_tensor [] : tensor<f32>
+  %1 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = []}
+      ins(%arg0, %arg1 : tensor<f32>, tensor<f32>)
+      outs(%0 : tensor<f32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
+      %2 = addf %arg3, %arg4 : f32
+      linalg.yield %2 : f32
   } -> tensor<f32>
   // CHECK: linalg.generic {
   // CHECK: addf
   // CHECK: mulf
-  %1 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = []}
-      ins(%0, %arg2 : tensor<f32>, tensor<f32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
-      %1 = mulf %arg3, %arg4 : f32
-      linalg.yield %1 : f32
+  %2 = linalg.generic {indexing_maps = [#map0, #map0, #map0], iterator_types = []}
+      ins(%1, %arg2 : tensor<f32>, tensor<f32>)
+      outs(%0 : tensor<f32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
+      %3 = mulf %arg3, %arg4 : f32
+      linalg.yield %3 : f32
   } -> tensor<f32>
 
-  return %1 : tensor<f32>
+  return %2 : tensor<f32>
 }
 
 // -----
@@ -146,22 +178,29 @@ func @add_mul_scalar_fusion(%arg0: tensor<f32>, %arg1: tensor<f32>, %arg2: tenso
 #map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 func @generic_op_constant_fusion(%arg0 : tensor<5x?x?xf32>) -> tensor<5x?x?xf32>
 {
-  %0 = constant dense<42.0> : tensor<5xf32>
-  %1 = linalg.generic {
-         indexing_maps = [#map0, #map1, #map1],
-         iterator_types = ["parallel", "parallel", "parallel"]}
-         ins(%0, %arg0 : tensor<5xf32>, tensor<5x?x?xf32>) {
-       ^bb0(%arg1: f32, %arg2: f32):
-         %2 = mulf %arg1, %arg2 : f32
-         linalg.yield %2 : f32
-       } -> tensor<5x?x?xf32>
-  return %1 : tensor<5x?x?xf32>
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %c2 = constant 2 : index
+  %cst = constant dense<42.0> : tensor<5xf32>
+  %0 = dim %arg0, %c1 : tensor<5x?x?xf32>
+  %1 = dim %arg0, %c2 : tensor<5x?x?xf32>
+  %2 = linalg.init_tensor [5, %0, %1] : tensor<5x?x?xf32>
+  %3 = linalg.generic {
+    indexing_maps = [#map0, #map1, #map1],
+    iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%cst, %arg0 : tensor<5xf32>, tensor<5x?x?xf32>)
+    outs(%2 : tensor<5x?x?xf32>) {
+    ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
+      %4 = mulf %arg1, %arg2 : f32
+      linalg.yield %4 : f32
+    } -> tensor<5x?x?xf32>
+  return %3 : tensor<5x?x?xf32>
 }
 //   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 // CHECK-LABEL: func @generic_op_constant_fusion
 //       CHECK:   %[[CST:.*]] = constant {{.*}} : f32
 //       CHECK:   linalg.generic
-//       CHECK:   ^{{.*}}(%[[ARG1:.*]]: f32)
+//       CHECK:   ^{{.+}}(%[[ARG1:[a-zA-Z0-9_]+]]: f32, %{{.+}}: f32):
 //       CHECK:     mulf %[[CST]], %[[ARG1]]
 
 // -----
@@ -171,16 +210,23 @@ func @generic_op_constant_fusion(%arg0 : tensor<5x?x?xf32>) -> tensor<5x?x?xf32>
 func @indexed_generic_op_constant_fusion(%arg0 : tensor<5x?x?xf32>)
                                          -> tensor<5x?x?xf32>
 {
-  %0 = constant dense<42.0> : tensor<5xf32>
-  %1 = linalg.indexed_generic {
-         indexing_maps = [#map0, #map1, #map1],
-         iterator_types = ["parallel", "parallel", "parallel"]}
-         ins(%0, %arg0 : tensor<5xf32>, tensor<5x?x?xf32>) {
-       ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: f32, %arg5 : f32):
-         %2 = mulf %arg4, %arg5 : f32
-         linalg.yield %2 : f32
-       } -> tensor<5x?x?xf32>
-  return %1 : tensor<5x?x?xf32>
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %c2 = constant 2 : index
+  %cst = constant dense<42.0> : tensor<5xf32>
+  %0 = dim %arg0, %c1 : tensor<5x?x?xf32>
+  %1 = dim %arg0, %c2 : tensor<5x?x?xf32>
+  %2 = linalg.init_tensor [5, %0, %1] : tensor<5x?x?xf32>
+  %3 = linalg.indexed_generic {
+    indexing_maps = [#map0, #map1, #map1],
+    iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%cst, %arg0 : tensor<5xf32>, tensor<5x?x?xf32>)
+    outs(%2 : tensor<5x?x?xf32>) {
+    ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: f32, %arg5 : f32, %arg6 : f32):
+      %4 = mulf %arg4, %arg5 : f32
+      linalg.yield %4 : f32
+    } -> tensor<5x?x?xf32>
+  return %3 : tensor<5x?x?xf32>
 }
 //   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 // CHECK-LABEL: func @indexed_generic_op_constant_fusion
@@ -190,7 +236,7 @@ func @indexed_generic_op_constant_fusion(%arg0 : tensor<5x?x?xf32>)
 //  CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]*]]: index
 //  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]*]]: index
 //  CHECK-SAME:     %[[ARG3:[a-zA-Z0-9]*]]: index
-//  CHECK-SAME:     %[[ARG4:.*]]: f32)
+//  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9_]*]]: f32, %{{.*}}: f32)
 //       CHECK:     mulf %[[CST]], %[[ARG4]]
 
 // -----
@@ -200,22 +246,29 @@ func @indexed_generic_op_constant_fusion(%arg0 : tensor<5x?x?xf32>)
 func @generic_op_zero_dim_constant_fusion(%arg0 : tensor<5x?x?xf32>)
   -> tensor<5x?x?xf32>
 {
-  %0 = constant dense<42.0> : tensor<f32>
-  %1 = linalg.generic {
-         indexing_maps = [#map0, #map1, #map1],
-         iterator_types = ["parallel", "parallel", "parallel"]}
-         ins(%0, %arg0 : tensor<f32>, tensor<5x?x?xf32>) {
-       ^bb0(%arg1: f32, %arg2: f32):
-         %2 = mulf %arg1, %arg2 : f32
-         linalg.yield %2 : f32
-       } -> tensor<5x?x?xf32>
-  return %1 : tensor<5x?x?xf32>
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %c2 = constant 2 : index
+  %cst = constant dense<42.0> : tensor<f32>
+  %0 = dim %arg0, %c1 : tensor<5x?x?xf32>
+  %1 = dim %arg0, %c2 : tensor<5x?x?xf32>
+  %2 = linalg.init_tensor [5, %0, %1] : tensor<5x?x?xf32>
+  %3 = linalg.generic {
+    indexing_maps = [#map0, #map1, #map1],
+    iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%cst, %arg0 : tensor<f32>, tensor<5x?x?xf32>)
+    outs(%2 : tensor<5x?x?xf32>) {
+    ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
+      %4 = mulf %arg1, %arg2 : f32
+      linalg.yield %4 : f32
+    } -> tensor<5x?x?xf32>
+  return %3 : tensor<5x?x?xf32>
 }
 //   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 // CHECK-LABEL: func @generic_op_zero_dim_constant_fusion
 //       CHECK:   %[[CST:.*]] = constant {{.*}} : f32
 //       CHECK:   linalg.generic
-//       CHECK:   ^{{.*}}(%[[ARG1:.*]]: f32)
+//       CHECK:   ^{{.*}}(%[[ARG1:[a-zA-Z0-9_]*]]: f32, %{{.*}}: f32)
 //       CHECK:     mulf %[[CST]], %[[ARG1]]
 
 // -----
@@ -225,16 +278,23 @@ func @generic_op_zero_dim_constant_fusion(%arg0 : tensor<5x?x?xf32>)
 func @indexed_generic_op_zero_dim_constant_fusion
   (%arg0 : tensor<5x?x?xf32>) -> tensor<5x?x?xf32>
 {
-  %0 = constant dense<42.0> : tensor<f32>
-  %1 = linalg.indexed_generic {
-         indexing_maps = [#map0, #map1, #map1],
-         iterator_types = ["parallel", "parallel", "parallel"]}
-         ins(%0, %arg0 : tensor<f32>, tensor<5x?x?xf32>) {
-       ^bb0(%arg1 : index, %arg2 : index, %arg3 : index, %arg4: f32, %arg5: f32):
-         %2 = mulf %arg4, %arg5 : f32
-         linalg.yield %2 : f32
-       } -> tensor<5x?x?xf32>
-  return %1 : tensor<5x?x?xf32>
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %c2 = constant 2 : index
+  %cst = constant dense<42.0> : tensor<f32>
+  %0 = dim %arg0, %c1 : tensor<5x?x?xf32>
+  %1 = dim %arg0, %c2 : tensor<5x?x?xf32>
+  %2 = linalg.init_tensor [5, %0, %1] : tensor<5x?x?xf32>
+  %3 = linalg.indexed_generic {
+    indexing_maps = [#map0, #map1, #map1],
+    iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%cst, %arg0 : tensor<f32>, tensor<5x?x?xf32>)
+    outs(%2 : tensor<5x?x?xf32>) {
+    ^bb0(%arg1 : index, %arg2 : index, %arg3 : index, %arg4: f32, %arg5: f32, %arg6: f32):
+      %4 = mulf %arg4, %arg5 : f32
+      linalg.yield %4 : f32
+    } -> tensor<5x?x?xf32>
+  return %3 : tensor<5x?x?xf32>
 }
 //   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 // CHECK-LABEL: func @indexed_generic_op_zero_dim_constant_fusion
@@ -244,7 +304,7 @@ func @indexed_generic_op_zero_dim_constant_fusion
 //  CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]*]]: index
 //  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]*]]: index
 //  CHECK-SAME:     %[[ARG3:[a-zA-Z0-9]*]]: index
-//  CHECK-SAME:     %[[ARG4:.*]]: f32)
+//  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9_]*]]: f32, %{{.*}}: f32)
 //       CHECK:     mulf %[[CST]], %[[ARG4]]
 
 // -----
@@ -252,26 +312,33 @@ func @indexed_generic_op_zero_dim_constant_fusion
 #map0 = affine_map<(d0, d1) -> (d0, d1)>
 func @generic_op_indexed_generic_op_fusion(%arg0: tensor<?x?xi32>,
                                            %arg1: tensor<?x?xi32>) -> tensor<?x?xi32> {
-    %0 = linalg.generic {
-      indexing_maps = [#map0, #map0, #map0],
-      iterator_types = ["parallel", "parallel"] }
-      ins(%arg0, %arg1  : tensor<?x?xi32>, tensor<?x?xi32>) {
-    ^bb0(%arg2: i32, %arg3: i32):       // no predecessors
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %0 = dim %arg0, %c0 : tensor<?x?xi32>
+  %1 = dim %arg0, %c1 : tensor<?x?xi32>
+  %2 = linalg.init_tensor [%0, %1] : tensor<?x?xi32>
+  %3 = linalg.generic {
+    indexing_maps = [#map0, #map0, #map0],
+    iterator_types = ["parallel", "parallel"] }
+    ins(%arg0, %arg1  : tensor<?x?xi32>, tensor<?x?xi32>)
+    outs(%2 : tensor<?x?xi32>) {
+    ^bb0(%arg2: i32, %arg3: i32, %arg4: i32):       // no predecessors
       %10 = addi %arg2, %arg3 : i32
       linalg.yield %10 : i32
     } -> tensor<?x?xi32>
-    %1 = linalg.indexed_generic {
-      indexing_maps = [#map0, #map0],
-      iterator_types = ["parallel", "parallel"] }
-      ins(%0 : tensor<?x?xi32>) {
-    ^bb0(%arg2: index, %arg3: index, %arg4: i32):       // no predecessors
-      %2 = index_cast %arg2 : index to i32
-      %3 = index_cast %arg3 : index to i32
-      %4 = addi %arg4, %2 : i32
-      %5 = subi %4, %3 : i32
-      linalg.yield %5 : i32
+  %4 = linalg.indexed_generic {
+    indexing_maps = [#map0, #map0],
+    iterator_types = ["parallel", "parallel"] }
+    ins(%3 : tensor<?x?xi32>)
+    outs(%2 : tensor<?x?xi32>) {
+    ^bb0(%arg2: index, %arg3: index, %arg4: i32, %arg5: i32):       // no predecessors
+      %5 = index_cast %arg2 : index to i32
+      %6 = index_cast %arg3 : index to i32
+      %7 = addi %arg4, %5 : i32
+      %8 = subi %7, %6 : i32
+      linalg.yield %8 : i32
     } -> tensor<?x?xi32>
-  return %1 : tensor<?x?xi32>
+  return %4 : tensor<?x?xi32>
 }
 //   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
 // CHECK-LABEL: func @generic_op_indexed_generic_op_fusion
@@ -295,26 +362,33 @@ func @generic_op_indexed_generic_op_fusion(%arg0: tensor<?x?xi32>,
 #map0 = affine_map<(d0, d1) -> (d0, d1)>
 func @indexed_generic_op_generic_op_fusion(%arg0: tensor<?x?xi32>,
                                            %arg1: tensor<?x?xi32>) -> tensor<?x?xi32> {
-  %0 = linalg.indexed_generic {
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %0 = dim %arg0, %c0 : tensor<?x?xi32>
+  %1 = dim %arg0, %c1 : tensor<?x?xi32>
+  %2 = linalg.init_tensor [%0, %1] : tensor<?x?xi32>
+  %3 = linalg.indexed_generic {
     indexing_maps = [#map0, #map0],
     iterator_types = ["parallel", "parallel"] }
-    ins(%arg0 : tensor<?x?xi32>) {
-  ^bb0(%arg2: index, %arg3: index, %arg4: i32):       // no predecessors
-    %2 = index_cast %arg2 : index to i32
-    %3 = index_cast %arg3 : index to i32
-    %4 = addi %arg4, %2 : i32
-    %5 = subi %4, %3 : i32
-    linalg.yield %5 : i32
-  } -> tensor<?x?xi32>
-  %1 = linalg.generic {
+    ins(%arg0 : tensor<?x?xi32>)
+    outs(%2 : tensor<?x?xi32>) {
+    ^bb0(%arg2: index, %arg3: index, %arg4: i32, %arg5: i32):       // no predecessors
+      %4 = index_cast %arg2 : index to i32
+      %5 = index_cast %arg3 : index to i32
+      %6 = addi %arg4, %4 : i32
+      %7 = subi %6, %5 : i32
+      linalg.yield %7 : i32
+    } -> tensor<?x?xi32>
+  %4 = linalg.generic {
     indexing_maps = [#map0, #map0, #map0],
     iterator_types = ["parallel", "parallel"] }
-    ins(%0, %arg1 : tensor<?x?xi32>, tensor<?x?xi32>) {
-  ^bb0(%arg2: i32, %arg3: i32):       // no predecessors
-    %10 = addi %arg2, %arg3 : i32
-    linalg.yield %10 : i32
-  } -> tensor<?x?xi32>
-  return %1 : tensor<?x?xi32>
+    ins(%3, %arg1 : tensor<?x?xi32>, tensor<?x?xi32>)
+    outs(%2 : tensor<?x?xi32>) {
+    ^bb0(%arg2: i32, %arg3: i32, %arg4: i32):       // no predecessors
+      %10 = addi %arg2, %arg3 : i32
+      linalg.yield %10 : i32
+    } -> tensor<?x?xi32>
+  return %4 : tensor<?x?xi32>
 }
 //   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
 // CHECK-LABEL: func @indexed_generic_op_generic_op_fusion
@@ -339,29 +413,36 @@ func @indexed_generic_op_generic_op_fusion(%arg0: tensor<?x?xi32>,
 #map0 = affine_map<(d0, d1) -> (d1, d0)>
 #map1 = affine_map<(d0, d1) -> (d0, d1)>
 func @indexed_generic_op_fusion(%arg0: tensor<?x?xi32>) -> tensor<?x?xi32> {
-    %0 = linalg.indexed_generic {
-      indexing_maps = [#map0, #map0],
-      iterator_types = ["parallel", "parallel"] }
-      ins(%arg0 : tensor<?x?xi32>) {
-    ^bb0(%arg2: index, %arg3: index, %arg4: i32):       // no predecessors
-      %2 = index_cast %arg2 : index to i32
-      %3 = index_cast %arg3 : index to i32
-      %4 = addi %arg4, %2 : i32
-      %5 = subi %4, %3 : i32
-      linalg.yield %5 : i32
+  %c0 = constant 0 : index
+  %c1 = constant 1 : index
+  %0 = dim %arg0, %c0 : tensor<?x?xi32>
+  %1 = dim %arg0, %c1 : tensor<?x?xi32>
+  %2 = linalg.init_tensor [%0, %1] : tensor<?x?xi32>
+  %3 = linalg.indexed_generic {
+    indexing_maps = [#map0, #map0],
+    iterator_types = ["parallel", "parallel"] }
+    ins(%arg0 : tensor<?x?xi32>)
+    outs(%2 : tensor<?x?xi32>) {
+    ^bb0(%arg2: index, %arg3: index, %arg4: i32, %arg5: i32):       // no predecessors
+      %4 = index_cast %arg2 : index to i32
+      %5 = index_cast %arg3 : index to i32
+      %6 = addi %arg4, %4 : i32
+      %7 = subi %5, %6 : i32
+      linalg.yield %7 : i32
     } -> tensor<?x?xi32>
-    %1 = linalg.indexed_generic {
-      indexing_maps = [#map1, #map1],
-      iterator_types = ["parallel", "parallel"] }
-      ins(%0 : tensor<?x?xi32>) {
-    ^bb0(%arg2: index, %arg3: index, %arg4: i32):       // no predecessors
-      %2 = index_cast %arg2 : index to i32
-      %3 = index_cast %arg3 : index to i32
-      %4 = addi %arg4, %2 : i32
-      %5 = subi %4, %3 : i32
-      linalg.yield %5 : i32
+  %4= linalg.indexed_generic {
+    indexing_maps = [#map1, #map1],
+    iterator_types = ["parallel", "parallel"] }
+    ins(%3 : tensor<?x?xi32>)
+    outs(%2 : tensor<?x?xi32>) {
+    ^bb0(%arg2: index, %arg3: index, %arg4: i32, %arg5: i32):       // no predecessors
+      %5 = index_cast %arg2 : index to i32
+      %6 = index_cast %arg3 : index to i32
+      %7 = addi %arg4, %5 : i32
+      %8 = subi %7, %6 : i32
+      linalg.yield %8 : i32
     } -> tensor<?x?xi32>
-  return %1 : tensor<?x?xi32>
+  return %4 : tensor<?x?xi32>
 }
 //   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
 // CHECK-LABEL: func @indexed_generic_op_fusion
@@ -374,7 +455,7 @@ func @indexed_generic_op_fusion(%arg0: tensor<?x?xi32>) -> tensor<?x?xi32> {
 //      CHECK:   %[[ADD_OPERAND1:.+]] = index_cast %[[ARG1]] : index to i32
 //      CHECK:   %[[SUB_OPERAND1:.+]] = index_cast %[[ARG0]] : index to i32
 //      CHECK:   %[[VAL1:.+]] = addi %[[ARG2]], %[[ADD_OPERAND1]] : i32
-//      CHECK:   %[[VAL2:.+]] = subi %[[VAL1]], %[[SUB_OPERAND1]] : i32
+//      CHECK:   %[[VAL2:.+]] = subi %[[SUB_OPERAND1]], %[[VAL1]] : i32
 //      CHECK:   %[[ADD_OPERAND2:.+]] = index_cast %[[ARG0]] : index to i32
 //      CHECK:   %[[SUB_OPERAND2:.+]] = index_cast %[[ARG1]] : index to i32
 //      CHECK:   %[[VAL3:.+]] = addi %[[VAL2]], %[[ADD_OPERAND2]] : i32
@@ -389,25 +470,27 @@ func @scalar_indexed_generic_fusion
 {
   %c0 = constant 0 : index  
   %cst = constant dense<1.000000e+00> : tensor<10xf32>
-  %0 = linalg.indexed_generic
+  %0 = linalg.init_tensor [] : tensor<f32>
+  %1 = linalg.indexed_generic
     {indexing_maps = [affine_map<() -> ()>, affine_map<() -> ()>],
      iterator_types = []}
-    ins(%arg1 : tensor<i32>) {
-    ^bb0(%arg2: i32):  // no predecessors
+    ins(%arg1 : tensor<i32>) outs(%0 : tensor<f32>) {
+    ^bb0(%arg2: i32, %arg3: f32):  // no predecessors
       %3 = index_cast %arg2 : i32 to index
       %4 = tensor.extract %arg0[%3, %c0, %c0] : tensor<5x1x1xf32>
       linalg.yield %4 : f32
     } -> tensor<f32>
-  %1 = linalg.generic
+  %2 = linalg.init_tensor [10] : tensor<10xf32>
+  %3 = linalg.generic
    {indexing_maps = [affine_map<(d0) -> ()>, affine_map<(d0) -> (d0)>,
                      affine_map<(d0) -> (d0)>],
     iterator_types = ["parallel"]}
-    ins(%0, %cst : tensor<f32>, tensor<10xf32>) {
-    ^bb0(%arg2: f32, %arg3: f32):  // no predecessors
-      %3 = mulf %arg2, %arg3 : f32
-      linalg.yield %3 : f32
+    ins(%1, %cst : tensor<f32>, tensor<10xf32>) outs(%2 : tensor<10xf32>) {
+    ^bb0(%arg2: f32, %arg3: f32, %arg4: f32):  // no predecessors
+      %4 = mulf %arg2, %arg3 : f32
+      linalg.yield %4 : f32
     } -> tensor<10xf32>
-  return %1 : tensor<10xf32>
+  return %3 : tensor<10xf32>
 }
 //   CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0) -> ()>
 //   CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0)>
@@ -421,3 +504,35 @@ func @scalar_indexed_generic_fusion
 //       CHECK:     tensor.extract %[[ARG0]]
 //       CHECK:     linalg.yield
 //       CHECK   return %[[T0]]
+
+// -----
+
+func @constant_fusion(%arg0 : tensor<4xf32>) -> (tensor<4xf32>) {
+  %cst = constant dense<1.0> : tensor<4xf32>
+  %1 = linalg.init_tensor [4] : tensor<4xf32>
+  %2 = linalg.generic
+    {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>,
+                      affine_map<(d0) -> (d0)>],
+     iterator_types = ["parallel"]}
+    ins (%arg0, %cst : tensor<4xf32>, tensor<4xf32>)
+    outs (%1 : tensor<4xf32>) {
+    ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
+      %3 = addf %arg1, %arg2 : f32
+      linalg.yield %3 : f32
+    } -> tensor<4xf32>
+  return %2 : tensor<4xf32>
+}
+
+//  CHECK-DAG: #[[MAP:.+]] = affine_map<(d0) -> (d0)>
+//      CHECK: func @constant_fusion(%[[ARG0:.+]]: tensor<4xf32>)
+//  CHECK-DAG:   %[[CST:.+]] = constant 1.000000e+00 : f32
+//  CHECK-DAG:   %[[T0:.+]] = linalg.init_tensor [4] : tensor<4xf32>
+//      CHECK:   %[[T1:.+]] = linalg.generic
+// CHECK-SAME:     indexing_maps = [#[[MAP]], #[[MAP]]]
+// CHECK-SAME:     ins(%[[ARG0]] : tensor<4xf32>)
+// CHECK-SAME:     outs(%[[T0]] : tensor<4xf32>)
+//      CHECK:   ^{{.+}}(
+// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9_]+]]: f32, %[[ARG2:[a-zA-Z0-9_]+]]: f32)
+//      CHECK:     %[[T2:.+]] = addf %[[ARG1]], %[[CST]]
+//      CHECK:     linalg.yield %[[T2]]
+//      CHECK:   return %[[T1]]

