[Mlir-commits] [mlir] 0d48d26 - Revert "[mlir] Start splitting the `tensor` dialect out of `std`."

Sean Silva llvmlistbot at llvm.org
Fri Dec 11 14:17:55 PST 2020


Author: Sean Silva
Date: 2020-12-11T14:15:41-08:00
New Revision: 0d48d265db6633e4e575f81f9d3a52139b1dc5ca

URL: https://github.com/llvm/llvm-project/commit/0d48d265db6633e4e575f81f9d3a52139b1dc5ca
DIFF: https://github.com/llvm/llvm-project/commit/0d48d265db6633e4e575f81f9d3a52139b1dc5ca.diff

LOG: Revert "[mlir] Start splitting the `tensor` dialect out of `std`."

This reverts commit cab8dda90f48e15ee94b0d55ceac5b6a812e4743.

I mistakenly thought that CAPI/ir.c failure was unrelated to this
change. Need to debug it.

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/CMakeLists.txt
    mlir/include/mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h
    mlir/include/mlir/Dialect/StandardOps/EDSC/Intrinsics.h
    mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
    mlir/include/mlir/InitAllDialects.h
    mlir/include/mlir/InitAllPasses.h
    mlir/lib/Conversion/ShapeToStandard/ConvertShapeConstraints.cpp
    mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
    mlir/lib/Dialect/CMakeLists.txt
    mlir/lib/Dialect/StandardOps/CMakeLists.txt
    mlir/lib/Dialect/StandardOps/IR/Ops.cpp
    mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp
    mlir/lib/Transforms/Utils/FoldUtils.cpp
    mlir/test/Conversion/ShapeToStandard/convert-shape-constraints.mlir
    mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
    mlir/test/Dialect/Linalg/fusion-tensor.mlir
    mlir/test/Dialect/Standard/bufferize.mlir
    mlir/test/Dialect/Standard/canonicalize.mlir
    mlir/test/IR/core-ops.mlir
    mlir/test/IR/invalid-ops.mlir
    mlir/test/Transforms/canonicalize.mlir
    mlir/test/Transforms/constant-fold.mlir
    mlir/utils/vim/syntax/mlir.vim

Removed: 
    mlir/include/mlir/Dialect/Tensor/CMakeLists.txt
    mlir/include/mlir/Dialect/Tensor/IR/CMakeLists.txt
    mlir/include/mlir/Dialect/Tensor/IR/Tensor.h
    mlir/include/mlir/Dialect/Tensor/IR/TensorBase.td
    mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
    mlir/include/mlir/Dialect/Tensor/Transforms/CMakeLists.txt
    mlir/include/mlir/Dialect/Tensor/Transforms/Passes.h
    mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td
    mlir/lib/Dialect/Tensor/CMakeLists.txt
    mlir/lib/Dialect/Tensor/IR/CMakeLists.txt
    mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp
    mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
    mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp
    mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt
    mlir/lib/Dialect/Tensor/Transforms/PassDetail.h
    mlir/test/Dialect/Tensor/bufferize.mlir
    mlir/test/Dialect/Tensor/canonicalize.mlir
    mlir/test/Dialect/Tensor/invalid.mlir
    mlir/test/Dialect/Tensor/ops.mlir


################################################################################
diff  --git a/mlir/include/mlir/Dialect/CMakeLists.txt b/mlir/include/mlir/Dialect/CMakeLists.txt
index 034b611d6288..0df95ea4e937 100644
--- a/mlir/include/mlir/Dialect/CMakeLists.txt
+++ b/mlir/include/mlir/Dialect/CMakeLists.txt
@@ -14,6 +14,5 @@ add_subdirectory(SCF)
 add_subdirectory(Shape)
 add_subdirectory(SPIRV)
 add_subdirectory(StandardOps)
-add_subdirectory(Tensor)
 add_subdirectory(Tosa)
 add_subdirectory(Vector)

diff  --git a/mlir/include/mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h b/mlir/include/mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h
index 0dd471c5d6d2..3575d55c3d53 100644
--- a/mlir/include/mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h
+++ b/mlir/include/mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h
@@ -10,7 +10,6 @@
 
 #include "mlir/Dialect/Linalg/EDSC/Builders.h"
 #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
 
 #include "mlir/Transforms/FoldUtils.h"
 
@@ -47,6 +46,7 @@ using folded_std_constant_float = FoldedValueBuilder<ConstantFloatOp>;
 using folded_std_constant_index = FoldedValueBuilder<ConstantIndexOp>;
 using folded_std_constant_int = FoldedValueBuilder<ConstantIntOp>;
 using folded_std_dim = FoldedValueBuilder<DimOp>;
+using folded_std_extract_element = FoldedValueBuilder<ExtractElementOp>;
 using folded_std_index_cast = FoldedValueBuilder<IndexCastOp>;
 using folded_std_muli = FoldedValueBuilder<MulIOp>;
 using folded_std_mulf = FoldedValueBuilder<MulFOp>;
@@ -60,7 +60,6 @@ using folded_std_tensor_load = FoldedValueBuilder<TensorLoadOp>;
 using folded_std_view = FoldedValueBuilder<ViewOp>;
 using folded_std_zero_extendi = FoldedValueBuilder<ZeroExtendIOp>;
 using folded_std_sign_extendi = FoldedValueBuilder<SignExtendIOp>;
-using folded_tensor_extract = FoldedValueBuilder<tensor::ExtractOp>;
 } // namespace intrinsics
 } // namespace edsc
 } // namespace mlir

diff  --git a/mlir/include/mlir/Dialect/StandardOps/EDSC/Intrinsics.h b/mlir/include/mlir/Dialect/StandardOps/EDSC/Intrinsics.h
index a9eed0984c80..1fe3246d4843 100644
--- a/mlir/include/mlir/Dialect/StandardOps/EDSC/Intrinsics.h
+++ b/mlir/include/mlir/Dialect/StandardOps/EDSC/Intrinsics.h
@@ -9,7 +9,6 @@
 #define MLIR_DIALECT_STANDARDOPS_EDSC_INTRINSICS_H_
 
 #include "mlir/Dialect/StandardOps/EDSC/Builders.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
 
 namespace mlir {
 namespace edsc {
@@ -29,6 +28,7 @@ using std_dealloc = OperationBuilder<DeallocOp>;
 using std_divis = ValueBuilder<SignedDivIOp>;
 using std_diviu = ValueBuilder<UnsignedDivIOp>;
 using std_dim = ValueBuilder<DimOp>;
+using std_extract_element = ValueBuilder<ExtractElementOp>;
 using std_fpext = ValueBuilder<FPExtOp>;
 using std_fptrunc = ValueBuilder<FPTruncOp>;
 using std_im = ValueBuilder<ImOp>;
@@ -52,7 +52,6 @@ using std_tensor_store = OperationBuilder<TensorStoreOp>;
 using std_view = ValueBuilder<ViewOp>;
 using std_zero_extendi = ValueBuilder<ZeroExtendIOp>;
 using std_sign_extendi = ValueBuilder<SignExtendIOp>;
-using tensor_extract = ValueBuilder<tensor::ExtractOp>;
 
 /// Branches into `block` with `operands`.
 BranchOp std_br(Block *block, ValueRange operands);

diff  --git a/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td b/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
index 89934cf7648e..5368880a7cb1 100644
--- a/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
+++ b/mlir/include/mlir/Dialect/StandardOps/IR/Ops.td
@@ -1669,6 +1669,59 @@ def Exp2Op : FloatUnaryOp<"exp2"> {
   let summary = "base-2 exponential of the specified value";
 }
 
+//===----------------------------------------------------------------------===//
+// ExtractElementOp
+//===----------------------------------------------------------------------===//
+
+def ExtractElementOp : Std_Op<"extract_element",
+    [NoSideEffect,
+     TypesMatchWith<"result type matches element type of aggregate",
+                    "aggregate", "result",
+                    "$_self.cast<ShapedType>().getElementType()">]> {
+  let summary = "element extract operation";
+  let description = [{
+    The `extract_element` op reads a tensor or vector and returns one element
+    from it specified by an index list. The output of the 'extract_element' is a
+    new value with the same type as the elements of the tensor or vector. The
+    arity of indices matches the rank of the accessed value (i.e., if a tensor
+    is of rank 3, then 3 indices are required for the extract. The indices
+    should all be of `index` type.
+
+    Example:
+
+    ```mlir
+    %3 = extract_element %v[%1, %2] : vector<4x4xi32>
+    %4 = extract_element %t[%1, %2] : tensor<4x4xi32>
+    %5 = extract_element %ut[%1, %2] : tensor<*xi32>
+    ```
+  }];
+
+  let arguments = (ins AnyTypeOf<[AnyVector, AnyTensor]>:$aggregate,
+                       Variadic<Index>:$indices);
+  let results = (outs AnyType:$result);
+
+  let builders = [
+    OpBuilderDAG<(ins "Value":$aggregate, CArg<"ValueRange", "{}">:$indices), [{
+      auto resType = aggregate.getType().cast<ShapedType>()
+                                         .getElementType();
+      build($_builder, $_state, resType, aggregate, indices);
+    }]>];
+
+  let extraClassDeclaration = [{
+    Value getAggregate() { return getOperand(0); }
+
+    operand_range getIndices() {
+      return {operand_begin() + 1, operand_end()};
+    }
+  }];
+
+  let hasFolder = 1;
+
+  let assemblyFormat = [{
+    $aggregate `[` $indices `]` attr-dict `:` type($aggregate)
+  }];
+}
+
 //===----------------------------------------------------------------------===//
 // TensorFromElementsOp
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/include/mlir/Dialect/Tensor/CMakeLists.txt b/mlir/include/mlir/Dialect/Tensor/CMakeLists.txt
deleted file mode 100644
index 9f57627c321f..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/CMakeLists.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-add_subdirectory(IR)
-add_subdirectory(Transforms)