diff  --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
index 6db48af3b573..c9f24844662f 100644
--- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
@@ -28,7 +28,8 @@ func @generalize_conv(%input : memref<1x225x225x3xf32>, %filter: memref<3x3x3x32
 // -----
 
 func @generalize_matmul_buffer(%A : memref<16x8xf32>, %B: memref<8x32xf32>, %C: memref<16x32xf32>) {
-  linalg.matmul ins(%A, %B: memref<16x8xf32>, memref<8x32xf32>) outs(%C: memref<16x32xf32>)
+  linalg.matmul ins(%A, %B: memref<16x8xf32>, memref<8x32xf32>)
+               outs(%C: memref<16x32xf32>)
   return
 }
 
@@ -45,7 +46,7 @@ func @generalize_matmul_buffer(%A : memref<16x8xf32>, %B: memref<8x32xf32>, %C:
 // CHECK: linalg.generic
 // CHECK-SAME: indexing_maps = [#[[A_MAP]], #[[B_MAP]], #[[C_MAP]]]
 // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
-// CHECK-SAME: ins(%[[A]], %[[B]]
+// CHECK-SAME:  ins(%[[A]], %[[B]]
 // CHECK-SAME: outs(%[[C]]
 
 // CHECK: ^{{.*}}(%[[A_ARG:.+]]: f32, %[[B_ARG:.+]]: f32, %[[C_ARG:.+]]: f32)
@@ -56,15 +57,16 @@ func @generalize_matmul_buffer(%A : memref<16x8xf32>, %B: memref<8x32xf32>, %C:
 // -----
 
 func @generalize_matmul_tensor(%A : tensor<16x8xf32>, %B: tensor<8x32xf32>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
-  %0 = linalg.matmul ins(%A, %B: tensor<16x8xf32>, tensor<8x32xf32>) init(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
+  %0 = linalg.matmul ins(%A, %B: tensor<16x8xf32>, tensor<8x32xf32>)
+                    outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
   return %0: tensor<16x32xf32>
 }
 
 // CHECK: func @generalize_matmul_tensor
 
 // CHECK: linalg.generic
-// CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<16x8xf32>, tensor<8x32xf32>)
-// CHECK-SAME: init(%{{.+}} : tensor<16x32xf32>)
+// CHECK-SAME:  ins(%{{.+}}, %{{.+}} : tensor<16x8xf32>, tensor<8x32xf32>)
+// CHECK-SAME: outs(%{{.+}} : tensor<16x32xf32>)
 
 // CHECK:      ^{{.*}}(%[[A_ARG:.+]]: f32, %[[B_ARG:.+]]: f32, %[[C_ARG:.+]]: f32)
 // CHECK-NEXT:   %[[MUL:.+]] = mulf %[[A_ARG]], %[[B_ARG]] : f32

diff  --git a/mlir/test/Dialect/Linalg/invalid.mlir b/mlir/test/Dialect/Linalg/invalid.mlir
index 8e98a80e77b1..95a663d19f0d 100644
--- a/mlir/test/Dialect/Linalg/invalid.mlir
+++ b/mlir/test/Dialect/Linalg/invalid.mlir
@@ -77,7 +77,7 @@ func @generic_wrong_dim_in_map(%arg0: memref<1xi32>) {
 // -----
 
 func @generic_one_d_view(%arg0: memref<?xf32, affine_map<(i)[off]->(off + i)>>) {
-  // expected-error @+1 {{op expected indexing_map #0 results to match view rank: 'memref<?xf32, affine_map<(d0)[s0] -> (d0 + s0)>>'}}
+  // expected-error @+1 {{expected shaped value rank (1) to match the result rank of indexing_map #0 (2)}}
   linalg.generic {
     indexing_maps =  [ affine_map<() -> (0, 0)> ],
     iterator_types = []}
@@ -143,9 +143,9 @@ func @generic_empty_region(%arg0: memref<f32>) {
 
 func @generic_empty_region(%arg0: memref<f32>) {
   %f0 = constant 0.0: f32
-  // expected-error @+1 {{linalg.generic' op expected region with 1 block}}
+  // expected-error @+1 {{linalg.generic' op expected 1 region with 1 block}}
   linalg.generic {
-    indexing_maps =  [ affine_map<() -> (0)> ],
+    indexing_maps =  [ affine_map<() -> ()> , affine_map<() -> ()> ],
     iterator_types = []}
     ins(%arg0 : memref<f32>)
    outs(%arg0 : memref<f32>) {
@@ -155,12 +155,12 @@ func @generic_empty_region(%arg0: memref<f32>) {
 // -----
 
 func @generic_mismatched_num_arguments(%arg0: memref<f32>) {
-  // expected-error @+1 {{op expected number of block arguments to match number of operands}}
+  // expected-error @+1 {{expected as many non-induction variable region arguments as the number of shaped operands}}
   linalg.generic {
-      indexing_maps =  [ affine_map<() -> (0)> ],
+      indexing_maps =  [ affine_map<() -> ()>, affine_map<() -> ()> ],
       iterator_types = []}
-      outs(%arg0 : memref<f32>) {
-    ^bb(%f: f32, %g: f32):
+      outs(%arg0, %arg0 : memref<f32>, memref<f32>) {
+    ^bb(%f: f32):
       linalg.yield %f: f32
   }
 }
@@ -168,9 +168,9 @@ func @generic_mismatched_num_arguments(%arg0: memref<f32>) {
 // -----
 
 func @generic_block_arg_type(%arg0: memref<f32>) {
-  // expected-error @+1 {{op expected block argument 1 of the same type as elemental type of output operand: 'memref<f32>'}}
+  // expected-error @+1 {{expected type of bb argument #0 ('i1') to match element type of corresponding shaped operand ('f32')}}
   linalg.generic {
-    indexing_maps =  [ affine_map<() -> (0)> ],
+    indexing_maps =  [ affine_map<() -> ()> ],
     iterator_types = []}
       outs(%arg0 : memref<f32>) {
     ^bb(%i: i1):
@@ -180,12 +180,12 @@ func @generic_block_arg_type(%arg0: memref<f32>) {
 
 // -----
 
-func @indexed_generic_block_arg_count(%arg0: memref<f32>) {
-  // expected-error @+1 {{op expected number of block arguments to match number of operands + number of loops}}
+func @indexed_generic_block_arg_count(%arg0: memref<?xf32>) {
+  // expected-error @+1 {{expected as many non-induction variable region arguments as the number of shaped operands}}
   linalg.indexed_generic {
-    indexing_maps =  [ affine_map<(d0) -> (d0)> ],
+    indexing_maps =  [ affine_map<(i) -> (i)> ],
     iterator_types = ["parallel"]}
-      outs(%arg0 : memref<f32>) {
+      outs(%arg0 : memref<?xf32>) {
     ^bb(%f: f32):
       linalg.yield %f : f32
   }
@@ -193,12 +193,12 @@ func @indexed_generic_block_arg_count(%arg0: memref<f32>) {
 
 // -----
 
-func @indexed_generic_block_induction_var_arg_type(%arg0: memref<f32>) {
-  // expected-error @+1 {{op expected block argument 1 to be an index}}
+func @indexed_generic_block_induction_var_arg_type(%arg0: memref<?xf32>) {
+  // expected-error @+1 {{op expected index block argument #0}}
   linalg.indexed_generic {
     indexing_maps =  [ affine_map<(d0) -> (d0)> ],
     iterator_types = ["parallel"]}
-      outs(%arg0 : memref<f32>) {
+      outs(%arg0 : memref<?xf32>) {
     ^bb(%i: f64, %f: f32):
     linalg.yield %f: f32
   }
@@ -206,12 +206,12 @@ func @indexed_generic_block_induction_var_arg_type(%arg0: memref<f32>) {
 
 // -----
 
-func @indexed_generic_block_arg_type(%arg0: memref<f32>) {
-  // expected-error @+1 {{op expected block argument 2 of the same type as elemental type of output operand: 'memref<f32>'}}
+func @indexed_generic_block_arg_type(%arg0: memref<?xf32>) {
+  // expected-error @+1 {{expected type of bb argument #1 ('i1') to match element type of corresponding shaped operand ('f32')}}
   linalg.indexed_generic {
     indexing_maps =  [ affine_map<(d0) -> (d0)> ],
     iterator_types = ["parallel"]}
-      outs(%arg0 : memref<f32>) {
+      outs(%arg0 : memref<?xf32>) {
     ^bb(%i: index, %f: i1):
     linalg.yield %i: index
   }
@@ -220,7 +220,7 @@ func @indexed_generic_block_arg_type(%arg0: memref<f32>) {
 // -----
 
 func @indexed_generic_arg_count(%arg0: memref<f32>) {
-  // expected-error @+1 {{op expected number of block arguments to match number of operands + number of loops}}
+  // expected-error @+1 {{expected as many non-induction variable region arguments as the number of shaped operands}}
   linalg.indexed_generic {
     indexing_maps =  [ affine_map<()[] -> ()> ],
     iterator_types = []}
@@ -233,19 +233,6 @@ func @indexed_generic_arg_count(%arg0: memref<f32>) {
 
 // -----
 
-func @indexed_generic_induction_var_arg_type(%arg0: memref<f32>) {
-  // expected-error @+1 {{op expected block argument 1 to be an index}}
-  linalg.indexed_generic {
-    iterator_types = ["parallel"],
-    indexing_maps = [ affine_map<(i) -> (i)> ]}
-      outs(%arg0 : memref<f32>) {
-    ^bb(%0: i32, %1: f32):
-      linalg.yield %1: f32
-  }
-}
-
-// -----
-
 func @indexed_generic_result_count(%arg0: memref<?xf32>) {
   // expected-error @+6 {{op expected number of yield values (1) to match the number of operands of the enclosing LinalgOp (2)}}
   linalg.indexed_generic {
@@ -273,19 +260,36 @@ func @generic_result_0_element_type(%arg0: memref<?xf32, affine_map<(i)[off]->(o
 
 // -----
 
-func @generic_result_tensor_type(%arg0: memref<?xf32, affine_map<(i)[off]->(off + i)>>) {
-  // expected-error @+1 {{op result #0 must be ranked tensor of any type values, but got 'f32'}}
+func @generic_result_tensor_type(%arg0: memref<?xf32, affine_map<(i)[off]->(off + i)>>,
+                                 %arg1: tensor<?xf32>) {
+  // expected-error @+1 {{expected type of operand #1 ('tensor<?xf32>') to match type of corresponding result ('f32')}}
   %0 = linalg.generic {
-    indexing_maps = [ affine_map<(i) -> (i)> ],
+    indexing_maps = [ affine_map<(i) -> (i)> , affine_map<(i) -> (i)> ],
     iterator_types = ["parallel"]}
-      ins(%arg0 : memref<?xf32, affine_map<(i)[off]->(off + i)>>) {
-    ^bb(%i: f32):
+       ins(%arg0 : memref<?xf32, affine_map<(i)[off]->(off + i)>>)
+      outs(%arg1 : tensor<?xf32>) {
+    ^bb(%i: f32, %j: f32):
       linalg.yield %i: f32
   } -> f32
 }
 
 // -----
 
+func @generic_result_tensor_type(%arg0: memref<?xf32, affine_map<(i)[off]->(off + i)>>,
+                                 %arg1: tensor<?xf32>) {
+  // expected-error @+1 {{unexpected output tensor expression in indexing map #0 a.k.a 'd0' is function of reduction iterator 'd0'}}
+  %0 = linalg.generic {
+    indexing_maps = [ affine_map<(i) -> (i)> , affine_map<(i) -> (i)> ],
+    iterator_types = ["reduction"]}
+       ins(%arg0 : memref<?xf32, affine_map<(i)[off]->(off + i)>>)
+      outs(%arg1 : tensor<?xf32>) {
+    ^bb(%i: f32, %j: f32):
+      linalg.yield %i: f32
+  } -> tensor<?xf32>
+}
+
+// -----
+
 func @generic(%arg0: memref<?x?xi4>) {
   // expected-error @+2 {{op expects regions to end with 'linalg.yield', found 'std.addf'}}
   // expected-note @+1 {{in custom textual format, the absence of terminator implies 'linalg.yield'}}
@@ -301,12 +305,17 @@ func @generic(%arg0: memref<?x?xi4>) {
 
 // -----
 
-func @conv_rank_limit(%arg0: memref<?xf32>, %arg1: memref<?xf32>, %arg2: memref<?xf32>) {
-  // expected-error @+1 {{expects memref ranks to be greater than 2}}
-  linalg.conv(%arg0, %arg1, %arg2) : memref<?xf32>, memref<?xf32>, memref<?xf32>
-}
-
-// -----
+// This test is currently disabled: subject to verifier ordering issues.
+// Instead, when the ranks are not greater than 2, an assertion will be triggered
+// in LinalgStructuredOps.td::ConvOp::iterator_types() for now because the
+// verifier inspects the iterator_types. This is slated to become an
+// autogenerated op in the future, alleviating the issue.
+// func @conv_rank_limit(%arg0: memref<?xf32>, %arg1: memref<?xf32>, %arg2: memref<?xf32>) {
+//   // DISABLED_expected -error @+1 {{expects memref ranks to be greater than 2}}
+//   linalg.conv(%arg0, %arg1, %arg2) : memref<?xf32>, memref<?xf32>, memref<?xf32>
+// }
+//
+// // -----
 
 // expected-error @+1 {{unknown Linalg type}}
 !invalid_type = type !linalg.unknown
@@ -367,7 +376,7 @@ func @reshape(%arg0: memref<?x?x?xf32>) {
 func @pooling_rank_mismatch(%arg0: memref<?x?x?xf32>,
                             %arg1: memref<2x3xf32>,
                             %arg2: memref<?x?x?xf32>) {
-  // expected-error @+1 {{expects memref ranks to match}}
+  // expected-error @+1 {{expected shaped value rank (2) to match the result rank of indexing_map #1 (3)}}
   linalg.pooling_max(%arg0, %arg1, %arg2) {strides = [2, 1, 2]}:
     memref<?x?x?xf32>, memref<2x3xf32>, memref<?x?x?xf32>
   return
@@ -376,7 +385,7 @@ func @pooling_rank_mismatch(%arg0: memref<?x?x?xf32>,
 // -----
 
 func @named_ops(%a3: memref<?x?x?xf32>, %b3: memref<?x?xf32>, %c3: memref<?x?x?xf32>) {
-  // expected-error @+1 {{op expected indexing_map #1 results to match view rank: 'memref<?x?xf32>'}}
+  // expected-error @+1 {{expected shaped value rank (2) to match the result rank of indexing_map #1 (3)}}
   linalg.batch_matmul ins(%a3, %b3: memref<?x?x?xf32>, memref<?x?xf32>)
                      outs(%c3 : memref<?x?x?xf32>)
   return
@@ -384,18 +393,8 @@ func @named_ops(%a3: memref<?x?x?xf32>, %b3: memref<?x?xf32>, %c3: memref<?x?x?x
 
 // -----
 
-func @empty_init_expected(%m: memref<?x?xf32>, %t: tensor<?x?xf32>) {
-  // expected-error @+1 {{expected empty `init` when op has no results or no reduction dims}}
-  linalg.matmul ins(%m, %m: memref<?x?xf32>, memref<?x?xf32>)
-               outs(%m : memref<?x?xf32>)
-               init(%t : tensor<?x?xf32>)
-  return
-}
-
-// -----
-
 func @incorrect_region_arg_count(%m: memref<?x?xf32>) {
-  // expected-error @+3 {{region expects 3 args, got 4}}
+  // expected-error @+3 {{region expects 3 args, got 2}}
   %res = linalg.matmul ins(%m, %m : memref<?x?xf32>, memref<?x?xf32>)
                        -> tensor<?x?xf32>, tensor<?x?xf32>
   return
@@ -403,30 +402,10 @@ func @incorrect_region_arg_count(%m: memref<?x?xf32>) {
 
 // -----
 
-func @single_tensor_result(%m: memref<?x?xf32>, %t: tensor<?x?xf32>) {
-  // expected-error @+1 {{expected single tensor result when reduction present}}
-  %res:2 = linalg.matmul ins(%m : memref<?x?xf32>)
-                        init(%t, %t : tensor<?x?xf32>, tensor<?x?xf32>)
-                          -> tensor<?x?xf32>, tensor<?x?xf32>
-  return
-}
-
-// -----
-
-func @matching_inits(%m: memref<?x?xf32>, %t: tensor<?x?xf32>) {
-  // expected-error @+1 {{expected #init tensors to match #results when reduction present}}
-  %res = linalg.matmul ins(%m, %m : memref<?x?xf32>, memref<?x?xf32>)
-                      init(%t, %t : tensor<?x?xf32>, tensor<?x?xf32>)
-                        -> tensor<?x?xf32>
-  return
-}
-
-// -----
-
 func @matching_inits(%m: memref<?x?xf32>, %t: tensor<?x?xf32>) {
-  // expected-error @+1 {{expected init tensor #0 of the same type as result #0}}
+  // expected-error @+1 {{expected type of operand #2 ('tensor<?x?xf32>') to match type of corresponding result ('tensor<?xf32>')}}
   %res = linalg.matmul ins(%m, %m : memref<?x?xf32>, memref<?x?xf32>)
-                      init(%t : tensor<?x?xf32>)
+                      outs(%t : tensor<?x?xf32>)
                         -> tensor<?xf32>
   return
 }

diff  --git a/mlir/test/Dialect/Linalg/parallel-loops.mlir b/mlir/test/Dialect/Linalg/parallel-loops.mlir
index 95eb997f4dbd..8d365af6a5a3 100644
--- a/mlir/test/Dialect/Linalg/parallel-loops.mlir
+++ b/mlir/test/Dialect/Linalg/parallel-loops.mlir
@@ -64,7 +64,7 @@ func @lower_outer_parallel(%A: memref<?x?x?x?xf32>, %B: memref<?x?x?xf32>) {
 
 #accesses = [
   affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>,
-  affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d4, d5)>
+  affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d4, d3)>
 ]
 #trait = {
   iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"],
@@ -94,4 +94,4 @@ func @lower_mixed_parallel(%A: memref<?x?x?x?x?x?xf32>, %B: memref<?x?x?x?xf32>)
 //       CHECK:     scf.parallel (%[[IV3:.*]], %[[IV4:.*]]) = (%[[C0]], %[[C0]]) to (%[[D3]], %[[D4]]) step (%[[C1]], %[[C1]])
 //       CHECK:       scf.for %[[IV5:.*]] = %[[C0]] to %[[D5]] step %[[C1]]
 //       CHECK:       load %{{.*}}[%[[IV0]], %[[IV1]], %[[IV2]], %[[IV3]], %[[IV4]], %[[IV5]]]
-//       CHECK:       store %{{.*}}, %{{.*}}[%[[IV0]], %[[IV2]], %[[IV4]], %[[IV5]]]
+//       CHECK:       store %{{.*}}, %{{.*}}[%[[IV0]], %[[IV1]], %[[IV4]], %[[IV3]]]

diff  --git a/mlir/test/Dialect/Linalg/reshape_fusion.mlir b/mlir/test/Dialect/Linalg/reshape_fusion.mlir
index 66e07cc56d65..92805218dde7 100644
--- a/mlir/test/Dialect/Linalg/reshape_fusion.mlir
+++ b/mlir/test/Dialect/Linalg/reshape_fusion.mlir
@@ -1,20 +1,21 @@
-// RUN: mlir-opt %s -linalg-fusion-for-tensor-ops -split-input-file | FileCheck %s
+// RUN: mlir-opt %s -linalg-fusion-for-tensor-ops -split-input-file -verify-each=0 | FileCheck %s
 
 #map0 = affine_map<(d0, d1, d2) -> (d2, d0, d1)>
 #map1 = affine_map<(d0, d1, d2) -> (d1, d2, d0)>
-func @generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?x?xf32>,
+func @generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x4x?xf32>,
                                          %arg1 : tensor<?x?x?xf32>) ->
                                          tensor<?x?x?xf32>
 {
   %0 = linalg.tensor_reshape %arg0 [affine_map<(i, j, k, l) -> (i)>,
                                     affine_map<(i, j, k, l) -> (j, k)>,
                                     affine_map<(i, j, k, l) -> (l)>] :
-    tensor<?x?x?x?xf32> into tensor<?x?x?xf32>
+    tensor<?x?x4x?xf32> into tensor<?x?x?xf32>
   %1 = linalg.generic {
      indexing_maps = [#map0, #map1, #map1],
      iterator_types = ["parallel", "parallel", "parallel"]}
-      ins(%0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
+       ins(%0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
+      outs(%0 : tensor<?x?x?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %s: f32):       // no predecessors
       %1 = mulf %arg3, %arg4 : f32
       linalg.yield %1 : f32
   } -> tensor<?x?x?xf32>
@@ -22,44 +23,58 @@ func @generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?x?xf32>,
 }
 
 //  CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0)>
-//  CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d1)>
-//  CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)>
-//  CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d1, d2)>
-//  CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d3, d0, d1)>
+//  CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)>
+//  CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+//  CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d1)>
+//  CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)>
+//  CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d1, d2)>
+//  CHECK-DAG: #[[MAP6:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d3, d0, d1)>
 //      CHECK: func @generic_op_reshape_producer_fusion
-// CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?x?xf32>
+// CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x4x?xf32>
 // CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
-//      CHECK:   %[[T0:.+]] = linalg.tensor_reshape %[[ARG1]]
+//  CHECK-DAG:   %[[C0:.+]] = constant 0 : index
+//  CHECK-DAG:   %[[C1:.+]] = constant 1 : index
+//  CHECK-DAG:   %[[C2:.+]] = constant 2 : index
+//  CHECK-DAG:   %[[C4:.+]] = constant 4 : index
+//      CHECK:   %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
 // CHECK-SAME:     [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
-// CHECK-SAME:     tensor<?x?x?xf32> into tensor<?x?x?x?xf32>
-//      CHECK:   %[[T1:.+]] = linalg.generic
-// CHECK-SAME:     indexing_maps = [#[[MAP3]], #[[MAP4]], #[[MAP4]]]
+//      CHECK:   %[[T1:.+]] = linalg.tensor_reshape %[[ARG1]]
+// CHECK-SAME:     [#[[MAP0]], #[[MAP3]], #[[MAP4]]]
+//  CHECK-DAG:   %[[D0:.+]] = dim %[[T0]], %[[C0]]
+//  CHECK-DAG:   %[[D1:.+]] = dim %[[T0]], %[[C1]]
+//  CHECK-DAG:   %[[D2:.+]] = dim %[[T0]], %[[C2]]
+//      CHECK:   %[[D3:.+]] = divi_unsigned %[[D0]], %[[C4]]
+//      CHECK:   %[[T2:.+]] = linalg.init_tensor [%[[D1]], %[[D2]], %[[D3]], 4]
+//      CHECK:   %[[T3:.+]] = linalg.generic
+// CHECK-SAME:     indexing_maps = [#[[MAP5]], #[[MAP6]], #[[MAP6]]]
 // CHECK-SAME:     ["parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME:     ins(%[[ARG0]], %[[T0]] : tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
-//      CHECK:   %[[T2:.+]] = linalg.tensor_reshape
-// CHECK-SAME:     [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
-// CHECK-SAME:     tensor<?x?x?x?xf32> into tensor<?x?x?xf32>
-//      CHECK:   return %[[T2]]
+// CHECK-SAME:     ins(%[[ARG0]], %[[T1]] : tensor<?x?x4x?xf32>, tensor<?x?x?x4xf32>)
+// CHECK-SAME:     outs(%[[T2]] : tensor<?x?x?x4xf32>)
+//      CHECK:   %[[T4:.+]] = linalg.tensor_reshape %[[T3]]
+// CHECK-SAME:     [#[[MAP0]], #[[MAP3]], #[[MAP4]]]
+// CHECK-SAME:     tensor<?x?x?x4xf32> into tensor<?x?x?xf32>
+//      CHECK:   return %[[T4]]
 
 // -----
 
 #map0 = affine_map<(d0, d1) -> (d0, d1)>
 func @generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?xf32>,
                                          %arg1 : tensor<?x?xf32>) ->
-                                         tensor<?x?x4x5xf32>
+                                         tensor<?x4x?x5xf32>
 {
   %0 = linalg.generic {
      indexing_maps = [#map0, #map0, #map0],
      iterator_types = ["parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
+       ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%arg0 : tensor<?x?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %s: f32):       // no predecessors
       %1 = mulf %arg3, %arg4 : f32
       linalg.yield %1 : f32
   } -> tensor<?x?xf32>
   %1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
                                  affine_map<(i, j, k, l) -> (j, k, l)>] :
-    tensor<?x?xf32> into tensor<?x?x4x5xf32>
-  return %1 : tensor<?x?x4x5xf32>
+    tensor<?x?xf32> into tensor<?x4x?x5xf32>
+  return %1 : tensor<?x4x?x5xf32>
 }
 
 //  CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0)>
@@ -68,31 +83,40 @@ func @generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?xf32>,
 //      CHECK: func @generic_op_reshape_consumer_fusion
 // CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?xf32>
 // CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?xf32>
+//  CHECK-DAG:   %[[C0:.+]] = constant 0 : index
+//  CHECK-DAG:   %[[C1:.+]] = constant 1 : index
+//  CHECK-DAG:   %[[C20:.+]] = constant 20 : index
 //      CHECK:   %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
 // CHECK-SAME:     [#[[MAP0]], #[[MAP1]]]
-// CHECK-SAME:     tensor<?x?xf32> into tensor<?x?x4x5xf32>
+// CHECK-SAME:     tensor<?x?xf32> into tensor<?x4x?x5xf32>
 //      CHECK:   %[[T1:.+]] = linalg.tensor_reshape %[[ARG1]]
 // CHECK-SAME:     [#[[MAP0]], #[[MAP1]]]
-// CHECK-SAME:     tensor<?x?xf32> into tensor<?x?x4x5xf32>
-//      CHECK:   %[[T2:.+]] = linalg.generic
+// CHECK-SAME:     tensor<?x?xf32> into tensor<?x4x?x5xf32>
+//  CHECK-DAG:   %[[D0:.+]] = dim %[[ARG0]], %[[C0]]
+//  CHECK-DAG:   %[[D1:.+]] = dim %[[ARG0]], %[[C1]]
+//      CHECK:   %[[D2:.+]] = divi_unsigned %[[D1]], %[[C20]]
+//      CHECK:   %[[T2:.+]] = linalg.init_tensor [%[[D0]], 4, %[[D2]], 5]
+//      CHECK:   %[[T3:.+]] = linalg.generic
 // CHECK-SAME:     indexing_maps = [#[[MAP2]], #[[MAP2]], #[[MAP2]]]
 // CHECK-SAME:     ["parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME:     ins(%[[T0]], %[[T1]] : tensor<?x?x4x5xf32>, tensor<?x?x4x5xf32>)
-//      CHECK:   return %[[T2]] : tensor<?x?x4x5xf32>
+// CHECK-SAME:     ins(%[[T0]], %[[T1]] : tensor<?x4x?x5xf32>, tensor<?x4x?x5xf32>)
+// CHECK-SAME:     outs(%[[T2]] : tensor<?x4x?x5xf32>)
+//      CHECK:   return %[[T3]] : tensor<?x4x?x5xf32>
 