diff  --git a/mlir/include/mlir/Dialect/Tensor/IR/CMakeLists.txt b/mlir/include/mlir/Dialect/Tensor/IR/CMakeLists.txt
deleted file mode 100644
index c5d47d29530c..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/IR/CMakeLists.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-add_mlir_dialect(TensorOps tensor)
-add_mlir_doc(TensorOps -gen-dialect-doc TensorOps Dialects/)

diff  --git a/mlir/include/mlir/Dialect/Tensor/IR/Tensor.h b/mlir/include/mlir/Dialect/Tensor/IR/Tensor.h
deleted file mode 100644
index ee517de3fca0..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/IR/Tensor.h
+++ /dev/null
@@ -1,31 +0,0 @@
-//===- Tensor.h - Tensor dialect --------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_DIALECT_TENSOR_IR_TENSOR_H_
-#define MLIR_DIALECT_TENSOR_IR_TENSOR_H_
-
-#include "mlir/IR/BuiltinTypes.h"
-#include "mlir/IR/Dialect.h"
-#include "mlir/IR/OpDefinition.h"
-#include "mlir/IR/OpImplementation.h"
-#include "mlir/Interfaces/SideEffectInterfaces.h"
-
-//===----------------------------------------------------------------------===//
-// Tensor Dialect
-//===----------------------------------------------------------------------===//
-
-#include "mlir/Dialect/Tensor/IR/TensorOpsDialect.h.inc"
-
-//===----------------------------------------------------------------------===//
-// Tensor Dialect Operations
-//===----------------------------------------------------------------------===//
-
-#define GET_OP_CLASSES
-#include "mlir/Dialect/Tensor/IR/TensorOps.h.inc"
-
-#endif // MLIR_DIALECT_TENSOR_IR_TENSOR_H_

diff  --git a/mlir/include/mlir/Dialect/Tensor/IR/TensorBase.td b/mlir/include/mlir/Dialect/Tensor/IR/TensorBase.td
deleted file mode 100644
index 8c7bfe1e16ee..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/IR/TensorBase.td
+++ /dev/null
@@ -1,48 +0,0 @@
-//===- TensorBase.td - Base definitions for tensor dialect -*- tablegen -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef TENSOR_BASE
-#define TENSOR_BASE
-
-include "mlir/IR/OpBase.td"
-
-def Tensor_Dialect : Dialect {
-  let name = "tensor";
-  let cppNamespace = "::mlir::tensor";
-  let description = [{
-    The `tensor` dialect is intended to hold core tensor creation and
-    manipulation ops, which are not strongly associated with any particular
-    other dialect or domain abstraction. The primary smoke test of this is ops
-    that make sense for any tensor element type.
-
-    We leave it to other dialects to hold the vast swath of possible
-    computations one might want to do on a tensor.
-
-    The `tensor` type is (for better or for worse) used to represent all kinds
-    of things, and supports an open-ended set of element types. Examples:
-
-    - representing large, dense aggregations of primitive types, suitable for
-      high-performance numerical computing.
-    - representing shapes in the `shape` dialect, which consist of small
-      1D tensors of `index` data type.
-    - representing aggregations of strings or “variant” types.
-    - representing large, sparse aggregations of primitive types, suitable
-      for high-performance numerical computing.
-
-    Thus, for the `tensor` dialect, we prefer for now to constrain the
-    scope as much as possible. The expectation is that at some point
-    in the future, the `tensor` dialect’s scope may be broadened through a
-    careful discussion of the tradeoffs.
-
-    The `tensor` type is actually a builtin type (it lives in the builtin
-    dialect), and does not live in this dialect.
-
-  }];
-}
-
-#endif // TENSOR_BASE

diff  --git a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
deleted file mode 100644
index 4eb989b2f3b5..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
+++ /dev/null
@@ -1,62 +0,0 @@
-//===- TensorOps.td - Tensor op definitions ----------------*- tablegen -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef TENSOR_OPS
-#define TENSOR_OPS
-
-include "mlir/Dialect/Tensor/IR/TensorBase.td"
-include "mlir/Interfaces/SideEffectInterfaces.td"
-
-class Tensor_Op<string mnemonic, list<OpTrait> traits = []>
-    : Op<Tensor_Dialect, mnemonic, traits> {
-  let printer = [{ return ::print(p, *this); }];
-  let verifier = [{ return ::verify(*this); }];
-  let parser = [{ return ::parse$cppClass(parser, result); }];
-}
-
-//===----------------------------------------------------------------------===//
-// ExtractOp
-//===----------------------------------------------------------------------===//
-
-def Tensor_ExtractOp : Tensor_Op<"extract",
-    [NoSideEffect,
-     TypesMatchWith<"result type matches element type of tensor",
-                    "tensor", "result",
-                    "$_self.cast<ShapedType>().getElementType()">]> {
-  let summary = "element extraction operation";
-  let description = [{
-    The `tensor.extract` op reads a tensor and returns one
-    element from it specified by an index list. The output of the op is a
-    new value with the same type as the elements of the tensor. The
-    arity of indices must match the rank of the accessed value (i.e., if a
-    tensor is of rank 3, then 3 indices are required for the extract. The
-    indices should all be of `index` type.
-
-    Example:
-
-    ```mlir
-    %4 = tensor.extract %t[%1, %2] : tensor<4x4xi32>
-    %5 = tensor.extract %rt[%1, %2] : tensor<?x?xi32>
-    %6 = tensor.extract %ut[%1, %2] : tensor<*xi32>
-    ```
-  }];
-
-  let arguments = (ins AnyTensor:$tensor, Variadic<Index>:$indices);
-  let results = (outs AnyType:$result);
-  let assemblyFormat = "$tensor `[` $indices `]` attr-dict `:` type($tensor)";
-
-  let builders = [
-    OpBuilderDAG<(ins "Value":$tensor, CArg<"ValueRange", "{}">:$indices), [{
-      auto resType = tensor.getType().cast<ShapedType>().getElementType();
-      build($_builder, $_state, resType, tensor, indices);
-    }]>];
-
-  let hasFolder = 1;
-}
-
-#endif // TENSOR_OPS

diff  --git a/mlir/include/mlir/Dialect/Tensor/Transforms/CMakeLists.txt b/mlir/include/mlir/Dialect/Tensor/Transforms/CMakeLists.txt
deleted file mode 100644
index 8d2bf1b32284..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/Transforms/CMakeLists.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-set(LLVM_TARGET_DEFINITIONS Passes.td)
-mlir_tablegen(Passes.h.inc -gen-pass-decls -name Tensor)
-add_public_tablegen_target(MLIRTensorTransformsIncGen)
-
-add_mlir_doc(Passes -gen-pass-doc TensorPasses ./)

diff  --git a/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.h b/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.h
deleted file mode 100644
index 436b3fceb973..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.h
+++ /dev/null
@@ -1,38 +0,0 @@
-//===- Passes.h - Pass Entrypoints ------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_DIALECT_TENSOR_TRANSFORMS_PASSES_H_
-#define MLIR_DIALECT_TENSOR_TRANSFORMS_PASSES_H_
-
-#include "mlir/Pass/Pass.h"
-#include "mlir/Transforms/Bufferize.h"
-
-namespace mlir {
-
-class OwningRewritePatternList;
-
-void populateTensorBufferizePatterns(MLIRContext *context,
-                                     BufferizeTypeConverter &typeConverter,
-                                     OwningRewritePatternList &patterns);
-
-/// Creates an instance of `tensor` dialect bufferization pass.
-std::unique_ptr<Pass> createTensorBufferizePass();
-
-//===----------------------------------------------------------------------===//
-// Registration
-//===----------------------------------------------------------------------===//
-
-namespace tensor {
-/// Generate the code for registering passes.
-#define GEN_PASS_REGISTRATION
-#include "mlir/Dialect/Tensor/Transforms/Passes.h.inc"
-} // namespace tensor
-
-} // end namespace mlir
-
-#endif // MLIR_DIALECT_TENSOR_TRANSFORMS_PASSES_H_

diff  --git a/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td
deleted file mode 100644
index 327c7499e0c8..000000000000
--- a/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td
+++ /dev/null
@@ -1,19 +0,0 @@
-//===-- Passes.td - pass definition file -------------------*- tablegen -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_DIALECT_TENSOR_TRANSFORMS_PASSES
-#define MLIR_DIALECT_TENSOR_TRANSFORMS_PASSES
-
-include "mlir/Pass/PassBase.td"
-
-def TensorBufferize : FunctionPass<"tensor-bufferize"> {
-  let summary = "Bufferize the `tensor` dialect";
-  let constructor = "mlir::createTensorBufferizePass()";
-}
-
-#endif // MLIR_DIALECT_TENSOR_TRANSFORMS_PASSES

diff  --git a/mlir/include/mlir/InitAllDialects.h b/mlir/include/mlir/InitAllDialects.h
index 6d34449e65d4..3eb9fdd69c6c 100644
--- a/mlir/include/mlir/InitAllDialects.h
+++ b/mlir/include/mlir/InitAllDialects.h
@@ -35,7 +35,6 @@
 #include "mlir/Dialect/SPIRV/SPIRVDialect.h"
 #include "mlir/Dialect/Shape/IR/Shape.h"
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/Dialect/Tosa/IR/TosaOps.h"
 #include "mlir/Dialect/Vector/VectorOps.h"
 #include "mlir/IR/Dialect.h"
@@ -67,7 +66,6 @@ inline void registerAllDialects(DialectRegistry &registry) {
                   ROCDL::ROCDLDialect,
                   SDBMDialect,
                   shape::ShapeDialect,
-                  tensor::TensorDialect,
                   tosa::TosaDialect>();
   // clang-format on
 }

diff  --git a/mlir/include/mlir/InitAllPasses.h b/mlir/include/mlir/InitAllPasses.h
index 12b63991a901..2d57dd5081bf 100644
--- a/mlir/include/mlir/InitAllPasses.h
+++ b/mlir/include/mlir/InitAllPasses.h
@@ -25,7 +25,6 @@
 #include "mlir/Dialect/SPIRV/Passes.h"
 #include "mlir/Dialect/Shape/Transforms/Passes.h"
 #include "mlir/Dialect/StandardOps/Transforms/Passes.h"
-#include "mlir/Dialect/Tensor/Transforms/Passes.h"
 #include "mlir/Dialect/Tosa/Transforms/Passes.h"
 #include "mlir/Transforms/Passes.h"
 