 
 // -----
 
 func @reshape_as_consumer_permutation
   (%a : tensor<?x?x?xf32>, %b : tensor<?x?xf32>)
-    -> tensor<?x?x?x?x?x?xf32> {
+    -> tensor<?x2x?x3x4x?xf32> {
   %c = linalg.generic {
          indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>,
                           affine_map<(d0, d1, d2) -> (d1, d2)>,
                           affine_map<(d0, d1, d2) -> (d0, d2, d1)>],
          iterator_types = ["parallel", "parallel", "parallel"]}
-         ins(%a, %b : tensor<?x?x?xf32>, tensor<?x?xf32>) {
-       ^bb0(%arg0 : f32, %arg1: f32):
+          ins(%a, %b : tensor<?x?x?xf32>, tensor<?x?xf32>)
+         outs(%a : tensor<?x?x?xf32>) {
+       ^bb0(%arg0 : f32, %arg1: f32, %s: f32):
          %1 = addf %arg0, %arg1 : f32
          linalg.yield %1 : f32
        } -> tensor<?x?x?xf32>
@@ -100,8 +124,8 @@ func @reshape_as_consumer_permutation
          [affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1)>,
           affine_map<(d0, d1, d2, d3, d4, d5) -> (d2)>,
           affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4, d5)>]
-       : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32>
-  return %d : tensor<?x?x?x?x?x?xf32>
+       : tensor<?x?x?xf32> into tensor<?x2x?x3x4x?xf32>
+  return %d : tensor<?x2x?x3x4x?xf32>
 }
 //  CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2)>
 //  CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4)>
@@ -114,17 +138,28 @@ func @reshape_as_consumer_permutation
 //      CHECK: func @reshape_as_consumer_permutation
 // CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
 // CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?xf32>
+//  CHECK-DAG:   %[[C0:.+]] = constant 0 : index
+//  CHECK-DAG:   %[[C1:.+]] = constant 1 : index
+//  CHECK-DAG:   %[[C2:.+]] = constant 2 : index
+//  CHECK-DAG:   %[[C12:.+]] = constant 12 : index
 //      CHECK:   %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
 // CHECK-SAME:     [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
-// CHECK-SAME:     tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32>
+// CHECK-SAME:     tensor<?x?x?xf32> into tensor<3x4x?x?x2x?xf32>
 //      CHECK:   %[[T1:.+]] = linalg.tensor_reshape %[[ARG1]]
 // CHECK-SAME:     [#[[MAP3]], #[[MAP4]]]
-// CHECK-SAME:     tensor<?x?xf32> into tensor<?x?x?x?xf32>
-//      CHECK:   %[[T2:.+]] = linalg.generic
+// CHECK-SAME:     tensor<?x?xf32> into tensor<3x4x?x?xf32>
+//  CHECK-DAG:   %[[D0:.+]] = dim %[[ARG0]], %[[C0]]
+//      CHECK:   %[[D1:.+]] = divi_unsigned %[[D0]], %[[C2]]
+//  CHECK-DAG:   %[[D2:.+]] = dim %[[ARG0]], %[[C2]]
+//  CHECK-DAG:   %[[D3:.+]] = dim %[[ARG0]], %[[C1]]
+//  CHECK-DAG:   %[[D4:.+]] = divi_unsigned %[[D3]], %[[C12]]
+//      CHECK:   %[[T2:.+]] = linalg.init_tensor [%[[D1]], 2, %[[D2]], 3, 4, %[[D4]]]
+//      CHECK:   %[[T3:.+]] = linalg.generic
 // CHECK-SAME:     indexing_maps = [#[[MAP5]], #[[MAP6]], #[[MAP7]]]
 // CHECK-SAME:     ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]
-// CHECK-SAME:     ins(%[[T0]], %[[T1]] : tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?xf32>)
-//      CHECK:   return %[[T2]] : tensor<?x?x?x?x?x?xf32>
+// CHECK-SAME:     ins(%[[T0]], %[[T1]] : tensor<3x4x?x?x2x?xf32>, tensor<3x4x?x?xf32>)
+// CHECK-SAME:     outs(%[[T2]] : tensor<?x2x?x3x4x?xf32>)
+//      CHECK:   return %[[T3]] : tensor<?x2x?x3x4x?xf32>
 
 // -----
 
@@ -138,8 +173,9 @@ func @generic_op_reshape_consumer_static(%arg0: tensor<264x4xf32>)
   %0 = linalg.generic {
      indexing_maps = [#map0, #map0, #map0],
      iterator_types = ["parallel", "parallel"]}
-      ins(%arg0, %cst : tensor<264x4xf32>, tensor<264x4xf32>) {
-    ^bb0(%arg1: f32, %arg2: f32):  // no predecessors
+       ins(%arg0, %cst : tensor<264x4xf32>, tensor<264x4xf32>)
+      outs(%arg0 : tensor<264x4xf32>) {
+    ^bb0(%arg1: f32, %arg2: f32, %s: f32):  // no predecessors
       %2 = mulf %arg1, %arg2 : f32
       linalg.yield %2 : f32
     } -> tensor<264x4xf32>
@@ -156,21 +192,27 @@ func @generic_op_reshape_consumer_static(%arg0: tensor<264x4xf32>)
 //      CHECK:   %[[T0:.+]] = linalg.tensor_reshape %[[ARG0]]
 // CHECK-SAME:     [#[[MAP0]], #[[MAP1]]]
 // CHECK-SAME:     tensor<264x4xf32> into tensor<8x33x4xf32>
-//      CHECK:   %[[T1:.+]] = linalg.generic
+//      CHECK:   %[[T1:.+]] = linalg.init_tensor [8, 33, 4] : tensor<8x33x4xf32>
+//      CHECK:   %[[T2:.+]] = linalg.generic
 // CHECK-SAME:     indexing_maps = [#[[MAP2]], #[[MAP2]]]
 // CHECK-SAME:     ["parallel", "parallel", "parallel"]
 // CHECK-SAME:     ins(%[[T0]] : tensor<8x33x4xf32>)
-//      CHECK:   return %[[T1]] : tensor<8x33x4xf32>
+// CHECK-SAME:     outs(%[[T1]] : tensor<8x33x4xf32>)
+//      CHECK:   return %[[T2]] : tensor<8x33x4xf32>
 
 // -----
 
-func @scalar_reshape(%arg0 : tensor<1x10xf32>, %arg1 : tensor<1xf32>)
-                     -> tensor<1x10xf32> {
+func @scalar_reshape(
+  %arg0 : tensor<1x10xf32>, %arg1 : tensor<1xf32>, %shape : tensor<10xf32>)
+    -> tensor<1x10xf32>
+{
   %0 = linalg.tensor_reshape %arg1 [] : tensor<1xf32> into tensor<f32>
   %1 = linalg.generic
     {indexing_maps = [affine_map<(d0) -> ()>, affine_map<(d0) -> (d0)>],
-     iterator_types = ["parallel"]} ins(%0 : tensor<f32>) {
-  ^bb0(%arg2: f32):  // no predecessors
+     iterator_types = ["parallel"]}
+     ins(%0 : tensor<f32>)
+    outs(%shape : tensor<10xf32>) {
+  ^bb0(%arg2: f32, %s: f32):  // no predecessors
     linalg.yield %arg2 : f32
   } -> tensor<10xf32>
   %2 = linalg.tensor_reshape %1 [affine_map<(d0, d1) -> (d0, d1)>]
@@ -185,11 +227,13 @@ func @scalar_reshape(%arg0 : tensor<1x10xf32>, %arg1 : tensor<1xf32>)
 // CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<1xf32>
 //      CHECK:   %[[T0:.+]] = linalg.tensor_reshape %[[ARG1]] []
 // CHECK-SAME:     tensor<1xf32> into tensor<f32>
-//      CHECK:   %[[T1:.+]] = linalg.generic
+//      CHECK:   %[[T1:.+]] = linalg.init_tensor [1, 10] : tensor<1x10xf32>
+//      CHECK:   %[[T2:.+]] = linalg.generic
 // CHECK-SAME:     indexing_maps = [#[[MAP0]], #[[MAP1]]]
 // CHECK-SAME:     iterator_types = ["parallel", "parallel"]
 // CHECK-SAME:     ins(%[[T0]] : tensor<f32>)
-//      CHECK:   return %[[T1]] : tensor<1x10xf32>
+// CHECK-SAME:     outs(%[[T1]] : tensor<1x10xf32>)
+//      CHECK:   return %[[T2]] : tensor<1x10xf32>
 
 // -----
 
@@ -206,8 +250,9 @@ func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x4x?xi32>,
   %1 = linalg.indexed_generic {
      indexing_maps = [#map0, #map1, #map1],
      iterator_types = ["parallel", "parallel", "parallel"]}
-      ins(%0, %arg1 : tensor<?x?x?xi32>, tensor<?x?x?xi32>) {
-    ^bb0(%arg3 : index, %arg4 : index, %arg5 : index, %arg6: i32, %arg7: i32):
+       ins(%0, %arg1 : tensor<?x?x?xi32>, tensor<?x?x?xi32>)
+      outs(%0 : tensor<?x?x?xi32>) {
+    ^bb0(%arg3 : index, %arg4 : index, %arg5 : index, %arg6: i32, %arg7: i32, %s: i32):
       %1 = muli %arg6, %arg7 : i32
       %2 = index_cast %arg3 : index to i32
       %3 = addi %1, %2 : i32
@@ -228,7 +273,8 @@ func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x4x?xi32>,
 //       CHECK:   ^{{.*}}(
 //  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: index, %[[ARG3:[a-zA-Z0-9]+]]: index,
 //  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9]+]]: index, %[[ARG5:[a-zA-Z0-9]+]]: index,
-//  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: i32, %[[ARG7:[a-zA-Z0-9]+]]: i32)
+//  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: i32, %[[ARG7:[a-zA-Z0-9]+]]: i32,
+//  CHECK-SAME:     %[[ARG8:[a-zA-Z0-9]+]]: i32)
 //       CHECK:     %[[T3:.+]] = affine.apply #[[MAP]](%[[ARG2]], %[[ARG3]])
 //       CHECK:     %[[T4:.+]] = muli %[[ARG6]], %[[ARG7]]
 //       CHECK:     %[[T5:.+]] = index_cast %[[T3]]
@@ -249,8 +295,9 @@ func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?xi32>,
   %0 = linalg.indexed_generic {
      indexing_maps = [#map0, #map0, #map0],
      iterator_types = ["parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?xi32>, tensor<?x?xi32>) {
-    ^bb0(%arg3 : index, %arg4 : index, %arg5: i32, %arg6: i32):       // no predecessors
+       ins(%arg0, %arg1 : tensor<?x?xi32>, tensor<?x?xi32>)
+      outs(%arg0 : tensor<?x?xi32>) {
+    ^bb0(%arg3 : index, %arg4 : index, %arg5: i32, %arg6: i32, %s: i32):       // no predecessors
       %1 = muli %arg5, %arg6 : i32
       %2 = index_cast %arg3 : index to i32
       %3 = addi %1, %2 : i32
@@ -271,7 +318,8 @@ func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?xi32>,
 //       CHECK:   ^{{.*}}(
 //  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: index, %[[ARG3:[a-zA-Z0-9]+]]: index,
 //  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9]+]]: index, %[[ARG5:[a-zA-Z0-9]+]]: index,
-//  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: i32, %[[ARG7:[a-zA-Z0-9]+]]: i32)
+//  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: i32, %[[ARG7:[a-zA-Z0-9]+]]: i32,
+//  CHECK-SAME:     %[[ARG8:[a-zA-Z0-9]+]]: i32)
 //       CHECK:     %[[T3:.+]] = affine.apply #[[MAP]](%[[ARG3]], %[[ARG4]], %[[ARG5]])
 //       CHECK:     %[[T4:.+]] = muli %[[ARG6]], %[[ARG7]]
 //       CHECK:     %[[T5:.+]] = index_cast %[[ARG2]]
@@ -283,15 +331,16 @@ func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?xi32>,
 // -----
 
 func @reshape_as_consumer_permutation
-  (%a : tensor<210x6x4xi32>, %b : tensor<210x4xi32>)
+  (%a : tensor<210x6x4xi32>, %b : tensor<210x4xi32>, %shape : tensor<6x4x210xi32>)
     -> tensor<2x3x4x5x6x7xi32> {
   %c = linalg.indexed_generic {
          indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>,
                           affine_map<(d0, d1, d2) -> (d1, d2)>,
                           affine_map<(d0, d1, d2) -> (d0, d2, d1)>],
          iterator_types = ["parallel", "parallel", "parallel"]}
-         ins(%a, %b : tensor<210x6x4xi32>, tensor<210x4xi32>) {
-       ^bb0(%arg0 : index, %arg1 : index, %arg2 : index, %arg3 : i32, %arg4: i32):
+          ins(%a, %b : tensor<210x6x4xi32>, tensor<210x4xi32>)
+         outs(%shape : tensor<6x4x210xi32>) {
+       ^bb0(%arg0 : index, %arg1 : index, %arg2 : index, %arg3 : i32, %arg4: i32, %s: i32):
          %1 = addi %arg3, %arg4 : i32
          %2 = index_cast %arg0 : index to i32
          %3 = addi %1, %2 : i32
@@ -327,36 +376,42 @@ func @reshape_as_consumer_permutation
 //  CHECK-SAME:     [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
 //   CHECK-DAG:   %[[T1:.+]] = linalg.tensor_reshape %[[ARG1]]
 //  CHECK-SAME:     [#[[MAP3]], #[[MAP4]]]
-//       CHECK:   %[[T2:.+]] = linalg.indexed_generic
+//       CHECK:   %[[T2:.+]] = linalg.init_tensor [2, 3, 4, 5, 6, 7]
+//       CHECK:   %[[T3:.+]] = linalg.indexed_generic
 //  CHECK-SAME:     indexing_maps = [#[[MAP7]], #[[MAP8]], #[[MAP9]]]
-//  CHECK-SAME:     ins(%[[T0]], %[[T1]] : tensor<{{.+}}>, tensor<{{.+}}>)
+//  CHECK-SAME:     ins(%[[T0]], %[[T1]] : tensor<5x6x7x2x3x4xi32>, tensor<5x6x7x4xi32>)
+//  CHECK-SAME:     outs(%[[T2]] : tensor<2x3x4x5x6x7xi32>)
 //       CHECK:   ^{{.+}}(
 //  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: index, %[[ARG3:[a-zA-Z0-9]+]]: index,
 //  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9]+]]: index, %[[ARG5:[a-zA-Z0-9]+]]: index,
 //  CHECK-SAME:     %[[ARG6:[a-zA-Z0-9]+]]: index, %[[ARG7:[a-zA-Z0-9]+]]: index,
-//  CHECK-SAME:     %[[ARG8:[a-zA-Z0-9]+]]: i32, %[[ARG9:[a-zA-Z0-9]+]]: i32)
-//   CHECK-DAG:       %[[T3:.+]] = affine.apply #[[MAP5]](%[[ARG2]], %[[ARG3]])
-//   CHECK-DAG:       %[[T4:.+]] = affine.apply #[[MAP6]](%[[ARG4]], %[[ARG5]], %[[ARG6]])
-//   CHECK-DAG:       %[[T5:.+]] = addi %[[ARG8]], %[[ARG9]]
-//       CHECK:       %[[T6:.+]] = index_cast %[[T3]]
-//       CHECK:       %[[T7:.+]] = addi %[[T5]], %[[T6]]
-//       CHECK:       %[[T8:.+]] = index_cast %[[T4]]
-//       CHECK:       %[[T9:.+]] = addi %[[T7]], %[[T8]]
-//       CHECK:       %[[T10:.+]] = index_cast %[[ARG7]]
-//       CHECK:       %[[T11:.+]] = addi %[[T9]], %[[T10]]
+//  CHECK-SAME:     %[[ARG8:[a-zA-Z0-9]+]]: i32, %[[ARG9:[a-zA-Z0-9]+]]: i32,
+//  CHECK-SAME:     %[[ARG10:[a-zA-Z0-9]+]]: i32)
+//   CHECK-DAG:       %[[T4:.+]] = affine.apply #[[MAP5]](%[[ARG2]], %[[ARG3]])
+//   CHECK-DAG:       %[[T5:.+]] = affine.apply #[[MAP6]](%[[ARG4]], %[[ARG5]], %[[ARG6]])
+//   CHECK-DAG:       %[[T6:.+]] = addi %[[ARG8]], %[[ARG9]]
+//       CHECK:       %[[T7:.+]] = index_cast %[[T4]]
+//       CHECK:       %[[T8:.+]] = addi %[[T6]], %[[T7]]
+//       CHECK:       %[[T9:.+]] = index_cast %[[T5]]
+//       CHECK:       %[[T10:.+]] = addi %[[T8]], %[[T9]]
+//       CHECK:       %[[T11:.+]] = index_cast %[[ARG7]]
+//       CHECK:       %[[T12:.+]] = addi %[[T10]], %[[T11]]
 
 // -----
 
-func @reshape_as_producer_projected_permutation
-  (%arg0 : tensor<33x8x?xi32>) -> tensor<264x?x4xi32> {
+func @reshape_as_producer_projected_permutation(
+    %arg0 : tensor<33x8x?xi32>, %shape : tensor<264x?x4xi32>) -> tensor<264x?x4xi32>
+{
   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1, d2) -> (d0, d1)>,
                                     affine_map<(d0, d1, d2) -> (d2)>]
     : tensor<33x8x?xi32> into tensor<264x?xi32>
   %1 = linalg.indexed_generic
     {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1)>,
                       affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
-     iterator_types = ["parallel", "parallel", "parallel"]} ins(%0 : tensor<264x?xi32>) {
-  ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: i32):  // no predecessors
+     iterator_types = ["parallel", "parallel", "parallel"]}
+     ins(%0 : tensor<264x?xi32>)
+    outs(%shape : tensor<264x?x4xi32>) {
+  ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: i32, %s: i32):  // no predecessors
     %2 = index_cast %arg1 : index to i32
     %3 = addi %arg4, %2 : i32
     %4 = index_cast %arg2 : index to i32
@@ -384,7 +439,8 @@ func @reshape_as_producer_projected_permutation
 //  CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: index,
 //  CHECK-SAME:     %[[ARG3:[a-zA-Z0-9]+]]: index,
 //  CHECK-SAME:     %[[ARG4:[a-zA-Z0-9]+]]: index,
-//  CHECK-SAME:     %[[ARG5:[a-zA-Z0-9]+]]: i32)
+//  CHECK-SAME:     %[[ARG5:[a-zA-Z0-9]+]]: i32,
+//  CHECK-SAME:     %[[ARG7:[a-zA-Z0-9]+]]: i32)
 //       CHECK:       %[[T0:.+]] = affine.apply #[[MAP2]](%[[ARG1]], %[[ARG2]])
 //       CHECK:       %[[T1:.+]] = index_cast %[[T0]] : index to i32
 //       CHECK:       %[[T2:.+]] = addi %[[ARG5]], %[[T1]] : i32
@@ -409,8 +465,9 @@ func @generic_op_reshape_consumer_fusion_projected(%arg0 : tensor<?x?xf32>,
   %0 = linalg.generic {
      indexing_maps = [#map0, #map0, #map1],
      iterator_types = ["parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
+       ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%arg0 : tensor<?x?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %s: f32):       // no predecessors
       %1 = mulf %arg3, %arg4 : f32
       linalg.yield %1 : f32
   } -> tensor<?x?xf32>

diff  --git a/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir b/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir
index 468ae80a1288..aff1447a63c7 100644
--- a/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir
+++ b/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir
@@ -1,9 +1,5 @@
 // RUN: mlir-opt -split-input-file -linalg-fold-reshape-ops-by-linearization %s | FileCheck %s
 
-
-// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
-// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-
 #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
 func @generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xf32>,
                                          %arg1 : tensor<?x?x4x?xf32>) ->
@@ -14,37 +10,39 @@ func @generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xf32>,
                                     affine_map<(i, j, k, l) -> (l)>] :
     tensor<?x?x?xf32> into tensor<?x?x4x?xf32>
   %1 = linalg.generic {
-     indexing_maps = [#map0, #map0, #map0],
-     iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
-      ins(%0, %arg1 : tensor<?x?x4x?xf32>, tensor<?x?x4x?xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
+    indexing_maps = [#map0, #map0, #map0],
+    iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
+    ins(%0, %arg1 : tensor<?x?x4x?xf32>, tensor<?x?x4x?xf32>)
+    outs(%0 : tensor<?x?x4x?xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
       %1 = mulf %arg3, %arg4 : f32
       linalg.yield %1 : f32
   } -> tensor<?x?x4x?xf32>
   return %1 : tensor<?x?x4x?xf32>
 }
 
-// CHECK-LABEL: func @generic_op_reshape_producer_fusion
+//   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
+//   CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+//       CHECK: func @generic_op_reshape_producer_fusion
+//  CHECK-SAME:   %[[ARG0:.+]]: tensor<?x?x?xf32>
 //       CHECK: linalg.generic
 //  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.generic
-
+//  CHECK-SAME:   ins(%[[ARG0]], %{{.+}} : tensor<?x?x?xf32>, tensor<?x?x4x?xf32>)
+//  CHECK-SAME:   outs(%{{.+}} : tensor<?x?x4x?xf32>)
 
 // -----
 
-// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
-
 #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
 func @generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xf32>,
                                          %arg1 : tensor<?x?x4x5xf32>) ->
                                          tensor<?x?xf32>
 {
   %0 = linalg.generic {
-     indexing_maps = [#map0, #map0, #map0],
-     iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?x4x5xf32>, tensor<?x?x4x5xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
+    indexing_maps = [#map0, #map0, #map0],
+    iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
+    ins(%arg0, %arg1 : tensor<?x?x4x5xf32>, tensor<?x?x4x5xf32>)
+    outs(%arg0 : tensor<?x?x4x5xf32>){
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
       %1 = mulf %arg3, %arg4 : f32
       linalg.yield %1 : f32
   } -> tensor<?x?x4x5xf32>
@@ -54,10 +52,21 @@ func @generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xf32>,
   return %1 : tensor<?x?xf32>
 }
 
-// CHECK-LABEL: func @generic_op_reshape_consumer_fusion
-//       CHECK: linalg.generic
-//  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.generic
+
+//   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+//   CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
+//       CHECK: func @generic_op_reshape_consumer_fusion
+//  CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x4x5xf32>
+//   CHECK-DAG:   %[[C0:.+]] = constant 0 : index
+//   CHECK-DAG:   %[[C1:.+]] = constant 1 : index
+//   CHECK-DAG:   %[[C20:.+]] = constant 20 : index
+//       CHECK:   %[[T0:.+]] = dim %[[ARG0]], %[[C0]]
+//       CHECK:   %[[T1:.+]] = dim %[[ARG0]], %[[C1]]
+//       CHECK:   %[[T2:.+]] = muli %[[T1]], %[[C20]]
+//       CHECK:   %[[T3:.+]] = linalg.init_tensor [%[[T0]], %[[T2]]]
+//       CHECK:   linalg.generic
+//  CHECK-SAME:     indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP1]]]
+//  CHECK-SAME:     outs(%[[T3]] : tensor<?x?xf32>)
 
 // -----
 
@@ -69,8 +78,9 @@ func @generic_op_reshape_consumer_nofusion(%arg0 : tensor<?x?x?x5xf32>,
   %0 = linalg.generic {
      indexing_maps = [#map0, #map0, #map0],
      iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
-      ins(%arg0, %arg1 : tensor<?x?x?x5xf32>, tensor<?x?x?x5xf32>) {
-    ^bb0(%arg3: f32, %arg4: f32):       // no predecessors
+      ins(%arg0, %arg1 : tensor<?x?x?x5xf32>, tensor<?x?x?x5xf32>)
+      outs(%arg0 : tensor<?x?x?x5xf32>) {
+    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):       // no predecessors
       %1 = mulf %arg3, %arg4 : f32
       linalg.yield %1 : f32
   } -> tensor<?x?x?x5xf32>
@@ -81,14 +91,11 @@ func @generic_op_reshape_consumer_nofusion(%arg0 : tensor<?x?x?x5xf32>,
 }
 
 // CHECK-LABEL: func @generic_op_reshape_consumer_nofusion
-//       CHECK: linalg.tensor_reshape
+//       CHECK:   %[[T0:.+]] = linalg.generic
+//       CHECK:   linalg.tensor_reshape %[[T0]]
 
 // -----
 
-
-// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
-// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-
 #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
 func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xi32>)
   -> tensor<?x?x4x?xi32> {
@@ -99,8 +106,9 @@ func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xi32>)
   %1 = linalg.indexed_generic {
     indexing_maps = [#map0, #map0],
     iterator_types = ["parallel", "parallel", "parallel", "parallel"] }
-    ins(%0 : tensor<?x?x4x?xi32>) {
-  ^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32):       // no predecessors
+    ins(%0 : tensor<?x?x4x?xi32>)
+    outs(%0 : tensor<?x?x4x?xi32>) {
+  ^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32, %arg7 : i32):       // no predecessors
     %2 = index_cast %arg2 : index to i32
     %3 = addi %arg6, %2 : i32
     linalg.yield %3 : i32
@@ -108,25 +116,24 @@ func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xi32>)
   return %1 : tensor<?x?x4x?xi32>
 }
 
-// CHECK-LABEL: func @indexed_generic_op_reshape_producer_fusion
-//   CHECK-NOT: linalg.tensor_reshape
-//       CHECK: linalg.indexed_generic
-//  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.tensor_reshape
+//   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
+//   CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+//       CHECK: func @indexed_generic_op_reshape_producer_fusion
+//  CHECK-SAME:   %[[ARG0:.+]]: tensor<?x?x?xi32>
+//       CHECK:   linalg.indexed_generic
+//  CHECK-SAME:     indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
+//  CHECK-SAME:     ins(%[[ARG0]] : tensor<?x?x?xi32>)
 
 // -----
 
-// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
-
 #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
 func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xi32>)
   -> tensor<?x?xi32> {
   %0 = linalg.indexed_generic {
     indexing_maps = [#map0, #map0],
     iterator_types = ["parallel", "parallel", "parallel", "parallel"] }
-    ins(%arg0 : tensor<?x?x4x5xi32>) {
-  ^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32):       // no predecessors
+    ins(%arg0 : tensor<?x?x4x5xi32>) outs(%arg0 : tensor<?x?x4x5xi32>) {
+  ^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32, %arg7: i32):       // no predecessors
     %2 = index_cast %arg2 : index to i32
     %3 = addi %arg6, %2 : i32
     linalg.yield %3 : i32
@@ -137,105 +144,124 @@ func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xi32>)
   return %1 : tensor<?x?xi32>
 }
 
+//   CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+//   CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
 // CHECK-LABEL: func @indexed_generic_op_reshape_consumer_fusion
-//   CHECK-NOT: linalg.tensor_reshape
-//       CHECK: linalg.indexed_generic
-//  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.tensor_reshape
+//  CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x4x5xi32>
+//   CHECK-DAG:   %[[C0:.+]] = constant 0 : index
+//   CHECK-DAG:   %[[C1:.+]] = constant 1 : index
+//   CHECK-DAG:   %[[C20:.+]] = constant 20 : index
+//       CHECK:   %[[T0:.+]] = dim %[[ARG0]], %[[C0]]
+//       CHECK:   %[[T1:.+]] = dim %[[ARG0]], %[[C1]]
+//       CHECK:   %[[T2:.+]] = muli %[[T1]], %[[C20]]
+//       CHECK:   %[[T3:.+]] = linalg.init_tensor [%[[T0]], %[[T2]]]
+//       CHECK:   linalg.indexed_generic
+//  CHECK-SAME:     indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
+//  CHECK-SAME:     outs(%[[T3]] : tensor<?x?xi32>)
+//   CHECK-NOT:   linalg.tensor_reshape
 
 // -----
 
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1 + d2 * 7)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-
 #map0 = affine_map<(d0, d1, d2) -> (d0)>
 #map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
 #map2 = affine_map<(d0, d1, d2) -> (d0, d2, d1)>
 #map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 func @generic_op_021_permultation_reshape_producer_fusion(%arg0 : tensor<3x35xf32>) -> tensor<3x7x5xf32> {
   %0 = linalg.tensor_reshape %arg0 [#map0, #map1] : tensor<3x35xf32> into tensor<3x5x7xf32>
-  %1 = linalg.generic {indexing_maps = [#map2, #map3], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0 : tensor<3x5x7xf32>) {
-    ^bb0(%arg2: f32):  // no predecessors
+  %1 = linalg.init_tensor [3, 7, 5] : tensor<3x7x5xf32>
+  %2 = linalg.generic
+    {indexing_maps = [#map2, #map3],
+     iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%0 : tensor<3x5x7xf32>) outs(%1 : tensor<3x7x5xf32>) {
+    ^bb0(%arg2: f32, %arg3 : f32):  // no predecessors
       linalg.yield %arg2 : f32
     } -> tensor<3x7x5xf32>
-    return %1 : tensor<3x7x5xf32>
+    return %2 : tensor<3x7x5xf32>
 }
 
+// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1 + d2 * 7)>
+// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 // CHECK-LABEL: func @generic_op_021_permultation_reshape_producer_fusion
-//   CHECK-NOT: linalg.tensor_reshape
-//       CHECK: linalg.generic
-//  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.tensor_reshape
+//   CHECK-NOT:   linalg.tensor_reshape
+//       CHECK:   linalg.generic
+//  CHECK-SAME:     indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
 
 // -----
 
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0 * 7 + d1)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-
 #map0 = affine_map<(d0, d1, d2) -> (d0)>
 #map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
 #map2 = affine_map<(d0, d1, d2) -> (d1, d2, d0)>
 #map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 func @generic_op_120_permultation_reshape_producer_fusion(%arg0 : tensor<3x35xf32>) -> tensor<5x7x3xf32> {
   %0 = linalg.tensor_reshape %arg0 [#map0, #map1] : tensor<3x35xf32> into tensor<3x5x7xf32>
-  %1 = linalg.generic {indexing_maps = [#map2, #map3], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0 : tensor<3x5x7xf32>) {
-    ^bb0(%arg2: f32):  // no predecessors
+  %1 = linalg.init_tensor [5, 7, 3] : tensor<5x7x3xf32>
+  %2 = linalg.generic
+    {indexing_maps = [#map2, #map3],
+     iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%0 : tensor<3x5x7xf32>) outs(%1 : tensor<5x7x3xf32>) {
+    ^bb0(%arg2: f32, %arg3: f32):  // no predecessors
       linalg.yield %arg2 : f32
     } -> tensor<5x7x3xf32>
-    return %1 : tensor<5x7x3xf32>
+    return %2 : tensor<5x7x3xf32>
 }
 
-// CHECK-LABEL: func @generic_op_120_permultation_reshape_producer_fusion
-//   CHECK-NOT: linalg.tensor_reshape
-//       CHECK: linalg.generic
-//  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.tensor_reshape
+//   CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0 * 7 + d1)>
+//   CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+//       CHECK: func @generic_op_120_permultation_reshape_producer_fusion
+//   CHECK-NOT:   linalg.tensor_reshape
+//       CHECK:   linalg.generic
+//  CHECK-SAME:     indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
 
 // -----
 
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d1, d0 * 7 + d2)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-
 #map0 = affine_map<(d0, d1, d2) -> (d0)>
 #map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
 #map2 = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
 #map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 func @generic_op_102_permultation_reshape_producer_fusion(%arg0 : tensor<3x35xf32>) -> tensor<5x3x7xf32> {
   %0 = linalg.tensor_reshape %arg0 [#map0, #map1] : tensor<3x35xf32> into tensor<3x5x7xf32>
-  %1 = linalg.generic {indexing_maps = [#map2, #map3], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0 : tensor<3x5x7xf32>) {
-    ^bb0(%arg2: f32):  // no predecessors
+  %1 = linalg.init_tensor [5, 3, 7] : tensor<5x3x7xf32>
+  %2 = linalg.generic
+    {indexing_maps = [#map2, #map3],
+     iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%0 : tensor<3x5x7xf32>) outs(%1 : tensor<5x3x7xf32>) {
+    ^bb0(%arg2: f32, %arg3: f32):  // no predecessors
       linalg.yield %arg2 : f32
     } -> tensor<5x3x7xf32>
-    return %1 : tensor<5x3x7xf32>
+    return %2 : tensor<5x3x7xf32>
 }
 
-// CHECK-LABEL: func @generic_op_102_permultation_reshape_producer_fusion
-//   CHECK-NOT: linalg.tensor_reshape
-//       CHECK: linalg.generic
-//  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.tensor_reshape
-
-// -----
 
-// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d1, d0 * 7 + d2)>
+//   CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d1, d0 * 7 + d2)>
+//   CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+//       CHECK: func @generic_op_102_permultation_reshape_producer_fusion
+//   CHECK-NOT:   linalg.tensor_reshape
+//       CHECK:   linalg.generic
+//  CHECK-SAME:     indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
 
+// -----
 
 #map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
 #map1 = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
 #map2 = affine_map<(d0, d1, d2) -> (d0)>
 #map3 = affine_map<(d0, d1, d2) -> (d1, d2)>
 func @generic_op_102_permultation_reshape_consumer_fusion(%arg0 : tensor<3x5x7xf32>) -> tensor<5x21xf32> {
-  %0 = linalg.generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%arg0 : tensor<3x5x7xf32>) {
-    ^bb0(%arg2: f32):  // no predecessors
+  %0 = linalg.init_tensor [5, 3, 7] : tensor<5x3x7xf32>
+  %1 = linalg.generic
+    {indexing_maps = [#map0, #map1],
+     iterator_types = ["parallel", "parallel", "parallel"]}
+    ins(%arg0 : tensor<3x5x7xf32>) outs(%0 : tensor<5x3x7xf32>) {
+    ^bb0(%arg2: f32, %arg3 : f32):  // no predecessors
       linalg.yield %arg2 : f32
   } -> tensor<5x3x7xf32>
-  %1 = linalg.tensor_reshape %0 [#map2, #map3] : tensor<5x3x7xf32> into tensor<5x21xf32>
-  return %1 : tensor<5x21xf32>
+  %2 = linalg.tensor_reshape %1 [#map2, #map3] : tensor<5x3x7xf32> into tensor<5x21xf32>
+  return %2 : tensor<5x21xf32>
 }
 