@@ -58,7 +57,6 @@ inline void registerAllPasses() {
   registerShapePasses();
   spirv::registerSPIRVPasses();
   registerStandardPasses();
-  tensor::registerTensorPasses();
   tosa::registerTosaOptPasses();
 }
 

diff  --git a/mlir/lib/Conversion/ShapeToStandard/ConvertShapeConstraints.cpp b/mlir/lib/Conversion/ShapeToStandard/ConvertShapeConstraints.cpp
index 65b1fa1096d6..120f9879f9bd 100644
--- a/mlir/lib/Conversion/ShapeToStandard/ConvertShapeConstraints.cpp
+++ b/mlir/lib/Conversion/ShapeToStandard/ConvertShapeConstraints.cpp
@@ -12,7 +12,6 @@
 #include "mlir/Dialect/SCF/SCF.h"
 #include "mlir/Dialect/Shape/IR/Shape.h"
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/Pass/Pass.h"
 #include "mlir/Pass/PassRegistry.h"
@@ -65,10 +64,10 @@ class ConvertCstrBroadcastableOp
     rewriter.create<scf::ForOp>(
         loc, rankDiff, greaterRank, one, llvm::None,
         [&](OpBuilder &b, Location loc, Value iv, ValueRange) {
-          Value greaterRankOperandExtent = b.create<tensor::ExtractOp>(
+          Value greaterRankOperandExtent = b.create<ExtractElementOp>(
               loc, greaterRankOperand, ValueRange{iv});
           Value ivShifted = b.create<SubIOp>(loc, indexTy, iv, rankDiff);
-          Value lesserRankOperandExtent = b.create<tensor::ExtractOp>(
+          Value lesserRankOperandExtent = b.create<ExtractElementOp>(
               loc, lesserRankOperand, ValueRange{ivShifted});
 
           Value greaterRankOperandExtentIsOne = b.create<CmpIOp>(

diff  --git a/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp b/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
index 7189c30e766a..a7ada39261c5 100644
--- a/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
+++ b/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
@@ -12,7 +12,6 @@
 #include "mlir/Dialect/SCF/SCF.h"
 #include "mlir/Dialect/Shape/IR/Shape.h"
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/IR/BlockAndValueMapping.h"
 #include "mlir/Transforms/DialectConversion.h"
 
@@ -119,12 +118,12 @@ LogicalResult BroadcastOpConverter::matchAndRewrite(
         Value outputDimension = args[0];
         Value isUnchallengedDimension = b.create<CmpIOp>(
             loc, CmpIPredicate::ult, outputDimension, rankDiff);
-        Value greaterRankOperandExtent = b.create<tensor::ExtractOp>(
+        Value greaterRankOperandExtent = b.create<ExtractElementOp>(
             loc, greaterRankOperand, outputDimension);
         // The initial dimensions of the greater-rank operand are unchallenged,
         // so we can take them as-is. Otherwise, we need to do a comparison.
         // We need an actual branch here (instead of a select) because the
-        // lesser-rank operand might be rank 0, so any tensor.extract would be
+        // lesser-rank operand might be rank 0, so any extract_element would be
         // invalid.
         auto ifOp = b.create<IfOp>(
             loc, TypeRange{indexTy}, isUnchallengedDimension,
@@ -141,7 +140,7 @@ LogicalResult BroadcastOpConverter::matchAndRewrite(
               // dimensions of zero extent.
               Value lesserRankOperandDimension =
                   b.create<SubIOp>(loc, indexTy, outputDimension, rankDiff);
-              Value lesserRankOperandExtent = b.create<tensor::ExtractOp>(
+              Value lesserRankOperandExtent = b.create<ExtractElementOp>(
                   loc, lesserRankOperand,
                   ValueRange{lesserRankOperandDimension});
               Value greaterRankOperandExtentIsOne = b.create<CmpIOp>(
@@ -263,12 +262,12 @@ LogicalResult IsBroadcastableOpConverter::matchAndRewrite(
   auto reduceResult = rewriter.create<ForOp>(
       loc, rankDiff, greaterRank, one, ValueRange{init},
       [&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {
-        Value greaterRankOperandExtent = b.create<tensor::ExtractOp>(
-            loc, greaterRankOperand, ValueRange{iv});
+        Value greaterRankOperandExtent =
+            b.create<ExtractElementOp>(loc, greaterRankOperand, ValueRange{iv});
         Value greaterRankOperandExtentIsOne = b.create<CmpIOp>(
             loc, CmpIPredicate::eq, greaterRankOperandExtent, one);
         Value ivShifted = b.create<SubIOp>(loc, indexTy, iv, rankDiff);
-        Value lesserRankOperandExtent = b.create<tensor::ExtractOp>(
+        Value lesserRankOperandExtent = b.create<ExtractElementOp>(
             loc, lesserRankOperand, ValueRange{ivShifted});
         Value lesserRankOperandExtentIsOne = b.create<CmpIOp>(
             loc, CmpIPredicate::eq, lesserRankOperandExtent, one);
@@ -317,9 +316,9 @@ LogicalResult GetExtentOpConverter::matchAndRewrite(
     }
   }
 
-  rewriter.replaceOpWithNewOp<tensor::ExtractOp>(op, rewriter.getIndexType(),
-                                                 transformed.shape(),
-                                                 ValueRange{transformed.dim()});
+  rewriter.replaceOpWithNewOp<ExtractElementOp>(op, rewriter.getIndexType(),
+                                                transformed.shape(),
+                                                ValueRange{transformed.dim()});
   return success();
 }
 
@@ -376,8 +375,7 @@ ReduceOpConverter::matchAndRewrite(shape::ReduceOp op, ArrayRef<Value> operands,
   auto loop = rewriter.create<scf::ForOp>(
       loc, zero, rank, one, op.initVals(),
       [&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
-        Value extent =
-            b.create<tensor::ExtractOp>(loc, transformed.shape(), iv);
+        Value extent = b.create<ExtractElementOp>(loc, transformed.shape(), iv);
 
         SmallVector<Value, 2> mappedValues{iv, extent};
         mappedValues.append(args.begin(), args.end());
@@ -417,8 +415,8 @@ namespace {
 ///   %c1 = constant 1 : index
 ///   %true = constant true
 ///   %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
-///     %5 = tensor.extract %arg0[%arg2] : tensor<?xindex>
-///     %6 = tensor.extract %arg1[%arg2] : tensor<?xindex>
+///     %5 = extract_element %arg0[%arg2] : tensor<?xindex>
+///     %6 = extract_element %arg1[%arg2] : tensor<?xindex>
 ///     %7 = cmpi "eq", %5, %6 : index
 ///     %8 = and %arg3, %7 : i1
 ///     scf.yield %8 : i1
@@ -467,9 +465,9 @@ ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
             [&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
               Value conj = args[0];
               Value lhsExtent =
-                  b.create<tensor::ExtractOp>(loc, transformed.lhs(), iv);
+                  b.create<ExtractElementOp>(loc, transformed.lhs(), iv);
               Value rhsExtent =
-                  b.create<tensor::ExtractOp>(loc, transformed.rhs(), iv);
+                  b.create<ExtractElementOp>(loc, transformed.rhs(), iv);
               Value eqExtent = b.create<CmpIOp>(loc, CmpIPredicate::eq,
                                                 lhsExtent, rhsExtent);
               Value conjNext = b.create<AndOp>(loc, conj, eqExtent);
@@ -586,8 +584,7 @@ void ConvertShapeToStandardPass::runOnOperation() {
   // Setup target legality.
   MLIRContext &ctx = getContext();
   ConversionTarget target(ctx);
-  target
-      .addLegalDialect<StandardOpsDialect, SCFDialect, tensor::TensorDialect>();
+  target.addLegalDialect<StandardOpsDialect, SCFDialect>();
   target.addLegalOp<CstrRequireOp, FuncOp, ModuleOp, ModuleTerminatorOp>();
 
   // Setup conversion patterns.

diff  --git a/mlir/lib/Dialect/CMakeLists.txt b/mlir/lib/Dialect/CMakeLists.txt
index 9fd38aa92df6..252b05cf2664 100644
--- a/mlir/lib/Dialect/CMakeLists.txt
+++ b/mlir/lib/Dialect/CMakeLists.txt
@@ -15,7 +15,6 @@ add_subdirectory(SDBM)
 add_subdirectory(Shape)
 add_subdirectory(SPIRV)
 add_subdirectory(StandardOps)
-add_subdirectory(Tensor)
 add_subdirectory(Tosa)
 add_subdirectory(Vector)
 

diff  --git a/mlir/lib/Dialect/StandardOps/CMakeLists.txt b/mlir/lib/Dialect/StandardOps/CMakeLists.txt
index 503a3d9327ff..e5188ecd59c1 100644
--- a/mlir/lib/Dialect/StandardOps/CMakeLists.txt
+++ b/mlir/lib/Dialect/StandardOps/CMakeLists.txt
@@ -15,7 +15,6 @@ add_mlir_dialect_library(MLIRStandard
   MLIREDSC
   MLIRIR
   MLIRSideEffectInterfaces
-  MLIRTensor
   MLIRVectorInterfaces
   MLIRViewLikeInterface
   )

diff  --git a/mlir/lib/Dialect/StandardOps/IR/Ops.cpp b/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
index 543c61ad7dc5..0efba0d9d4d8 100644
--- a/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
+++ b/mlir/lib/Dialect/StandardOps/IR/Ops.cpp
@@ -9,7 +9,6 @@
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
 