-// CHECK-LABEL: func @generic_op_102_permultation_reshape_consumer_fusion
-//   CHECK-NOT: linalg.tensor_reshape
-//       CHECK: linalg.generic
-//  CHECK-SAME:   indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
-//   CHECK-NOT: linalg.tensor_reshape
+
+//   CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+//   CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d1, d0 * 7 + d2)>
+//       CHECK: func @generic_op_102_permultation_reshape_consumer_fusion
+//   CHECK-NOT:   linalg.tensor_reshape
+//       CHECK:   linalg.generic
+//  CHECK-SAME:     indexing_maps = [#[[$MAP0]], #[[$MAP1]]]

diff  --git a/mlir/test/Dialect/Linalg/roundtrip.mlir b/mlir/test/Dialect/Linalg/roundtrip.mlir
index be785ceb70d6..c4eb8f8eac67 100644
--- a/mlir/test/Dialect/Linalg/roundtrip.mlir
+++ b/mlir/test/Dialect/Linalg/roundtrip.mlir
@@ -300,7 +300,7 @@ func @pooling_sum(%arg0: memref<?x?x?xf32>,
 func @generic(%arg0: memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>,
               %arg1: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>) {
   linalg.generic #trait
-      ins(%arg0 : memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>)
+       ins(%arg0 : memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>)
       outs(%arg1 : memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>)
       attrs = {foo = 1} {
     ^bb(%0: vector<3x4xi4>, %1: f32) :
@@ -314,14 +314,14 @@ func @generic(%arg0: memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>,
 //  CHECK-SAME:     indexing_maps = [#{{[0-9a-z]*}}, #{{[0-9a-z]*}}],
 //  CHECK-SAME:     iterator_types = ["parallel", "parallel", "parallel"],
 //  CHECK-SAME:     library_call = "some_external_function_name_1"}
-//  CHECK-SAME:     ins({{.*}} : memref<?x?xvector<3x4xi4>, #[[$strided2D]]>)
+//  CHECK-SAME:      ins({{.*}} : memref<?x?xvector<3x4xi4>, #[[$strided2D]]>)
 //  CHECK-SAME:     outs({{.*}} : memref<?x?x?xf32, #[[$strided3D]]>)
 //  CHECK-SAME:     {foo = 1 : i64}
 
 func @generic_with_tensor_input(%arg0: tensor<?x?xvector<3x4xi4>>,
                                 %arg1: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>) {
   linalg.generic #trait
-      ins(%arg0 : tensor<?x?xvector<3x4xi4>>)
+       ins(%arg0 : tensor<?x?xvector<3x4xi4>>)
       outs(%arg1 : memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>)
       attrs = {foo = 1} {
     ^bb(%0: vector<3x4xi4>, %1: f32) :
@@ -358,14 +358,14 @@ func @generic_without_inputs(%arg0 : memref<?x?x?xf32>) {
 
 // -----
 
-#accesses = [
+#accesses2 = [
   affine_map<(i, j, k) -> (j, i)>,
   affine_map<(i, j, k) -> (i, k, i + j)>,
   affine_map<(i, j, k) -> (i, k, i + j)>
 ]
 
 #trait2 = {
-  indexing_maps = #accesses,
+  indexing_maps = #accesses2,
   iterator_types = ["parallel", "parallel", "parallel"],
   library_call = "some_external_function_name_1"
 }
@@ -374,9 +374,10 @@ func @generic_with_tensor_input_and_output(
     %arg0: tensor<?x?xvector<3x4xi4>>, %arg1: tensor<?x?x?xf32>)
     -> (tensor<?x?x?xf32>) {
   %0 = linalg.generic #trait2
-      ins(%arg0, %arg1 : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+       ins(%arg0, %arg1 : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+      outs(%arg1 : tensor<?x?x?xf32>)
       attrs = {foo = 1} {
-    ^bb(%0: vector<3x4xi4>, %1: f32) :
+    ^bb(%0: vector<3x4xi4>, %1: f32, %2: f32) :
       %f0 = constant 0.0 : f32
       linalg.yield %f0 : f32
   } -> tensor<?x?x?xf32>
@@ -386,21 +387,22 @@ func @generic_with_tensor_input_and_output(
 //       CHECK:   linalg.generic {
 //  CHECK-SAME:     indexing_maps = [#{{.*}}, #{{.*}}], iterator_types = ["parallel", "parallel", "parallel"],
 //  CHECK-SAME:     library_call = "some_external_function_name_1"}
-//  CHECK-SAME:     ins({{.*}} : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+//  CHECK-SAME:      ins({{.*}} : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+//  CHECK-SAME:     outs({{.*}} : tensor<?x?x?xf32>)
 //  CHECK-SAME:     {foo = 1 : i64}
 //       CHECK:     -> tensor<?x?x?xf32>
 //       CHECK:   return {{.*}} : tensor<?x?x?xf32>
 
 // -----
 
-#accesses = [
+#accesses3 = [
   affine_map<(i, j, k) -> (j, i)>,
   affine_map<(i, j, k) -> (i, k, i + j)>,
   affine_map<(i, j, k) -> (i, k, i + j)>
 ]
 
-#trait2 = {
-  indexing_maps = #accesses,
+#trait3 = {
+  indexing_maps = #accesses3,
   iterator_types = ["parallel", "parallel", "parallel"],
   library_call = "some_external_function_name_1"
 }
@@ -408,10 +410,11 @@ func @generic_with_tensor_input_and_output(
 func @indexed_generic_with_tensor_input_and_output(
     %arg0: tensor<?x?xvector<3x4xi4>>, %arg1: tensor<?x?x?xf32>)
     -> (tensor<?x?x?xf32>) {
-  %0 = linalg.indexed_generic #trait2
-      ins(%arg0, %arg1 : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+  %0 = linalg.indexed_generic #trait3
+       ins(%arg0, %arg1 : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+      outs(%arg1 : tensor<?x?x?xf32>)
       attrs = {foo = 1} {
-    ^bb(%i: index, %j: index, %k: index, %0: vector<3x4xi4>, %1: f32) :
+    ^bb(%i: index, %j: index, %k: index, %0: vector<3x4xi4>, %1: f32, %2: f32) :
       %f0 = constant 0.0 : f32
       linalg.yield %f0 : f32
   } -> tensor<?x?x?xf32>
@@ -421,7 +424,8 @@ func @indexed_generic_with_tensor_input_and_output(
 //       CHECK:   linalg.indexed_generic {
 //  CHECK-SAME:     indexing_maps = [#{{.*}}, #{{.*}}], iterator_types = ["parallel", "parallel", "parallel"],
 //  CHECK-SAME:     library_call = "some_external_function_name_1"}
-//  CHECK-SAME:     ins({{.*}} : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+//  CHECK-SAME:      ins({{.*}} : tensor<?x?xvector<3x4xi4>>, tensor<?x?x?xf32>)
+//  CHECK-SAME:     outs({{.*}} : tensor<?x?x?xf32>)
 //  CHECK-SAME:     {foo = 1 : i64}
 //       CHECK:     -> tensor<?x?x?xf32>
 //       CHECK:   return {{.*}} : tensor<?x?x?xf32>
@@ -439,21 +443,23 @@ func @indexed_generic_with_tensor_input_and_output(
   library_call = "some_broadcast_external_fn"
 }
 
-func @generic_op_zero_rank(%arg0: tensor<f32>) -> (tensor<3x4xf32>)
+func @generic_op_zero_rank(%arg0: tensor<f32>, %arg1 : tensor<3x4xf32>) -> (tensor<3x4xf32>)
 {
   %0 = linalg.generic #trait_broadcast
-      ins(%arg0 : tensor<f32>) {
-    ^bb(%a: f32) :
+       ins(%arg0 : tensor<f32>)
+      outs(%arg1 : tensor<3x4xf32>) {
+    ^bb(%a: f32, %b: f32) :
       linalg.yield %a : f32
   } -> tensor<3x4xf32>
   return %0 : tensor<3x4xf32>
 }
 
-func @indexed_generic_op_zero_rank(%arg0: tensor<f32>) -> (tensor<3x4xf32>)
+func @indexed_generic_op_zero_rank(%arg0: tensor<f32>, %arg1 : tensor<3x4xf32>) -> (tensor<3x4xf32>)
 {
   %0 = linalg.indexed_generic #trait_broadcast
-      ins(%arg0 : tensor<f32>) {
-    ^bb(%i: index, %j: index, %a: f32) :
+       ins(%arg0 : tensor<f32>)
+      outs(%arg1 : tensor<3x4xf32>) {
+    ^bb(%i: index, %j: index, %a: f32, %b: f32) :
       linalg.yield %a : f32
   } -> tensor<3x4xf32>
   return %0 : tensor<3x4xf32>
@@ -478,7 +484,7 @@ func @indexed_generic_op_zero_rank(%arg0: tensor<f32>) -> (tensor<3x4xf32>)
 func @generic_region(%arg0: memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>,
                      %arg1: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>) {
   linalg.generic #trait3
-      ins(%arg0 : memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>)
+       ins(%arg0 : memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>)
       outs(%arg1 : memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>)
       attrs = {foo = 1} {
     ^bb(%a: vector<3x4xi4>, %b: f32) :
@@ -491,7 +497,7 @@ func @generic_region(%arg0: memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1
 //  CHECK-SAME:     indexing_maps = [#{{[0-9a-z]*}}, #{{[0-9a-z]*}}],
 //  CHECK-SAME:     iterator_types = ["parallel", "parallel", "parallel"],
 //  CHECK-SAME:     library_call = "some_external_function_name_2"
-//  CHECK-SAME:     ins({{.*}} : memref<?x?xvector<3x4xi4>, #[[$strided2D]]>)
+//  CHECK-SAME:      ins({{.*}} : memref<?x?xvector<3x4xi4>, #[[$strided2D]]>)
 //  CHECK-SAME:     outs({{.*}} : memref<?x?x?xf32, #[[$strided3D]]>)
 //  CHECK-SAME:     attrs = {foo = 1 : i64} {
 //       CHECK:  ^{{.*}}(%{{.*}}: vector<3x4xi4>, %{{.*}}: f32):
@@ -500,7 +506,7 @@ func @generic_region(%arg0: memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1
 func @indexed_generic(%arg0: memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>,
                       %arg1: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>) {
   linalg.indexed_generic #trait3
-      ins(%arg0 : memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>)
+       ins(%arg0 : memref<?x?xvector<3x4xi4>, offset: ?, strides: [?, 1]>)
       outs(%arg1 : memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>)
       attrs = {foo = 1} {
     ^bb(%i: index, %j: index, %k: index, %a: vector<3x4xi4>, %b: f32) :
@@ -564,8 +570,8 @@ func @reshape_static(%arg0: memref<3x4x5xf32>, %arg1: tensor<3x4x5xf32>, %arg2:
                                      affine_map<(i, j, k, l, m) -> (l, m)>] :
     tensor<3x4x5xf32> into tensor<1x3x4x1x5xf32>
   %rt0 = linalg.tensor_reshape %t0 [affine_map<(i, j, k, l, m) -> (i, j)>,
-                                   affine_map<(i, j, k, l, m) -> (k)>,
-                                   affine_map<(i, j, k, l, m) -> (l, m)>] :
+                                    affine_map<(i, j, k, l, m) -> (k)>,
+                                    affine_map<(i, j, k, l, m) -> (l, m)>] :
     tensor<1x3x4x1x5xf32> into tensor<3x4x5xf32>
   %t1 = linalg.tensor_reshape %arg2 [affine_map<(i, j, k, l, m) -> (i, j)>,
                                      affine_map<(i, j, k, l, m) -> (k)>,
@@ -660,11 +666,13 @@ func @named_ops(%a3: memref<?x?x?xf32>, %b3: memref<?x?x?xf32>, %c3: memref<?x?x
                      outs(%c3: memref<?x?x?xf32>)
   linalg.batch_matmul ins(%ta3, %tb3: tensor<?x?x?xf32>, tensor<?x?x?xf32>)
                      outs(%c3: memref<?x?x?xf32>)
-  %res1 = linalg.batch_matmul ins(%ta3, %tb3: tensor<?x?x?xf32>, tensor<?x?x?xf32>)
-                     init(%tc3: tensor<?x?x?xf32>)
+  %res1 = linalg.batch_matmul
+                      ins(%ta3, %tb3: tensor<?x?x?xf32>, tensor<?x?x?xf32>)
+                     outs(%tc3: tensor<?x?x?xf32>)
                   -> tensor<?x?x?xf32>
-  %res2 = linalg.batch_matmul ins(%ta3, %b3: tensor<?x?x?xf32>, memref<?x?x?xf32>)
-                     init(%tc3: tensor<?x?x?xf32>)
+  %res2 = linalg.batch_matmul
+                      ins(%ta3, %b3: tensor<?x?x?xf32>, memref<?x?x?xf32>)
+                     outs(%tc3: tensor<?x?x?xf32>)
                   -> tensor<?x?x?xf32>
   return %res1, %res2 : tensor<?x?x?xf32>, tensor<?x?x?xf32>
 }

diff  --git a/mlir/test/Dialect/Linalg/sparse_1d.mlir b/mlir/test/Dialect/Linalg/sparse_1d.mlir
index 4c14b2e89279..4baf1d1c1403 100644
--- a/mlir/test/Dialect/Linalg/sparse_1d.mlir
+++ b/mlir/test/Dialect/Linalg/sparse_1d.mlir
@@ -32,8 +32,9 @@
 // CHECK:         }
 func @add_d(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
   %0 = linalg.generic #trait_d
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s : f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -58,8 +59,9 @@ func @add_d(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
 // CHECK:         }
 func @mul_d(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
   %0 = linalg.generic #trait_d
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s : f32):
         %0 = mulf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -124,8 +126,9 @@ func @mul_d(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
 // CHECK:         }
 func @add_s(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
   %0 = linalg.generic #trait_s
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s : f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -159,8 +162,9 @@ func @add_s(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
 // CHECK:         }
 func @repeated_add_s(%arga: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_s
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s : f32):
         %0 = addf %a, %a  : f32  // same tensor
         %1 = addf %a, %a  : f32  // should yield
         %2 = addf %0, %1  : f32  // one guard
@@ -192,8 +196,9 @@ func @repeated_add_s(%arga: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @mul_s(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
   %0 = linalg.generic #trait_s
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s : f32):
         %0 = mulf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -235,8 +240,9 @@ func @mul_s(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
 // CHECK:         }
 func @add_dd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_dd
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -263,8 +269,9 @@ func @add_dd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @mul_dd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_dd
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -335,8 +342,9 @@ func @mul_dd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @add_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_ds
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -368,8 +376,9 @@ func @add_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @mul_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_ds
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -440,8 +449,9 @@ func @mul_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @add_sd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_sd
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -473,8 +483,9 @@ func @add_sd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @mul_sd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_sd
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -569,8 +580,9 @@ func @mul_sd(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @add_ss(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_ss
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -628,8 +640,9 @@ func @add_ss(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 // CHECK:         }
 func @mul_ss(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
   %0 = linalg.generic #trait_ss
-    ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32>)
+    outs(%arga : tensor<32xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -730,8 +743,9 @@ func @mul_ss(%arga: tensor<32xf32>, %argb: tensor<32xf32>) -> tensor<32xf32> {
 func @two_way_inv(%arga: tensor<16xf32>,
                   %argb: tensor<16xf32>, %argc: f32) -> tensor<16xf32> {
   %0 = linalg.generic #trait_two_way_inv
-    ins(%arga, %argb : tensor<16xf32>, tensor<16xf32>) {
-      ^bb(%a : f32, %b : f32):
+    ins(%arga, %argb : tensor<16xf32>, tensor<16xf32>)
+    outs(%argb : tensor<16xf32>) {
+      ^bb(%a : f32, %b : f32, %c : f32):
         %0 = mulf %a, %argc : f32
         %1 = mulf %b, %argc : f32
         %2 = addf %0, %1 : f32
@@ -819,8 +833,9 @@ func @two_way_inv_alt(%arga: tensor<16xf32>,
                       %argb: tensor<16xf32>, %argc: f32) -> tensor<16xf32> {
   // Same kernel, but now expressed as "x(i) = (a(i) + b(i)) * c".
   %0 = linalg.generic #trait_two_way_inv
-    ins(%arga, %argb : tensor<16xf32>, tensor<16xf32>) {
-      ^bb(%a : f32, %b : f32):
+    ins(%arga, %argb : tensor<16xf32>, tensor<16xf32>)
+    outs(%argb : tensor<16xf32>) {
+      ^bb(%a : f32, %b : f32, %c : f32):
         %0 = addf %a, %b : f32
         %1 = mulf %0, %argc : f32
         linalg.yield %1: f32
@@ -866,7 +881,7 @@ func @two_way_inv_alt(%arga: tensor<16xf32>,
 func @sum_reduction(%arga: tensor<?xf32>, %argx: tensor<f32>) -> tensor<f32> {
   %0 = linalg.generic #trait_sum_reduction
     ins(%arga : tensor<?xf32>)
-    init(%argx : tensor<f32>) {
+    outs(%argx : tensor<f32>) {
       ^bb(%a : f32, %x : f32):
         %0 = addf %x, %a  : f32
         linalg.yield %0: f32
@@ -975,7 +990,7 @@ func @sum_reduction_ss(%arga: tensor<16xf32>,
   // as two separate reductions kernels.
   %0 = linalg.generic #trait_sum_reduction_ss
     ins(%arga, %argb: tensor<16xf32>, tensor<16xf32>)
-    init(%argx : tensor<f32>) {
+    outs(%argx : tensor<f32>) {
       ^bb(%a : f32, %b : f32, %x : f32):
         %0 = addf %a, %b  : f32
         %1 = addf %x, %0  : f32
@@ -1094,7 +1109,7 @@ func @sum_reduction_inv(%arga: tensor<16xf32>,
   // as two separate reductions kernels.
   %0 = linalg.generic #trait_sum_reduction_inv_ss
     ins(%arga, %argb, %argc : tensor<16xf32>, tensor<f32>, tensor<16xf32>)
-    init(%argx : tensor<f32>) {
+    outs(%argx : tensor<f32>) {
       ^bb(%a : f32, %b : f32, %c : f32, %x : f32):
         %0 = mulf %a, %b  : f32
         %1 = addf %0, %c  : f32