 #include "mlir/Dialect/CommonFolders.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/IR/AffineExpr.h"
 #include "mlir/IR/AffineMap.h"
 #include "mlir/IR/BlockAndValueMapping.h"
@@ -154,7 +153,6 @@ static LogicalResult verifyCastOp(T op) {
 }
 
 void StandardOpsDialect::initialize() {
-  getContext()->loadDialect<tensor::TensorDialect>();
   addOperations<DmaStartOp, DmaWaitOp,
 #define GET_OP_LIST
 #include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"
@@ -1865,18 +1863,18 @@ struct StaticDynamicTensorFromElements
 ///   <computation>
 ///   yield %1 : index
 /// } : tensor<?xindex>
-/// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
+/// %extracted_element = extract_element %tensor[%c0] : tensor<?xi32>
 ///
 /// to just <computation> with %arg0 replaced by %c0. We only do this if the
 /// dynamic_tensor_from_elements operation has no side-effects.
-struct ExtractFromDynamicTensorFromElements
-    : public OpRewritePattern<tensor::ExtractOp> {
-  using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
+struct ExtractElementFromDynamicTensorFromElements
+    : public OpRewritePattern<ExtractElementOp> {
+  using OpRewritePattern<ExtractElementOp>::OpRewritePattern;
 
-  LogicalResult matchAndRewrite(tensor::ExtractOp extract,
+  LogicalResult matchAndRewrite(ExtractElementOp extract,
                                 PatternRewriter &rewriter) const final {
     auto tensorFromElements =
-        extract.tensor().getDefiningOp<DynamicTensorFromElementsOp>();
+        extract.aggregate().getDefiningOp<DynamicTensorFromElementsOp>();
     if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
       return failure();
 
@@ -1896,22 +1894,23 @@ struct ExtractFromDynamicTensorFromElements
 /// Canonicalizes the pattern of the form
 ///
 /// %val = tensor_cast %source : : tensor<?xi32> to tensor<2xi32>
-/// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
+/// %extracted_element = extract_element %val[%c0] : tensor<2xi32>
 ///
 /// to
 ///
-/// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
-struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
-  using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
+/// %extracted_element = extract_element %source[%c0] : tensor<?xi32>
+struct ExtractElementFromTensorCast
+    : public OpRewritePattern<ExtractElementOp> {
+  using OpRewritePattern<ExtractElementOp>::OpRewritePattern;
 
-  LogicalResult matchAndRewrite(tensor::ExtractOp extract,
+  LogicalResult matchAndRewrite(ExtractElementOp extract,
                                 PatternRewriter &rewriter) const final {
-    auto tensorCast = extract.tensor().getDefiningOp<TensorCastOp>();
+    auto tensorCast = extract.aggregate().getDefiningOp<TensorCastOp>();
     if (!tensorCast)
       return failure();
 
-    rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(),
-                                                   extract.indices());
+    rewriter.replaceOpWithNewOp<ExtractElementOp>(extract, tensorCast.source(),
+                                                  extract.getIndices());
     return success();
   }
 };
@@ -1920,9 +1919,51 @@ struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
 
 void DynamicTensorFromElementsOp::getCanonicalizationPatterns(
     OwningRewritePatternList &results, MLIRContext *context) {
-  // TODO: Move extract patterns to tensor::ExtractOp.
-  results.insert<ExtractFromDynamicTensorFromElements, ExtractFromTensorCast,
-                 StaticDynamicTensorFromElements>(context);
+  results.insert<ExtractElementFromDynamicTensorFromElements,
+                 ExtractElementFromTensorCast, StaticDynamicTensorFromElements>(
+      context);
+}
+
+//===----------------------------------------------------------------------===//
+// ExtractElementOp
+//===----------------------------------------------------------------------===//
+
+static LogicalResult verify(ExtractElementOp op) {
+  // Verify the # indices match if we have a ranked type.
+  auto aggregateType = op.getAggregate().getType().cast<ShapedType>();
+  if (aggregateType.hasRank() &&
+      aggregateType.getRank() != op.getNumOperands() - 1)
+    return op.emitOpError("incorrect number of indices for extract_element");
+
+  return success();
+}
+
+OpFoldResult ExtractElementOp::fold(ArrayRef<Attribute> operands) {
+  assert(!operands.empty() && "extract_element takes at least one operand");
+
+  // The aggregate operand must be a known constant.
+  Attribute aggregate = operands.front();
+  if (!aggregate)
+    return {};
+
+  // If this is a splat elements attribute, simply return the value. All of the
+  // elements of a splat attribute are the same.
+  if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>())
+    return splatAggregate.getSplatValue();
+
+  // Otherwise, collect the constant indices into the aggregate.
+  SmallVector<uint64_t, 8> indices;
+  for (Attribute indice : llvm::drop_begin(operands, 1)) {
+    if (!indice || !indice.isa<IntegerAttr>())
+      return {};
+    indices.push_back(indice.cast<IntegerAttr>().getInt());
+  }
+
+  // If this is an elements attribute, query the value at the given indices.
+  auto elementsAttr = aggregate.dyn_cast<ElementsAttr>();
+  if (elementsAttr && elementsAttr.isValidIndex(indices))
+    return elementsAttr.getValue(indices);
+  return {};
 }
 
 //===----------------------------------------------------------------------===//
@@ -1948,20 +1989,20 @@ namespace {
 // Canonicalizes the pattern of the form
 //
 // %tensor = "tensor_from_elements(%element) : (i32) -> tensor<1xi32>
-// %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32>
+// %extracted_element = extract_element %tensor[%c0] : tensor<1xi32>
 //
 // to just %element.
 struct ExtractElementFromTensorFromElements
-    : public OpRewritePattern<tensor::ExtractOp> {
-  using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
+    : public OpRewritePattern<ExtractElementOp> {
+  using OpRewritePattern<ExtractElementOp>::OpRewritePattern;
 
-  LogicalResult matchAndRewrite(tensor::ExtractOp extract,
+  LogicalResult matchAndRewrite(ExtractElementOp extract,
                                 PatternRewriter &rewriter) const final {
     if (extract.indices().size() != 1)
       return failure();
 
     auto tensorFromElements = dyn_cast_or_null<TensorFromElementsOp>(
-        extract.tensor().getDefiningOp());
+        extract.aggregate().getDefiningOp());
     if (tensorFromElements == nullptr)
       return failure();
 
@@ -2175,7 +2216,7 @@ OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) {
 }
 
 namespace {
-/// Fold a load on a tensor_to_memref operation into an tensor.extract on the
+/// Fold a load on a tensor_to_memref operation into an extract_element on the
 /// corresponding tensor.
 struct LoadOfTensorToMemref : public OpRewritePattern<LoadOp> {
   using OpRewritePattern<LoadOp>::OpRewritePattern;
@@ -2186,8 +2227,8 @@ struct LoadOfTensorToMemref : public OpRewritePattern<LoadOp> {
     if (!tensorToMemref)
       return failure();
 
-    rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
-        load, tensorToMemref.tensor(), load.indices());
+    rewriter.replaceOpWithNewOp<ExtractElementOp>(load, tensorToMemref.tensor(),
+                                                  load.indices());
     return success();
   }
 };

diff  --git a/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp b/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp
index 6691355d232c..8b47e88677e2 100644
--- a/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp
+++ b/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp
@@ -15,7 +15,6 @@
 #include "mlir/Dialect/SCF/SCF.h"
 #include "mlir/Dialect/StandardOps/IR/Ops.h"
 #include "mlir/Dialect/StandardOps/Transforms/Passes.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/IR/BlockAndValueMapping.h"
 #include "mlir/Transforms/DialectConversion.h"
 
@@ -89,6 +88,21 @@ class BufferizeDynamicTensorFromElementsOp
 };
 } // namespace
 
+namespace {
+class BufferizeExtractElementOp : public OpConversionPattern<ExtractElementOp> {
+public:
+  using OpConversionPattern::OpConversionPattern;
+  LogicalResult
+  matchAndRewrite(ExtractElementOp op, ArrayRef<Value> operands,
+                  ConversionPatternRewriter &rewriter) const override {
+    ExtractElementOp::Adaptor adaptor(operands);
+    rewriter.replaceOpWithNewOp<LoadOp>(op, adaptor.aggregate(),
+                                        adaptor.indices());
+    return success();
+  }
+};
+} // namespace
+
 namespace {
 class BufferizeSelectOp : public OpConversionPattern<SelectOp> {
 public:
@@ -151,6 +165,7 @@ void mlir::populateStdBufferizePatterns(MLIRContext *context,
       // clang-format off
       BufferizeDimOp,
       BufferizeDynamicTensorFromElementsOp,
+      BufferizeExtractElementOp,
       BufferizeSelectOp,
       BufferizeTensorCastOp,
       BufferizeTensorFromElementsOp
@@ -168,11 +183,10 @@ struct StdBufferizePass : public StdBufferizeBase<StdBufferizePass> {
 
     target.addLegalDialect<StandardOpsDialect>();
     target.addLegalDialect<scf::SCFDialect>();
-    target.addLegalDialect<tensor::TensorDialect>();
 
     populateStdBufferizePatterns(context, typeConverter, patterns);
-    target.addIllegalOp<DynamicTensorFromElementsOp, TensorCastOp,
-                        TensorFromElementsOp>();
+    target.addIllegalOp<DynamicTensorFromElementsOp, ExtractElementOp,
+                        TensorCastOp, TensorFromElementsOp>();
     // We only bufferize the case of tensor selected type and scalar condition,
     // as that boils down to a select over memref descriptors (don't need to
     // touch the data).