diff  --git a/mlir/test/Dialect/Linalg/sparse_2d.mlir b/mlir/test/Dialect/Linalg/sparse_2d.mlir
index dea7444cadae..6612a723f23d 100644
--- a/mlir/test/Dialect/Linalg/sparse_2d.mlir
+++ b/mlir/test/Dialect/Linalg/sparse_2d.mlir
@@ -39,8 +39,9 @@
 // CHECK:         }
 func @add_dd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_dd
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga: tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -70,8 +71,9 @@ func @add_dd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @mul_dd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_dd
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -146,8 +148,9 @@ func @mul_dd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @add_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ds
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -183,8 +186,9 @@ func @add_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @mul_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ds
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -264,8 +268,9 @@ func @mul_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @add_sd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_sd
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -302,8 +307,9 @@ func @add_sd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @mul_sd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_sd
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -409,8 +415,9 @@ func @mul_sd(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @add_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ss
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -450,8 +457,9 @@ func @add_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @mul_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ss
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -627,8 +635,9 @@ func @mul_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16
 // CHECK:         }
 func @add_ss_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ss_ss
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -721,8 +730,9 @@ func @add_ss_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32
 // CHECK:         }
 func @mul_ss_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ss_ss
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -898,8 +908,9 @@ func @mul_ss_ss(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32
 // CHECK:         }
 func @add_sd_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ss_ss
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -992,8 +1003,9 @@ func @add_sd_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32
 // CHECK:         }
 func @mul_sd_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32x16xf32> {
   %0 = linalg.generic #trait_ss_ss
-    ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16xf32>, tensor<32x16xf32>)
+    outs(%arga : tensor<32x16xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -1048,8 +1060,8 @@ func @mul_sd_ds(%arga: tensor<32x16xf32>, %argb: tensor<32x16xf32>) -> tensor<32
 // CHECK:         }
 func @matvec(%argA: tensor<16x32xf32>, %argb: tensor<32xf32>, %argx: tensor<16xf32>) -> tensor<16xf32> {
   %0 = linalg.generic #trait_matvec
-      ins(%argA, %argb : tensor<16x32xf32>, tensor<32xf32>)
-      init(%argx : tensor<16xf32>) {
+       ins(%argA, %argb : tensor<16x32xf32>, tensor<32xf32>)
+      outs(%argx : tensor<16xf32>) {
     ^bb(%A: f32, %b: f32, %x: f32):
       %0 = mulf %A, %b : f32
       %1 = addf %0, %x : f32
@@ -1099,8 +1111,8 @@ func @matvec(%argA: tensor<16x32xf32>, %argb: tensor<32xf32>, %argx: tensor<16xf
 // CHECK:         }
 func @sum_reduction(%arga: tensor<10x20xf32>, %argx: tensor<f32>) -> tensor<f32> {
   %0 = linalg.generic #trait_sum_reduction
-    ins(%arga : tensor<10x20xf32>)
-    init(%argx : tensor<f32>) {
+     ins(%arga : tensor<10x20xf32>)
+    outs(%argx : tensor<f32>) {
       ^bb(%a : f32, %x : f32):
         %0 = addf %x, %a  : f32
         linalg.yield %0: f32
@@ -1150,8 +1162,9 @@ func @sum_reduction(%arga: tensor<10x20xf32>, %argx: tensor<f32>) -> tensor<f32>
 func @scale(%arga: tensor<?x?xf64>) -> tensor<?x?xf64> {
   %0 = constant 2.0 : f64
   %1 = linalg.generic #trait_scale
-    ins(%arga: tensor<?x?xf64>) {
-      ^bb(%a: f64):
+     ins(%arga: tensor<?x?xf64>)
+    outs(%arga: tensor<?x?xf64>) {
+      ^bb(%a: f64, %s: f64):
         %2 = mulf %a, %0  : f64
         linalg.yield %2 : f64
   } -> tensor<?x?xf64>
@@ -1224,10 +1237,10 @@ func @scale(%arga: tensor<?x?xf64>) -> tensor<?x?xf64> {
 func @sampled_dense_dense(%args: tensor<?x?xf32>,
                           %arga: tensor<?x?xf32>,
                           %argb: tensor<?x?xf32>,
-			  %argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
+                          %argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
   %0 = linalg.generic #trait_sampled_dense_dense
-    ins(%args, %arga, %argb : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>)
-    init(%argx : tensor<?x?xf32>) {
+     ins(%args, %arga, %argb : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>)
+    outs(%argx : tensor<?x?xf32>) {
       ^bb(%s : f32, %a : f32, %b : f32, %x : f32):
         %0 = mulf %a, %b  : f32
         %1 = mulf %s, %0  : f32
@@ -1457,7 +1470,7 @@ func @sum_kernel_with_inv(%arga: tensor<?x?xf32>,
                                             tensor<?x?xf32>,
                                             tensor<?xf32>,
                                             tensor<f32>)
-    init(%argx : tensor<?xf32>) {
+    outs(%argx : tensor<?xf32>) {
       ^bb(%a : f32, %b : f32, %c : f32, %d : f32, %e : f32, %x : f32):
         %0 = mulf %a, %b  : f32
         %1 = mulf %0, %d  : f32

diff  --git a/mlir/test/Dialect/Linalg/sparse_3d.mlir b/mlir/test/Dialect/Linalg/sparse_3d.mlir
index 41818bb982b6..a32770e635e4 100644
--- a/mlir/test/Dialect/Linalg/sparse_3d.mlir
+++ b/mlir/test/Dialect/Linalg/sparse_3d.mlir
@@ -42,8 +42,9 @@
 // CHECK:         }
 func @add_ddd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_ddd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s: f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -76,8 +77,9 @@ func @add_ddd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_ddd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_ddd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -157,8 +159,9 @@ func @mul_ddd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @add_dds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_dds
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -199,8 +202,9 @@ func @add_dds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_dds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_dds
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -284,8 +288,9 @@ func @mul_dds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @add_dsd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_dsd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -326,8 +331,9 @@ func @add_dsd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_dsd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_dsd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -437,8 +443,9 @@ func @mul_dsd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @add_dss(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_dss
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -482,8 +489,9 @@ func @add_dss(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_dss(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_dss
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -572,8 +580,9 @@ func @mul_dss(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @add_sdd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_sdd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -615,8 +624,9 @@ func @add_sdd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_sdd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_sdd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -731,8 +741,9 @@ func @mul_sdd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @add_sds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_sds
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -777,8 +788,9 @@ func @add_sds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_sds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_sds
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -897,8 +909,9 @@ func @mul_sds(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @add_ssd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_ssd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -943,8 +956,9 @@ func @add_ssd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_ssd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_ssd
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -1089,8 +1103,9 @@ func @mul_ssd(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @add_sss(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_sss
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = addf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -1138,8 +1153,9 @@ func @add_sss(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<
 // CHECK:         }
 func @mul_sss(%arga: tensor<32x16x8xf32>, %argb: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
   %0 = linalg.generic #trait_sss
-    ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>) {
-      ^bb(%a: f32, %b: f32):
+     ins(%arga, %argb: tensor<32x16x8xf32>, tensor<32x16x8xf32>)
+    outs(%arga : tensor<32x16x8xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
         %0 = mulf %a, %b  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16x8xf32>
@@ -1213,8 +1229,8 @@ func @kernel_3d(%arga: tensor<?x?xf32>,
                 %argc: tensor<?x?xf32>,
 	        %argd: tensor<?x?xf32>) -> tensor<?x?xf32> {
   %0 = linalg.generic #trait_kernel_3d
-      ins(%argb, %argc, %argd : tensor<?x?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>)
-      init(%arga : tensor<?x?xf32>) {
+       ins(%argb, %argc, %argd : tensor<?x?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>)
+      outs(%arga : tensor<?x?xf32>) {
     ^bb(%b: f32, %c: f32, %d : f32, %a : f32):
       %0 = mulf %b, %c : f32
       %1 = mulf %0, %d : f32
@@ -1275,8 +1291,8 @@ func @kernel_3d(%arga: tensor<?x?xf32>,
 // CHECK:         }
 func @sum_reduction(%arga: tensor<10x20x30xf32>, %argx: tensor<f32>) -> tensor<f32> {
   %0 = linalg.generic #trait_sum_reduction
-    ins(%arga : tensor<10x20x30xf32>)
-    init(%argx : tensor<f32>) {
+     ins(%arga : tensor<10x20x30xf32>)
+    outs(%argx : tensor<f32>) {
       ^bb(%a : f32, %x : f32):
         %0 = addf %x, %a  : f32
         linalg.yield %0: f32
@@ -1334,7 +1350,7 @@ func @sum_reduction_inv(%arga: tensor<?x?x?xf32>,
 		        %argx: tensor<f32>) -> tensor<f32> {
   %0 = linalg.generic #trait_sum_reduction_inv
     ins(%arga, %argb : tensor<?x?x?xf32>, tensor<?xf32>)
-    init(%argx : tensor<f32>) {
+    outs(%argx : tensor<f32>) {
       ^bb(%a : f32, %b : f32, %x : f32):
         %0 = mulf %a, %b  : f32
         %1 = addf %x, %0  : f32
@@ -1363,7 +1379,8 @@ func @sum_reduction_inv(%arga: tensor<?x?x?xf32>,
 // CHECK-LABEL:   func @invariants(
 // CHECK-SAME:                     %[[VAL_0:.*]]: tensor<10xf32>,
 // CHECK-SAME:                     %[[VAL_1:.*]]: tensor<20xf32>,
-// CHECK-SAME:                     %[[VAL_2:.*]]: tensor<30xf32>) -> tensor<10x20x30xf32> {
+// CHECK-SAME:                     %[[VAL_2:.*]]: tensor<30xf32>,
+// CHECK-SAME:                     %[[SHAPE:.*]]: tensor<10x20x30xf32>) -> tensor<10x20x30xf32> {
 // CHECK:           %[[VAL_3:.*]] = constant 10 : index
 // CHECK:           %[[VAL_4:.*]] = constant 20 : index
 // CHECK:           %[[VAL_5:.*]] = constant 30 : index
@@ -1390,10 +1407,12 @@ func @sum_reduction_inv(%arga: tensor<?x?x?xf32>,
 // CHECK:         }
 func @invariants(%arga: tensor<10xf32>,
                  %argb: tensor<20xf32>,
-                 %argc: tensor<30xf32>) -> tensor<10x20x30xf32> {
+                 %argc: tensor<30xf32>,
+                 %shape : tensor<10x20x30xf32>) -> tensor<10x20x30xf32> {
   %0 = linalg.generic #trait_invariants
-    ins(%arga, %argb, %argc : tensor<10xf32>, tensor<20xf32>, tensor<30xf32>) {
-      ^bb(%a : f32, %b : f32, %c : f32):
+     ins(%arga, %argb, %argc : tensor<10xf32>, tensor<20xf32>, tensor<30xf32>)
+    outs(%shape : tensor<10x20x30xf32>) {
+      ^bb(%a : f32, %b : f32, %c : f32, %s : f32):
         %0 = mulf %a, %b  : f32
         %1 = mulf %0, %c  : f32
         linalg.yield %1: f32

diff  --git a/mlir/test/Dialect/Linalg/sparse_invalid.mlir b/mlir/test/Dialect/Linalg/sparse_invalid.mlir
index a75ec361a7a1..bb64e80785fa 100644
--- a/mlir/test/Dialect/Linalg/sparse_invalid.mlir
+++ b/mlir/test/Dialect/Linalg/sparse_invalid.mlir
@@ -12,11 +12,14 @@
   iterator_types = ["parallel"]
 }
 
-func @invalid_memref(%arga: memref<32xf32>, %argb: f32) -> tensor<32xf32> {
+func @invalid_memref(%arga: memref<32xf32>, %argb: f32, %shape: tensor<32xf32>)
+  -> tensor<32xf32>
+{
   // expected-error at +1 {{'linalg.generic' op expected sparse annotations on tensors only}}
   %0 = linalg.generic #trait_memref
-    ins(%arga: memref<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: memref<32xf32>)
+    outs(%shape: tensor<32xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -25,79 +28,6 @@ func @invalid_memref(%arga: memref<32xf32>, %argb: f32) -> tensor<32xf32> {
 
 // -----
 
-#trait_two_out = {
-  indexing_maps = [
-    affine_map<(i) -> (i)>,  // a
-    affine_map<(i) -> (i)>,  // x (out)
-    affine_map<(i) -> (i)>   // y (out)
-  ],
-  sparse = [
-    [ "S" ],  // a
-    [ "D" ],  // x
-    [ "D" ]   // y
-  ],
-  iterator_types = ["parallel"]
-}
-
-func @invalid_two_out(%arga: tensor<32xf32>) -> tensor<32xf32> {
-  // expected-error at +1 {{'linalg.generic' op expected single output tensor}}
-  %0, %1 = linalg.generic #trait_two_out
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
-        %0 = addf %a, %a : f32
-        linalg.yield %a, %0 : f32, f32
-  } -> tensor<32xf32>, tensor<32xf32>
-  return %1 : tensor<32xf32>
-}
-
-// -----
-
-#trait_two_blocks = {
-  indexing_maps = [
-    affine_map<(i) -> (i)>,  // a
-    affine_map<(i) -> (i)>   // x (out)
-  ],
-  sparse = [
-    [ "S" ],  // a
-    [ "D" ]   // x
-  ],
-  iterator_types = ["parallel"]
-}
-
-func @invalid_two_blocks(%arga: tensor<32xf32>) -> tensor<32xf32> {
-  // expected-error at +1 {{'linalg.generic' op expects region #0 to have 0 or 1 blocks}}
-  %0 = linalg.generic #trait_two_blocks
-    ins(%arga: tensor<32xf32>) {
-      ^bb1(%a: f32):
-        %0 = addf %a, %a : f32
-      ^bb2:
-        linalg.yield %0 : f32
-  } -> tensor<32xf32>
-  return %0 : tensor<32xf32>
-}
-
-// -----
-
-#trait_no_block = {
-  indexing_maps = [
-    affine_map<(i) -> (i)>  // a
-  ],
-  sparse = [
-    [ "S" ]  // a
-  ],
-  iterator_types = ["parallel"]
-}
-
-func @invalid_no_block(%arga: tensor<32xf32>) {
-  // expected-error at +1 {{'linalg.generic' op expected region with 1 block}}
-  linalg.generic #trait_no_block
-    ins(%arga: tensor<32xf32>) {
-    }
-  return
-}
-
-// -----
-
 #trait_too_many = {
   indexing_maps = [
     affine_map<(i) -> (i)>,  // a
@@ -114,8 +44,9 @@ func @invalid_no_block(%arga: tensor<32xf32>) {
 func @invalid_too_many(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
   // expected-error at +1 {{'linalg.generic' op expected one sparse annotation for each tensor}}
   %0 = linalg.generic #trait_too_many
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -136,8 +67,9 @@ func @invalid_too_many(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
 func @invalid_no_array(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
   // expected-error at +1 {{'linalg.generic' op expected sparse annotation array for tensor 0}}
   %0 = linalg.generic #trait_no_array
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -161,8 +93,9 @@ func @invalid_no_array(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
 func @invalid_wrong_rank(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
   // expected-error at +1 {{'linalg.generic' op expected sparse annotation with rank 1 for tensor 1}}
   %0 = linalg.generic #trait_wrong_rank
-    ins(%arga: tensor<32xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32xf32>)
+    outs(%arga: tensor<32xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32xf32>
@@ -186,8 +119,9 @@ func @invalid_wrong_rank(%arga: tensor<32xf32>, %argb: f32) -> tensor<32xf32> {
 func @invalid_no_string(%arga: tensor<32x16xf32>, %argb: f32) -> tensor<32x16xf32> {
   // expected-error at +1 {{'linalg.generic' op expected sparse annotation at position 1 for tensor 0}}
   %0 = linalg.generic #trait_no_string
-    ins(%arga: tensor<32x16xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32x16xf32>)
+    outs(%arga: tensor<32x16xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -211,8 +145,9 @@ func @invalid_no_string(%arga: tensor<32x16xf32>, %argb: f32) -> tensor<32x16xf3
 func @invalid_wrong_symbol(%arga: tensor<32x16xf32>, %argb: f32) -> tensor<32x16xf32> {
   // expected-error at +1 {{'linalg.generic' op expected sparse annotation at position 1 for tensor 1}}
   %0 = linalg.generic #trait_wrong_symbol
-    ins(%arga: tensor<32x16xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32x16xf32>)
+    outs(%arga: tensor<32x16xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>
@@ -236,8 +171,9 @@ func @invalid_wrong_symbol(%arga: tensor<32x16xf32>, %argb: f32) -> tensor<32x16
 func @invalid_no_sparse_output(%arga: tensor<32x16xf32>, %argb: f32) -> tensor<32x16xf32> {
   // expected-error at +1 {{'linalg.generic' op sparse output tensors not supported (yet)}}
   %0 = linalg.generic #trait_no_sparse_output
-    ins(%arga: tensor<32x16xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<32x16xf32>)
+    outs(%arga: tensor<32x16xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = addf %a, %argb  : f32
         linalg.yield %0 : f32
   } -> tensor<32x16xf32>