diff  --git a/mlir/lib/Dialect/Tensor/CMakeLists.txt b/mlir/lib/Dialect/Tensor/CMakeLists.txt
deleted file mode 100644
index 9f57627c321f..000000000000
--- a/mlir/lib/Dialect/Tensor/CMakeLists.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-add_subdirectory(IR)
-add_subdirectory(Transforms)

diff  --git a/mlir/lib/Dialect/Tensor/IR/CMakeLists.txt b/mlir/lib/Dialect/Tensor/IR/CMakeLists.txt
deleted file mode 100644
index 2d5e2fbd6a31..000000000000
--- a/mlir/lib/Dialect/Tensor/IR/CMakeLists.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-add_mlir_dialect_library(MLIRTensor
-  TensorDialect.cpp
-  TensorOps.cpp
-
-  ADDITIONAL_HEADER_DIRS
-  ${PROJECT_SOURCE_DIR}/include/mlir/Dialect/Tensor
-
-  DEPENDS
-  MLIRTensorOpsIncGen
-
-  LINK_COMPONENTS
-  Core
-
-  LINK_LIBS PUBLIC
-  MLIRIR
-  MLIRSupport
-  )

diff  --git a/mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp b/mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp
deleted file mode 100644
index da76560fe85f..000000000000
--- a/mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp
+++ /dev/null
@@ -1,39 +0,0 @@
-//===----------------------------------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
-#include "mlir/Transforms/InliningUtils.h"
-
-using namespace mlir;
-using namespace mlir::tensor;
-
-//===----------------------------------------------------------------------===//
-// TensorDialect Dialect Interfaces
-//===----------------------------------------------------------------------===//
-
-namespace {
-struct TensorInlinerInterface : public DialectInlinerInterface {
-  using DialectInlinerInterface::DialectInlinerInterface;
-  bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
-                       BlockAndValueMapping &valueMapping) const final {
-    return true;
-  }
-  bool isLegalToInline(Operation *, Region *, bool wouldBeCloned,
-                       BlockAndValueMapping &) const final {
-    return true;
-  }
-};
-} // end anonymous namespace
-
-void TensorDialect::initialize() {
-  addOperations<
-#define GET_OP_LIST
-#include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"
-      >();
-  addInterfaces<TensorInlinerInterface>();
-}

diff  --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
deleted file mode 100644
index bb944b21e3c3..000000000000
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ /dev/null
@@ -1,60 +0,0 @@
-//===----------------------------------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
-#include "mlir/IR/Builders.h"
-#include "mlir/IR/TypeUtilities.h"
-#include "llvm/ADT/STLExtras.h"
-
-using namespace mlir;
-using namespace mlir::tensor;
-
-//===----------------------------------------------------------------------===//
-// ExtractOp
-//===----------------------------------------------------------------------===//
-
-static LogicalResult verify(ExtractOp op) {
-  // Verify the # indices match if we have a ranked type.
-  if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>())
-    if (tensorType.getRank() != static_cast<int64_t>(op.indices().size()))
-      return op.emitOpError("incorrect number of indices for extract_element");
-
-  return success();
-}
-
-OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) {
-  // The tensor operand must be a known constant.
-  Attribute tensor = operands.front();
-  if (!tensor)
-    return {};
-  // If this is a splat elements attribute, simply return the value. All of the
-  // elements of a splat attribute are the same.
-  if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>())
-    return splatTensor.getSplatValue();
-
-  // Otherwise, collect the constant indices into the tensor.
-  SmallVector<uint64_t, 8> indices;
-  for (Attribute indice : llvm::drop_begin(operands, 1)) {
-    if (!indice || !indice.isa<IntegerAttr>())
-      return {};
-    indices.push_back(indice.cast<IntegerAttr>().getInt());
-  }
-
-  // If this is an elements attribute, query the value at the given indices.
-  auto elementsAttr = tensor.dyn_cast<ElementsAttr>();
-  if (elementsAttr && elementsAttr.isValidIndex(indices))
-    return elementsAttr.getValue(indices);
-  return {};
-}
-
-//===----------------------------------------------------------------------===//
-// TableGen'd op method definitions
-//===----------------------------------------------------------------------===//
-
-#define GET_OP_CLASSES
-#include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"

diff  --git a/mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp
deleted file mode 100644
index 9e6b3dba74a8..000000000000
--- a/mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp
+++ /dev/null
@@ -1,64 +0,0 @@
-//===- Bufferize.cpp - Bufferization for `tensor` dialect ops -------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements bufferization of `tensor` dialect ops
-//
-//===----------------------------------------------------------------------===//
-
-#include "mlir/Transforms/Bufferize.h"
-#include "PassDetail.h"
-#include "mlir/Dialect/StandardOps/IR/Ops.h"
-#include "mlir/Dialect/Tensor/IR/Tensor.h"
-#include "mlir/Dialect/Tensor/Transforms/Passes.h"
-#include "mlir/Transforms/DialectConversion.h"
-
-using namespace mlir;
-
-namespace {
-class BufferizeExtractOp : public OpConversionPattern<tensor::ExtractOp> {
-public:
-  using OpConversionPattern::OpConversionPattern;
-  LogicalResult
-  matchAndRewrite(tensor::ExtractOp op, ArrayRef<Value> operands,
-                  ConversionPatternRewriter &rewriter) const override {
-    tensor::ExtractOp::Adaptor adaptor(operands);
-    rewriter.replaceOpWithNewOp<LoadOp>(op, adaptor.tensor(),
-                                        adaptor.indices());
-    return success();
-  }
-};
-} // namespace
-
-void mlir::populateTensorBufferizePatterns(
-    MLIRContext *context, BufferizeTypeConverter &typeConverter,
-    OwningRewritePatternList &patterns) {
-  patterns.insert<BufferizeExtractOp>(typeConverter, context);
-}
-
-namespace {
-struct TensorBufferizePass : public TensorBufferizeBase<TensorBufferizePass> {
-  void runOnFunction() override {
-    auto *context = &getContext();
-    BufferizeTypeConverter typeConverter;
-    OwningRewritePatternList patterns;
-    ConversionTarget target(*context);
-
-    populateTensorBufferizePatterns(context, typeConverter, patterns);
-    target.addIllegalOp<tensor::ExtractOp>();
-    target.addLegalDialect<StandardOpsDialect>();
-
-    if (failed(
-            applyPartialConversion(getFunction(), target, std::move(patterns))))
-      signalPassFailure();
-  }
-};
-} // namespace
-
-std::unique_ptr<Pass> mlir::createTensorBufferizePass() {
-  return std::make_unique<TensorBufferizePass>();
-}

diff  --git a/mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt
deleted file mode 100644
index 141f8caebb57..000000000000
--- a/mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt
+++ /dev/null
@@ -1,15 +0,0 @@
-add_mlir_dialect_library(MLIRTensorTransforms
-  Bufferize.cpp
-
-  ADDITIONAL_HEADER_DIRS
-  ${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Tensor/Transforms
-
-  DEPENDS
-  MLIRTensorTransformsIncGen
-
-  LINK_LIBS PUBLIC
-  MLIRIR
-  MLIRPass
-  MLIRTensor
-  MLIRTransforms
-  )

diff  --git a/mlir/lib/Dialect/Tensor/Transforms/PassDetail.h b/mlir/lib/Dialect/Tensor/Transforms/PassDetail.h
deleted file mode 100644
index fd1f1cf22bd6..000000000000
--- a/mlir/lib/Dialect/Tensor/Transforms/PassDetail.h
+++ /dev/null
@@ -1,21 +0,0 @@
-//===- PassDetail.h - GPU Pass class details --------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef DIALECT_TENSOR_TRANSFORMS_PASSDETAIL_H_
-#define DIALECT_TENSOR_TRANSFORMS_PASSDETAIL_H_
-
-#include "mlir/Pass/Pass.h"
-
-namespace mlir {
-
-#define GEN_PASS_CLASSES
-#include "mlir/Dialect/Tensor/Transforms/Passes.h.inc"
-
-} // end namespace mlir
-
-#endif // DIALECT_TENSOR_TRANSFORMS_PASSDETAIL_H_

diff  --git a/mlir/lib/Transforms/Utils/FoldUtils.cpp b/mlir/lib/Transforms/Utils/FoldUtils.cpp
index 0c186baacb84..ba755a748418 100644
--- a/mlir/lib/Transforms/Utils/FoldUtils.cpp
+++ b/mlir/lib/Transforms/Utils/FoldUtils.cpp
@@ -13,7 +13,6 @@
 
 #include "mlir/Transforms/FoldUtils.h"
 
-#include "mlir/Dialect/StandardOps/IR/Ops.h"
 #include "mlir/IR/Builders.h"
 #include "mlir/IR/Matchers.h"
 #include "mlir/IR/Operation.h"
@@ -60,23 +59,6 @@ static Operation *materializeConstant(Dialect *dialect, OpBuilder &builder,
     assert(matchPattern(constOp, m_Constant()));
     return constOp;
   }
-
-  // TODO: To faciliate splitting the std dialect (PR48490), have a special case
-  // for falling back to std.constant. Eventually, we will have separate ops
-  // tensor.constant, int.constant, float.constant, etc. that live in their
-  // respective dialects, which will allow each dialect to implement the
-  // materializeConstant hook above.
-  //
-  // The special case is needed because in the interim state while we are
-  // splitting out those dialects from std, the std dialect depends on the
-  // tensor dialect, which makes it impossible for the tensor dialect to use
-  // std.constant (it would be a cyclic dependency) as part of its
-  // materializeConstant hook.
-  //
-  // If the dialect is unable to materialize a constant, check to see if the
-  // standard constant can be used.
-  if (ConstantOp::isBuildableWith(value, type))
-    return builder.create<ConstantOp>(loc, type, value);
   return nullptr;
 }
 

diff  --git a/mlir/test/Conversion/ShapeToStandard/convert-shape-constraints.mlir b/mlir/test/Conversion/ShapeToStandard/convert-shape-constraints.mlir
index eb33f9e2bbea..72349d5e44af 100644
--- a/mlir/test/Conversion/ShapeToStandard/convert-shape-constraints.mlir
+++ b/mlir/test/Conversion/ShapeToStandard/convert-shape-constraints.mlir
@@ -16,9 +16,9 @@
 // CHECK:           %[[GREATER_RANK_OPERAND:.*]] = select %[[LHS_RANK_ULE]], %[[RHS]], %[[LHS]] : tensor<?xindex>
 // CHECK:           %[[RANK_DIFF:.*]] = subi %[[GREATER_RANK]], %[[LESSER_RANK]] : index
 // CHECK:           scf.for %[[IV:.*]] = %[[RANK_DIFF]] to %[[GREATER_RANK]] step %[[C1]] {
-// CHECK:             %[[GREATER_RANK_OPERAND_EXTENT:.*]] = tensor.extract %[[GREATER_RANK_OPERAND]][%[[IV]]] : tensor<?xindex>
+// CHECK:             %[[GREATER_RANK_OPERAND_EXTENT:.*]] = extract_element %[[GREATER_RANK_OPERAND]][%[[IV]]] : tensor<?xindex>
 // CHECK:             %[[IVSHIFTED:.*]] = subi %[[IV]], %[[RANK_DIFF]] : index
-// CHECK:             %[[LESSER_RANK_OPERAND_EXTENT:.*]] = tensor.extract %[[LESSER_RANK_OPERAND]][%[[IVSHIFTED]]] : tensor<?xindex>
+// CHECK:             %[[LESSER_RANK_OPERAND_EXTENT:.*]] = extract_element %[[LESSER_RANK_OPERAND]][%[[IVSHIFTED]]] : tensor<?xindex>
 // CHECK:             %[[GREATER_RANK_OPERAND_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[GREATER_RANK_OPERAND_EXTENT]], %[[C1]] : index
 // CHECK:             %[[LESSER_RANK_OPERAND_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[LESSER_RANK_OPERAND_EXTENT]], %[[C1]] : index
 // CHECK:             %[[EXTENTS_AGREE:.*]] = cmpi "eq", %[[GREATER_RANK_OPERAND_EXTENT]], %[[LESSER_RANK_OPERAND_EXTENT]] : index

diff  --git a/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir b/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
index b7663a328986..bff2956b347f 100644
--- a/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
+++ b/mlir/test/Conversion/ShapeToStandard/shape-to-standard.mlir
@@ -74,12 +74,12 @@ func @get_extent_shape_of(%arg : tensor<2x3xf32>, %idx : index) -> index {
 
 // -----
 
-// Express `get_extent` as `std.tensor.extract`.
+// Express `get_extent` as `std.extract_element`.
 // CHECK-LABEL: @get_extent_from_extent_tensor
 // CHECK-SAME: (%[[EXTENTS:.*]]: tensor<?xindex>, %[[IDX:.*]]: index) -> index
 func @get_extent_from_extent_tensor(%extents : tensor<?xindex>, %idx : index)
     -> index {
-  // CHECK: %[[RESULT:.*]] = tensor.extract %[[EXTENTS]][%[[IDX]]] : tensor<?xindex>
+  // CHECK: %[[RESULT:.*]] = extract_element %[[EXTENTS]][%[[IDX]]] : tensor<?xindex>
   // CHECK: return %[[RESULT]] : index
   %result = shape.get_extent %extents, %idx : tensor<?xindex>, index -> index
   return %result : index
@@ -180,7 +180,7 @@ func @shape_reduce(%shape : tensor<?xindex>) -> index {
 // CHECK-NEXT: %[[C1:.*]] = constant 1 : index
 // CHECK-NEXT: %[[RANK:.*]] = dim %[[SHAPE]], %[[C0]] : tensor<?xindex>
 // CHECK-NEXT: %[[RESULT:.*]] = scf.for %[[I:.*]] = %[[C0]] to %[[RANK]] step %[[C1]] iter_args(%[[ACC:.*]] = %[[INIT]]) -> (index)
-// CHECK-NEXT:   %[[EXTENT:.*]] = tensor.extract %[[SHAPE]][%[[I]]]
+// CHECK-NEXT:   %[[EXTENT:.*]] = extract_element %[[SHAPE]][%[[I]]]
 // CHECK-NEXT:   %[[NEW_ACC:.*]] = muli %[[ACC]], %[[EXTENT]] : index
 // CHECK-NEXT:   scf.yield %[[NEW_ACC]] : index
 // CHECK-NEXT: }
@@ -277,8 +277,8 @@ func @shape_eq(%a : tensor<?xindex>, %b : tensor<?xindex>) -> i1 {
   // CHECK:   %[[C1:.*]] = constant 1 : index
   // CHECK:   %[[INIT:.*]] = constant true
   // CHECK:   %[[SHAPE_EQ_INNER:.*]] = scf.for %[[I:.*]] = %[[C0]] to %[[RANK_A]] step %[[C1]] iter_args(%[[CONJ:.*]] = %[[INIT]]) -> (i1) {
-  // CHECK:     %[[EXTENT_A:.*]] = tensor.extract %[[A]][%[[I]]] : tensor<?xindex>
-  // CHECK:     %[[EXTENT_B:.*]] = tensor.extract %[[B]][%[[I]]] : tensor<?xindex>
+  // CHECK:     %[[EXTENT_A:.*]] = extract_element %[[A]][%[[I]]] : tensor<?xindex>
+  // CHECK:     %[[EXTENT_B:.*]] = extract_element %[[B]][%[[I]]] : tensor<?xindex>
   // CHECK:     %[[EXTENT_EQ:.*]] = cmpi "eq", %[[EXTENT_A]], %[[EXTENT_B]]
   // CHECK:     %[[CONJ_NEXT:.*]] = and %[[CONJ]], %[[EXTENT_EQ]]
   // CHECK:     scf.yield %[[CONJ_NEXT]] : i1
@@ -324,12 +324,12 @@ func @broadcast_unknown_extents(%a : tensor<?xindex>, %b : tensor<?xindex>) {
   // CHECK:           %[[RESULT:.*]] = dynamic_tensor_from_elements %[[GREATER_RANK]] {
   // CHECK:           ^bb0(%[[OUTPUT_DIMENSION:.*]]: index):
   // CHECK:             %[[IS_UNCHALLENGED_DIMENSION:.*]] = cmpi "ult", %[[OUTPUT_DIMENSION]], %[[RANK_DIFF]] : index
-  // CHECK:             %[[GREATER_RANK_OPERAND_EXTENT:.*]] = tensor.extract %[[GREATER_RANK_OPERAND]][%[[OUTPUT_DIMENSION]]] : tensor<?xindex>
+  // CHECK:             %[[GREATER_RANK_OPERAND_EXTENT:.*]] = extract_element %[[GREATER_RANK_OPERAND]][%[[OUTPUT_DIMENSION]]] : tensor<?xindex>
   // CHECK:             %[[OUTPUT_EXTENT:.*]] = scf.if %[[IS_UNCHALLENGED_DIMENSION]] -> (index) {
   // CHECK:               scf.yield %[[GREATER_RANK_OPERAND_EXTENT]] : index
   // CHECK:             } else {
   // CHECK:               %[[LESSER_RANK_OPERAND_DIMENSION:.*]] = subi %[[OUTPUT_DIMENSION]], %[[RANK_DIFF]] : index
-  // CHECK:               %[[LESSER_RANK_OPERAND_EXTENT:.*]] = tensor.extract %[[LESSER_RANK_OPERAND]][%[[LESSER_RANK_OPERAND_DIMENSION]]] : tensor<?xindex>
+  // CHECK:               %[[LESSER_RANK_OPERAND_EXTENT:.*]] = extract_element %[[LESSER_RANK_OPERAND]][%[[LESSER_RANK_OPERAND_DIMENSION]]] : tensor<?xindex>
   // CHECK:               %[[GREATER_RANK_OPERAND_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[GREATER_RANK_OPERAND_EXTENT]], %[[C1]] : index
   // CHECK:               %[[BROADCASTED_EXTENT:.*]] = select %[[GREATER_RANK_OPERAND_EXTENT_IS_ONE]], %[[LESSER_RANK_OPERAND_EXTENT]], %[[GREATER_RANK_OPERAND_EXTENT]] : index
   // CHECK:               scf.yield %[[BROADCASTED_EXTENT]] : index
@@ -364,12 +364,12 @@ func @broadcast_known_
diff erent_extents(%a : tensor<2xindex>, %b : tensor<3xinde
   // CHECK:           %[[RESULT:.*]] = dynamic_tensor_from_elements %[[GREATER_RANK]] {
   // CHECK:           ^bb0(%[[OUTPUT_DIMENSION:.*]]: index):
   // CHECK:             %[[IS_UNCHALLENGED_DIMENSION:.*]] = cmpi "ult", %[[OUTPUT_DIMENSION]], %[[RANK_DIFF]] : index
-  // CHECK:             %[[GREATER_RANK_OPERAND_EXTENT:.*]] = tensor.extract %[[GREATER_RANK_OPERAND]][%[[OUTPUT_DIMENSION]]] : tensor<?xindex>
+  // CHECK:             %[[GREATER_RANK_OPERAND_EXTENT:.*]] = extract_element %[[GREATER_RANK_OPERAND]][%[[OUTPUT_DIMENSION]]] : tensor<?xindex>
   // CHECK:             %[[OUTPUT_EXTENT:.*]] = scf.if %[[IS_UNCHALLENGED_DIMENSION]] -> (index) {
   // CHECK:               scf.yield %[[GREATER_RANK_OPERAND_EXTENT]] : index
   // CHECK:             } else {
   // CHECK:               %[[LESSER_RANK_OPERAND_DIMENSION:.*]] = subi %[[OUTPUT_DIMENSION]], %[[RANK_DIFF]] : index
-  // CHECK:               %[[LESSER_RANK_OPERAND_EXTENT:.*]] = tensor.extract %[[LESSER_RANK_OPERAND]][%[[LESSER_RANK_OPERAND_DIMENSION]]] : tensor<?xindex>
+  // CHECK:               %[[LESSER_RANK_OPERAND_EXTENT:.*]] = extract_element %[[LESSER_RANK_OPERAND]][%[[LESSER_RANK_OPERAND_DIMENSION]]] : tensor<?xindex>
   // CHECK:               %[[GREATER_RANK_OPERAND_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[GREATER_RANK_OPERAND_EXTENT]], %[[C1]] : index
   // CHECK:               %[[BROADCASTED_EXTENT:.*]] = select %[[GREATER_RANK_OPERAND_EXTENT_IS_ONE]], %[[LESSER_RANK_OPERAND_EXTENT]], %[[GREATER_RANK_OPERAND_EXTENT]] : index
   // CHECK:               scf.yield %[[BROADCASTED_EXTENT]] : index
@@ -407,10 +407,10 @@ func @try_is_broadcastable(%a : tensor<3xindex>, %b : tensor<?xindex>) -> i1 {
 // CHECK:           %[[RANK_DIFF:.*]] = subi %[[LARGER_RANK]], %[[SMALLER_RANK]] : index
 // CHECK:           %[[TRUE:.*]] = constant true
 // CHECK:           %[[ALL_RESULT:.*]] = scf.for %[[I:.*]] = %[[RANK_DIFF]] to %[[LARGER_RANK]] step %[[C1]] iter_args(%[[ALL_SO_FAR:.*]] = %[[TRUE]]) -> (i1) {
-// CHECK:             %[[LARGER_EXTENT:.*]] = tensor.extract %[[LARGER_SHAPE]]{{\[}}%[[I]]] : tensor<?xindex>
+// CHECK:             %[[LARGER_EXTENT:.*]] = extract_element %[[LARGER_SHAPE]]{{\[}}%[[I]]] : tensor<?xindex>
 // CHECK:             %[[LARGER_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[LARGER_EXTENT]], %[[C1]] : index
 // CHECK:             %[[SMALLER_EXTENT_INDEX:.*]] = subi %[[I]], %[[RANK_DIFF]] : index
-// CHECK:             %[[SMALLER_EXTENT:.*]] = tensor.extract %[[SMALLER_SHAPE]]{{\[}}%[[SMALLER_EXTENT_INDEX]]] : tensor<?xindex>
+// CHECK:             %[[SMALLER_EXTENT:.*]] = extract_element %[[SMALLER_SHAPE]]{{\[}}%[[SMALLER_EXTENT_INDEX]]] : tensor<?xindex>
 // CHECK:             %[[SMALLER_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[SMALLER_EXTENT]], %[[C1]] : index
 // CHECK:             %[[EXTENTS_ARE_EQUAL:.*]] = cmpi "eq", %[[LARGER_EXTENT]], %[[SMALLER_EXTENT]] : index
 // CHECK:             %[[EITHER_EXTENT_IS_ONE:.*]] = or %[[LARGER_EXTENT_IS_ONE]], %[[SMALLER_EXTENT_IS_ONE]] : i1
@@ -445,10 +445,10 @@ func @broadcast(%a : tensor<?xindex>, %b : tensor<?xindex>) -> !shape.witness {
 // CHECK:           %[[RANK_DIFF:.*]] = subi %[[LARGER_RANK]], %[[SMALLER_RANK]] : index
 // CHECK:           %[[TRUE:.*]] = constant true
 // CHECK:           %[[ALL_RESULT:.*]] = scf.for %[[VAL_16:.*]] = %[[RANK_DIFF]] to %[[LARGER_RANK]] step %[[C1]] iter_args(%[[ALL_SO_FAR:.*]] = %[[TRUE]]) -> (i1) {
-// CHECK:             %[[LARGER_EXTENT:.*]] = tensor.extract %[[LARGER_SHAPE]]{{\[}}%[[VAL_16]]] : tensor<?xindex>
+// CHECK:             %[[LARGER_EXTENT:.*]] = extract_element %[[LARGER_SHAPE]]{{\[}}%[[VAL_16]]] : tensor<?xindex>
 // CHECK:             %[[LARGER_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[LARGER_EXTENT]], %[[C1]] : index
 // CHECK:             %[[LHS_EXTENT_INDEX:.*]] = subi %[[VAL_16]], %[[RANK_DIFF]] : index
-// CHECK:             %[[SMALLER_EXTENT:.*]] = tensor.extract %[[SMALLER_SHAPE]]{{\[}}%[[LHS_EXTENT_INDEX]]] : tensor<?xindex>
+// CHECK:             %[[SMALLER_EXTENT:.*]] = extract_element %[[SMALLER_SHAPE]]{{\[}}%[[LHS_EXTENT_INDEX]]] : tensor<?xindex>
 // CHECK:             %[[SMALLER_EXTENT_IS_ONE:.*]] = cmpi "eq", %[[SMALLER_EXTENT]], %[[C1]] : index
 // CHECK:             %[[EXTENTS_ARE_EQUAL:.*]] = cmpi "eq", %[[LARGER_EXTENT]], %[[SMALLER_EXTENT]] : index
 // CHECK:             %[[EITHER_EXTENT_IS_ONE:.*]] = or %[[LARGER_EXTENT_IS_ONE]], %[[SMALLER_EXTENT_IS_ONE]] : i1