diff  --git a/mlir/test/Dialect/Linalg/sparse_parallel.mlir b/mlir/test/Dialect/Linalg/sparse_parallel.mlir
index a75406fbab69..3d3d51ae0327 100644
--- a/mlir/test/Dialect/Linalg/sparse_parallel.mlir
+++ b/mlir/test/Dialect/Linalg/sparse_parallel.mlir
@@ -50,8 +50,9 @@
 //
 func @scale_dd(%scale: f32, %arga: tensor<?x?xf32>) -> tensor<?x?xf32> {
   %0 = linalg.generic #trait_dd
-    ins(%arga: tensor<?x?xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<?x?xf32>)
+    outs(%arga: tensor<?x?xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = mulf %a, %scale  : f32
         linalg.yield %0 : f32
   } -> tensor<?x?xf32>
@@ -99,8 +100,9 @@ func @scale_dd(%scale: f32, %arga: tensor<?x?xf32>) -> tensor<?x?xf32> {
 //
 func @scale_ss(%scale: f32, %arga: tensor<?x?xf32>) -> tensor<?x?xf32> {
   %0 = linalg.generic #trait_ss
-    ins(%arga: tensor<?x?xf32>) {
-      ^bb(%a: f32):
+     ins(%arga: tensor<?x?xf32>)
+    outs(%arga: tensor<?x?xf32>) {
+      ^bb(%a: f32, %s: f32):
         %0 = mulf %a, %scale  : f32
         linalg.yield %0 : f32
   } -> tensor<?x?xf32>
@@ -151,7 +153,7 @@ func @scale_ss(%scale: f32, %arga: tensor<?x?xf32>) -> tensor<?x?xf32> {
 func @matvec(%argA: tensor<16x32xf32>, %argb: tensor<32xf32>, %argx: tensor<16xf32>) -> tensor<16xf32> {
   %0 = linalg.generic #trait_matvec
       ins(%argA, %argb : tensor<16x32xf32>, tensor<32xf32>)
-      init(%argx : tensor<16xf32>) {
+     outs(%argx : tensor<16xf32>) {
     ^bb(%A: f32, %b: f32, %x: f32):
       %0 = mulf %A, %b : f32
       %1 = addf %0, %x : f32

diff  --git a/mlir/test/Dialect/Linalg/sparse_storage.mlir b/mlir/test/Dialect/Linalg/sparse_storage.mlir
index c63bdb1e413d..69b8e1903d69 100644
--- a/mlir/test/Dialect/Linalg/sparse_storage.mlir
+++ b/mlir/test/Dialect/Linalg/sparse_storage.mlir
@@ -88,8 +88,9 @@
 
 func @mul_dd(%arga: tensor<32xf64>, %argb: tensor<32xf64>) -> tensor<32xf64> {
   %0 = linalg.generic #trait_mul_1d
-    ins(%arga, %argb: tensor<32xf64>, tensor<32xf64>) {
-      ^bb(%a: f64, %b: f64):
+     ins(%arga, %argb: tensor<32xf64>, tensor<32xf64>)
+    outs(%arga : tensor<32xf64>) {
+      ^bb(%a: f64, %b: f64, %s: f64):
         %0 = mulf %a, %b  : f64
         linalg.yield %0 : f64
   } -> tensor<32xf64>

diff  --git a/mlir/test/Dialect/Linalg/tile-and-distribute.mlir b/mlir/test/Dialect/Linalg/tile-and-distribute.mlir
index 2a6a7ba7b7e3..fcecf896ac5d 100644
--- a/mlir/test/Dialect/Linalg/tile-and-distribute.mlir
+++ b/mlir/test/Dialect/Linalg/tile-and-distribute.mlir
@@ -198,14 +198,14 @@ func @matmul_tensors(
 //      CHECK:       %[[sTB:.*]] = subtensor %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
 //      CHECK:       %[[sTC:.*]] = subtensor %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
 //      CHECK:       %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>)
-// CHECK-SAME:                                  init(%[[sTC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
+// CHECK-SAME:                                  outs(%[[sTC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
 //      CHECK:       %[[TD:.*]] = subtensor_insert %[[sTD]] into %[[TC2]][{{.*}}]  : tensor<?x?xf32> into tensor<?x?xf32>
 //      CHECK:       scf.yield %[[TD]] : tensor<?x?xf32>
 //      CHECK:     scf.yield %[[TD2]] : tensor<?x?xf32>
 //      CHECK:   scf.yield %[[TD1]] : tensor<?x?xf32>
   %0 = linalg.matmul {__internal_linalg_transform__ = "tensors_distribute1"}
        ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
-      init(%arg2: tensor<?x?xf32>)
+      outs(%arg2: tensor<?x?xf32>)
     -> tensor<?x?xf32>
 
 //      CHECK: return %[[TD0]] : tensor<?x?xf32>

diff  --git a/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir b/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
index 41adff7d46c3..9e9688088568 100644
--- a/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
+++ b/mlir/test/Dialect/Linalg/tile-and-fuse-tensors.mlir
@@ -8,7 +8,7 @@
 
 func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>) -> tensor<?x?xf32> {
   %t0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
-                     init(%arg2: tensor<?x?xf32>)
+                     outs(%arg2: tensor<?x?xf32>)
     -> tensor<?x?xf32>
 
   %c4 = constant 4 : index
@@ -25,7 +25,7 @@ func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tens
         %6 = subtensor %t0[%arg3, %arg7][%c2, 4][1, 1] : tensor<?x?xf32> to tensor<?x4xf32>
         %7 = subtensor %arg1[%arg7, %arg5][4, %c3][1, 1] : tensor<?x?xf32> to tensor<4x?xf32>
         %8 = subtensor %arg8[%arg3, %arg5][%c2, %c3][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
-        %9 = linalg.matmul ins(%6, %7 : tensor<?x4xf32>, tensor<4x?xf32>) init(%8 : tensor<?x?xf32>) -> tensor<?x?xf32>
+        %9 = linalg.matmul ins(%6, %7 : tensor<?x4xf32>, tensor<4x?xf32>) outs(%8 : tensor<?x?xf32>) -> tensor<?x?xf32>
         %10 = subtensor_insert %9 into %arg8[%arg3, %arg5] [%c2, %c3] [1, 1]  : tensor<?x?xf32> into tensor<?x?xf32>
         scf.yield %10 : tensor<?x?xf32>
       }
@@ -53,6 +53,6 @@ func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tens
 // subtensors of the producing matmul.
 //   CHECK-DAG:       %[[stB2:.*]] = subtensor %[[B]][0, %[[K]]] [%[[dA1]], 4] [1, 1]  : tensor<?x?xf32> to tensor<?x4xf32>
 //   CHECK-DAG:       %[[stC:.*]] = subtensor %[[C]][%[[I]], %[[K]]] [2, 4] [1, 1]  : tensor<?x?xf32> to tensor<2x4xf32>
-//       CHECK:       %[[stD:.*]] = linalg.matmul ins(%[[stA]], %[[stB2]] : tensor<2x?xf32>, tensor<?x4xf32>) init(%[[stC]] : tensor<2x4xf32>)  -> tensor<2x4xf32>
-//  CHECK-NEXT:       %[[stG:.*]] = linalg.matmul ins(%[[stD]], %[[stB1]] : tensor<2x4xf32>, tensor<4x3xf32>) init(%[[stF]] : tensor<2x3xf32>)  -> tensor<2x3xf32>
+//       CHECK:       %[[stD:.*]] = linalg.matmul ins(%[[stA]], %[[stB2]] : tensor<2x?xf32>, tensor<?x4xf32>) outs(%[[stC]] : tensor<2x4xf32>)  -> tensor<2x4xf32>
+//  CHECK-NEXT:       %[[stG:.*]] = linalg.matmul ins(%[[stD]], %[[stB1]] : tensor<2x4xf32>, tensor<4x3xf32>) outs(%[[stF]] : tensor<2x3xf32>)  -> tensor<2x3xf32>
 //  CHECK-NEXT:       subtensor_insert %[[stG]] into %[[RES]][%[[I]], %[[J]]]

diff  --git a/mlir/test/Dialect/Linalg/tile-tensors.mlir b/mlir/test/Dialect/Linalg/tile-tensors.mlir
index b899cb3e0049..787ea8d2b395 100644
--- a/mlir/test/Dialect/Linalg/tile-tensors.mlir
+++ b/mlir/test/Dialect/Linalg/tile-tensors.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt %s -linalg-tile="linalg-tile-sizes=2,3,4" -mlir-disable-threading=true | FileCheck %s
+// RUN: mlir-opt %s -linalg-tile="linalg-tile-sizes=2,3,4" | FileCheck %s
 
 // CHECK-LABEL: func @matmul_tensors(
 // CHECK-SAME:    %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
@@ -14,13 +14,13 @@ func @matmul_tensors(
 //      CHECK:       %[[sTB:.*]] = subtensor %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
 //      CHECK:       %[[sTC:.*]] = subtensor %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
 //      CHECK:       %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>)
-// CHECK-SAME:                                  init(%[[sTC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
+// CHECK-SAME:                                  outs(%[[sTC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
 //      CHECK:       %[[TD:.*]] = subtensor_insert %[[sTD]] into %[[TC2]][{{.*}}]  : tensor<?x?xf32> into tensor<?x?xf32>
 //      CHECK:       scf.yield %[[TD]] : tensor<?x?xf32>
 //      CHECK:     scf.yield %[[TD2]] : tensor<?x?xf32>
 //      CHECK:   scf.yield %[[TD1]] : tensor<?x?xf32>
   %0 = linalg.matmul  ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
-                     init(%arg2: tensor<?x?xf32>)
+                     outs(%arg2: tensor<?x?xf32>)
     -> tensor<?x?xf32>
 
 //      CHECK: return %[[TD0]] : tensor<?x?xf32>

diff  --git a/mlir/test/EDSC/builder-api-test.cpp b/mlir/test/EDSC/builder-api-test.cpp
index b713ae98b107..db200ba5f90f 100644
--- a/mlir/test/EDSC/builder-api-test.cpp
+++ b/mlir/test/EDSC/builder-api-test.cpp
@@ -1101,7 +1101,7 @@ TEST_FUNC(linalg_metadata_ops) {
 //  CHECK-SAME:                      affine_map<(d0, d1, d2) -> (d0, d1)>],
 //  CHECK-SAME:     iterator_types = ["parallel", "parallel", "reduction"]
 // CHECK-SAME: ins(%{{[a-z0-9]*}}, %{{[a-z0-9]*}} : tensor<?x?xf32>, memref<?x?xf32>)
-// CHECK-SAME: init(%{{[a-z0-9]*}} : tensor<?x?xf32>)
+// CHECK-SAME: outs(%{{[a-z0-9]*}} : tensor<?x?xf32>)
 //       CHECK:     mulf
 //       CHECK:     addf
 //       CHECK:   } -> tensor<?x?xf32>
@@ -1115,14 +1115,15 @@ TEST_FUNC(linalg_tensors_test) {
       {ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
   auto tensorType = RankedTensorType::get(
       {ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type);
-  auto f = makeFunction("linalg_tensors", {}, {tensorType, memrefType});
+  auto f =
+      makeFunction("linalg_tensors", {}, {tensorType, memrefType, tensorType});
 
   OpBuilder builder(f.getBody());
   ScopedContext scope(builder, f.getLoc());
-  Value A(f.getArgument(0)), B(f.getArgument(1));
+  Value A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2));
   AffineExpr i, j;
   bindDims(&globalContext(), i, j);
-  StructuredIndexed SA(A), SB(B), SC(tensorType);
+  StructuredIndexed SA(A), SB(B), SC(C);
   Value added = linalg_generic_pointwise_add(SA({i, j}), SB({i, j}), SC({i, j}))
                     ->getResult(0);
   Value maxed = linalg_generic_pointwise_max(
@@ -1223,7 +1224,8 @@ TEST_FUNC(builder_loop_for_yield) {
                                  [&](Value iv, ValueRange args) {
                                    Value sum = args[0] + args[1];
                                    return scf::ValueVector{args[1], sum};
-                                 }).getResults();
+                                 })
+                     .getResults();
   results[0] + results[1];
 
   // clang-format off

diff  --git a/mlir/test/mlir-linalg-ods-gen/test-linalg-ods-gen.tc b/mlir/test/mlir-linalg-ods-gen/test-linalg-ods-gen.tc
index 528fae883d19..f81380f02bb3 100644
--- a/mlir/test/mlir-linalg-ods-gen/test-linalg-ods-gen.tc
+++ b/mlir/test/mlir-linalg-ods-gen/test-linalg-ods-gen.tc
@@ -4,7 +4,6 @@
 // ODS-LABEL: def Test1Op : LinalgStructuredBase_Op<"test1", [
 //  ODS-NEXT:   AttrSizedOperandSegments
 //  ODS-NEXT:   DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
-//  ODS-NEXT:   NamedStructuredOpTrait
 //  ODS-NEXT:   SingleBlockImplicitTerminator<"YieldOp">
 //
 // IMPL-LABEL:  ArrayAttr Test1Op::iterator_types() {
@@ -29,7 +28,6 @@ def test1(A: f32(M, K), B: f32(K)) -> (C: f32(M)) {
 // ODS-LABEL: def Test2Op : LinalgStructuredBase_Op<"test2", [
 //  ODS-NEXT:   AttrSizedOperandSegments
 //  ODS-NEXT:   DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
-//  ODS-NEXT:   NamedStructuredOpTrait
 //  ODS-NEXT:   SingleBlockImplicitTerminator<"YieldOp">
 //
 // IMPL-LABEL:  ArrayAttr Test2Op::iterator_types() {
@@ -54,7 +52,6 @@ def test2(A: f32(M, K), B: f32(K, N)) -> (C: f32(M, N)) {
 // ODS-LABEL: def Test3Op : LinalgStructuredBase_Op<"test3", [
 //  ODS-NEXT:   AttrSizedOperandSegments
 //  ODS-NEXT:   DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
-//  ODS-NEXT:   NamedStructuredOpTrait
 //  ODS-NEXT:   SingleBlockImplicitTerminator<"YieldOp">
 //
 // IMPL-LABEL:  ArrayAttr Test3Op::iterator_types() {

diff  --git a/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp b/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp
index 45dc115e6c1e..0342fab5ab9f 100644
--- a/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp
+++ b/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp
@@ -1453,54 +1453,45 @@ void TCParser::printODS(llvm::raw_ostream &os, StringRef cppOpName,
   const char *header = R"FMT(  def {0} : LinalgStructuredBase_Op<"{1}", [
     AttrSizedOperandSegments,
     DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
-    NamedStructuredOpTrait,
     SingleBlockImplicitTerminator<"YieldOp">]> {
       let arguments = (ins Variadic<AnyShaped>:$inputs,
-                           Variadic<AnyMemRef>:$output_buffers,
-                           Variadic<AnyRankedTensor>:$init_tensors);
+                           Variadic<AnyShaped>:$outputs);
       let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
       let regions = (region AnyRegion:$region);
 
       let skipDefaultBuilders = 1;
       let builders = [ OpBuilderDAG<
-        (ins "ValueRange":$inputs, "ValueRange":$outputBuffers),
+        (ins "ValueRange":$inputs, "ValueRange":$outputs),
         [{{
           $_state.addOperands(inputs);
-          $_state.addOperands(outputBuffers);
+          $_state.addOperands(outputs);
           $_state.addAttribute(
             "operand_segment_sizes",
             $_builder.getI32VectorAttr({{
               static_cast<int32_t>(inputs.size()),
-              static_cast<int32_t>(outputBuffers.size()),
-              static_cast<int32_t>(0)}));
+              static_cast<int32_t>(outputs.size())}));
           buildNamedStructuredOpRegionAndAttributes<{0}>(
             $_builder,
             $_state,
             TypeRange(inputs),
-            TypeRange(outputBuffers),
-            TypeRange(),
-            TypeRange());
+            TypeRange(outputs));
         }]>, OpBuilderDAG<
         (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
-             "ValueRange":$outputBuffers, "ValueRange":$initTensors),
+             "ValueRange":$outputs),
         [{{
           $_state.addOperands(inputs);
-          $_state.addOperands(outputBuffers);
-          $_state.addOperands(initTensors);
+          $_state.addOperands(outputs);
           $_state.addTypes(resultTensorTypes);
           $_state.addAttribute(
             "operand_segment_sizes",
             $_builder.getI32VectorAttr({{
               static_cast<int32_t>(inputs.size()),
-              static_cast<int32_t>(outputBuffers.size()),
-              static_cast<int32_t>(initTensors.size())}));
+              static_cast<int32_t>(outputs.size())}));
           buildNamedStructuredOpRegionAndAttributes<{0}>(
             $_builder,
             $_state,
             TypeRange(inputs),
-            TypeRange(outputBuffers),
-            TypeRange(initTensors),
-            resultTensorTypes);
+            TypeRange(outputs));
         }]>, OpBuilderDAG<
         (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
              CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
@@ -1513,7 +1504,6 @@ void TCParser::printODS(llvm::raw_ostream &os, StringRef cppOpName,
       ];
       let printer = [{{ return ::printNamedStructuredOp(p, *this); }];
       let parser = [{{ return ::parseNamedStructuredOp<{0}>(parser, result); }];
-      let verifier = [{{ return ::verifyNamedStructuredOp(*this); }];
       let hasFolder = 1;
       let hasCanonicalizer = 1;
 


        


More information about the Mlir-commits mailing list