diff  --git a/mlir/test/Dialect/Linalg/fusion-tensor.mlir b/mlir/test/Dialect/Linalg/fusion-tensor.mlir
index ff0394f18249..1fd71b031ab3 100644
--- a/mlir/test/Dialect/Linalg/fusion-tensor.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-tensor.mlir
@@ -395,7 +395,7 @@ func @scalar_indexed_generic_fusion
     ins(%arg1 : tensor<i32>) {
     ^bb0(%arg2: i32):  // no predecessors
       %3 = index_cast %arg2 : i32 to index
-      %4 = tensor.extract %arg0[%3, %c0, %c0] : tensor<5x1x1xf32>
+      %4 = extract_element %arg0[%3, %c0, %c0] : tensor<5x1x1xf32>
       linalg.yield %4 : f32
     } -> tensor<f32>
   %1 = linalg.generic
@@ -418,6 +418,6 @@ func @scalar_indexed_generic_fusion
 //  CHECK-SAME:     indexing_maps = [#[[MAP0]], #[[MAP1]]]
 //  CHECK-SAME:     iterator_types = ["parallel"]
 //  CHECK-SAME:     ins(%[[ARG1]] : tensor<i32>)
-//       CHECK:     tensor.extract %[[ARG0]]
+//       CHECK:     extract_element %[[ARG0]]
 //       CHECK:     linalg.yield
 //       CHECK   return %[[T0]]

diff  --git a/mlir/test/Dialect/Standard/bufferize.mlir b/mlir/test/Dialect/Standard/bufferize.mlir
index 75ff2a9d78f0..27769c52d9ea 100644
--- a/mlir/test/Dialect/Standard/bufferize.mlir
+++ b/mlir/test/Dialect/Standard/bufferize.mlir
@@ -61,6 +61,18 @@ func @dynamic_tensor_from_elements_static_and_dynamic(%arg0: index) -> tensor<16
   return %result : tensor<16x?xindex>
 }
 
+// CHECK-LABEL:   func @extract_element(
+// CHECK-SAME:                          %[[TENSOR:.*]]: tensor<?xf32>,
+// CHECK-SAME:                          %[[IDX:.*]]: index) -> f32 {
+// CHECK:           %[[MEMREF:.*]] = tensor_to_memref %[[TENSOR]] : memref<?xf32>
+// CHECK:           %[[RET:.*]] = load %[[MEMREF]][%[[IDX]]] : memref<?xf32>
+// CHECK:           return %[[RET]] : f32
+// CHECK:         }
+func @extract_element(%arg0: tensor<?xf32>, %arg1: index) -> f32 {
+  %0 = extract_element %arg0[%arg1] : tensor<?xf32>
+  return %0 : f32
+}
+
 // CHECK-LABEL:   func @select(
 // CHECK-SAME:                 %[[PRED:.*]]: i1,
 // CHECK-SAME:                 %[[TRUE_VAL:.*]]: tensor<f32>,
@@ -126,14 +138,14 @@ func @tensor_from_elements(%arg0: index, %arg1: index) -> tensor<2xindex> {
 // The dynamic_tensor_from_elements op clones each op in its body.
 // Make sure that regions nested within such ops are recursively converted.
 // CHECK-LABEL: func @recursively_convert_cloned_regions
-func @recursively_convert_cloned_regions(%arg0: tensor<*xf32>, %arg1: index, %arg2: i1) -> tensor<?xindex> {
+func @recursively_convert_cloned_regions(%arg0: tensor<?xindex>, %arg1: index, %arg2: i1) -> tensor<?xindex> {
   %tensor = dynamic_tensor_from_elements %arg1 {
   ^bb0(%iv: index):
     %48 = scf.if %arg2 -> (index) {
       scf.yield %iv : index
     } else {
-      // CHECK-NOT: dim{{.*}}tensor
-      %50 = dim %arg0, %iv : tensor<*xf32>
+      // CHECK-NOT: extract_element
+      %50 = extract_element %arg0[%iv] : tensor<?xindex>
       scf.yield %50 : index
     }
     yield %48 : index

diff  --git a/mlir/test/Dialect/Standard/canonicalize.mlir b/mlir/test/Dialect/Standard/canonicalize.mlir
index d3c781d1290f..74401cb6c723 100644
--- a/mlir/test/Dialect/Standard/canonicalize.mlir
+++ b/mlir/test/Dialect/Standard/canonicalize.mlir
@@ -46,11 +46,11 @@ func @dim_of_tensor_load(%arg0: memref<?xf32>) -> index {
 }
 
 // Test case: Folding of load(tensor_to_memref(%v, %idxs))
-//            -> tensor.extract(%v, %idx)
+//            -> extract_element(%v, %idx)
 // CHECK-LABEL: func @load_from_tensor_to_memref(
 //  CHECK-SAME:     %[[IDX0:[0-9a-z]+]]: index, %[[IDX1:[0-9a-z]+]]: index
 //  CHECK-SAME:     %[[TENSOR:[0-9a-z]+]]: tensor<?x?xf32>
-//       CHECK:   %[[RES:.*]] = tensor.extract %[[TENSOR]][%[[IDX0]], %[[IDX1]]]
+//       CHECK:   %[[RES:.*]] = extract_element %[[TENSOR]][%[[IDX0]], %[[IDX1]]]
 //   CHECK-NOT:   load
 //       CHECK:   return %[[RES]] : f32
 func @load_from_tensor_to_memref(%arg0: index, %arg1: index, %arg2: tensor<?x?xf32>) -> f32 {

diff  --git a/mlir/test/Dialect/Tensor/bufferize.mlir b/mlir/test/Dialect/Tensor/bufferize.mlir
deleted file mode 100644
index bb23322ca659..000000000000
--- a/mlir/test/Dialect/Tensor/bufferize.mlir
+++ /dev/null
@@ -1,13 +0,0 @@
-// RUN: mlir-opt %s -tensor-bufferize | FileCheck %s
-
-// CHECK-LABEL:   func @extract(
-// CHECK-SAME:                  %[[TENSOR:.*]]: tensor<?xf32>,
-// CHECK-SAME:                  %[[IDX:.*]]: index) -> f32 {
-// CHECK:           %[[MEMREF:.*]] = tensor_to_memref %[[TENSOR]] : memref<?xf32>
-// CHECK:           %[[RET:.*]] = load %[[MEMREF]][%[[IDX]]] : memref<?xf32>
-// CHECK:           return %[[RET]] : f32
-// CHECK:         }
-func @extract(%arg0: tensor<?xf32>, %arg1: index) -> f32 {
-  %0 = tensor.extract %arg0[%arg1] : tensor<?xf32>
-  return %0 : f32
-}

diff  --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
deleted file mode 100644
index 86cb3ee7388a..000000000000
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ /dev/null
@@ -1,33 +0,0 @@
-// RUN: mlir-opt %s -canonicalize | FileCheck %s
-
-// -----
-
-// CHECK-LABEL: func @fold_extract
-func @fold_extract(%arg0 : index) -> (f32, f16, f16, i32) {
-  %const_0 = constant 0 : index
-  %const_1 = constant 1 : index
-  %const_3 = constant 3 : index
-
-  // Fold an extract into a splat.
-  // CHECK-NEXT: [[C4:%.+]] = constant 4.{{0*}}e+00 : f32
-  %0 = constant dense<4.0> : tensor<4xf32>
-  %ext_1 = tensor.extract %0[%arg0] : tensor<4xf32>
-
-  // Fold an extract into a sparse with a sparse index.
-  // CHECK-NEXT: [[CM2:%.+]] = constant -2.{{0*}}e+00 : f16
-  %1 = constant sparse<[[0, 0, 0], [1, 1, 1]],  [-5.0, -2.0]> : tensor<4x4x4xf16>
-  %ext_2 = tensor.extract %1[%const_1, %const_1, %const_1] : tensor<4x4x4xf16>
-
-  // Fold an extract into a sparse with a non sparse index.
-  // CHECK-NEXT: [[C0:%.+]] = constant 0.{{0*}}e+00 : f16
-  %2 = constant sparse<[[1, 1, 1]],  [-2.0]> : tensor<1x1x1xf16>
-  %ext_3 = tensor.extract %2[%const_0, %const_0, %const_0] : tensor<1x1x1xf16>
-
-  // Fold an extract into a dense tensor.
-  // CHECK-NEXT: [[C64:%.+]] = constant 64 : i32
-  %3 = constant dense<[[[1, -2, 1, 36]], [[0, 2, -1, 64]]]> : tensor<2x1x4xi32>
-  %ext_4 = tensor.extract %3[%const_1, %const_0, %const_3] : tensor<2x1x4xi32>
-
-  // CHECK-NEXT: return [[C4]], [[CM2]], [[C0]], [[C64]]
-  return %ext_1, %ext_2, %ext_3, %ext_4 : f32, f16, f16, i32
-}

diff  --git a/mlir/test/Dialect/Tensor/invalid.mlir b/mlir/test/Dialect/Tensor/invalid.mlir
deleted file mode 100644
index 3ddb84365381..000000000000
--- a/mlir/test/Dialect/Tensor/invalid.mlir
+++ /dev/null
@@ -1,9 +0,0 @@
-// RUN: mlir-opt <%s -verify-diagnostics
-
-// -----
-
-func @extract_too_many_indices(%arg0: tensor<?xf32>) {
-  // expected-error at +1 {{incorrect number of indices for extract_element}}
-  %0 = tensor.extract %arg0[] : tensor<?xf32>
-  return
-}

diff  --git a/mlir/test/Dialect/Tensor/ops.mlir b/mlir/test/Dialect/Tensor/ops.mlir
deleted file mode 100644
index 4d89b155f2a1..000000000000
--- a/mlir/test/Dialect/Tensor/ops.mlir
+++ /dev/null
@@ -1,10 +0,0 @@
-// RUN: mlir-opt <%s | mlir-opt | FileCheck %s
-
-// CHECK-LABEL:   func @extract(
-// CHECK-SAME:                  %[[TENSOR:.*]]: tensor<?x?x?xf32>,
-// CHECK-SAME:                  %[[INDEX:.*]]: index) {
-func @extract(%arg0: tensor<?x?x?xf32>, %arg1: index) {
-  // CHECK: tensor.extract %[[TENSOR]][%[[INDEX]], %[[INDEX]], %[[INDEX]]] : tensor<?x?x?xf32>
-  %0 = tensor.extract %arg0[%arg1, %arg1, %arg1] : tensor<?x?x?xf32>
-  return
-}

diff  --git a/mlir/test/IR/core-ops.mlir b/mlir/test/IR/core-ops.mlir
index 9af0c01bf555..c894bf47c2a6 100644
--- a/mlir/test/IR/core-ops.mlir
+++ b/mlir/test/IR/core-ops.mlir
@@ -672,6 +672,19 @@ func @calls(%arg0: i32) {
   return
 }
 
+// CHECK-LABEL: func @extract_element(%arg0: tensor<*xi32>, %arg1: tensor<4x4xf32>) -> i32 {
+func @extract_element(%arg0: tensor<*xi32>, %arg1 : tensor<4x4xf32>) -> i32 {
+  %c0 = "std.constant"() {value = 0: index} : () -> index
+
+  // CHECK: %0 = extract_element %arg0[%c0, %c0, %c0, %c0] : tensor<*xi32>
+  %0 = extract_element %arg0[%c0, %c0, %c0, %c0] : tensor<*xi32>
+
+  // CHECK: %1 = extract_element %arg1[%c0, %c0] : tensor<4x4xf32>
+  %1 = extract_element %arg1[%c0, %c0] : tensor<4x4xf32>
+
+  return %0 : i32
+}
+
 // CHECK-LABEL: func @tensor_from_elements() {
 func @tensor_from_elements() {
   %c0 = "std.constant"() {value = 0: index} : () -> index
@@ -959,3 +972,4 @@ func @subtensor_insert(%t: tensor<8x16x4xf32>, %t2: tensor<16x32x8xf32>, %idx :
 
 // CHECK-LABEL: func private @legacy_visibility_syntax
 func @legacy_visibility_syntax() attributes { sym_visibility = "private" }
+

diff  --git a/mlir/test/IR/invalid-ops.mlir b/mlir/test/IR/invalid-ops.mlir
index 0b41f4002ad1..1731c9c1aeb9 100644
--- a/mlir/test/IR/invalid-ops.mlir
+++ b/mlir/test/IR/invalid-ops.mlir
@@ -541,6 +541,61 @@ func @cmpf_canonical_type_mismatch(%a : f32, %b : f64) { // expected-note {{prio
 
 // -----
 
+func @extract_element_no_operands() {
+  // expected-error at +1 {{op expected 1 or more operands}}
+  %0 = "std.extract_element"() : () -> f32
+  return
+}
+
+// -----
+
+func @extract_element_no_indices(%v : vector<3xf32>) {
+  // expected-error at +1 {{incorrect number of indices for extract_element}}
+  %0 = "std.extract_element"(%v) : (vector<3xf32>) -> f32
+  return
+}
+
+// -----
+
+func @extract_element_invalid_index_type(%v : vector<3xf32>, %i : i32) {
+  // expected-error at +1 {{operand #1 must be index}}
+  %0 = "std.extract_element"(%v, %i) : (vector<3xf32>, i32) -> f32
+  return
+}
+
+// -----
+
+func @extract_element_element_result_type_mismatch(%v : vector<3xf32>, %i : index) {
+  // expected-error at +1 {{result type matches element type of aggregate}}
+  %0 = "std.extract_element"(%v, %i) : (vector<3xf32>, index) -> f64
+  return
+}
+
+// -----
+
+func @extract_element_vector_too_many_indices(%v : vector<3xf32>, %i : index) {
+  // expected-error at +1 {{incorrect number of indices for extract_element}}
+  %0 = "std.extract_element"(%v, %i, %i) : (vector<3xf32>, index, index) -> f32
+  return
+}
+
+// -----
+
+func @extract_element_tensor_too_many_indices(%t : tensor<2x3xf32>, %i : index) {
+  // expected-error at +1 {{incorrect number of indices for extract_element}}
+  %0 = "std.extract_element"(%t, %i, %i, %i) : (tensor<2x3xf32>, index, index, index) -> f32
+  return
+}
+
+// -----
+
+func @extract_element_tensor_too_few_indices(%t : tensor<2x3xf32>, %i : index) {
+  // expected-error at +1 {{incorrect number of indices for extract_element}}
+  %0 = "std.extract_element"(%t, %i) : (tensor<2x3xf32>, index) -> f32 return
+}
+
+// -----
+
 func @tensor_from_elements_wrong_result_type() {
   // expected-error at +2 {{'result' must be 1D tensor of any type values, but got 'tensor<*xi32>'}}
   %c0 = constant 0 : i32

diff  --git a/mlir/test/Transforms/canonicalize.mlir b/mlir/test/Transforms/canonicalize.mlir
index 95812acd10a3..4a74f5438a35 100644
--- a/mlir/test/Transforms/canonicalize.mlir
+++ b/mlir/test/Transforms/canonicalize.mlir
@@ -1040,21 +1040,21 @@ func @memref_cast_folding_subview_static(%V: memref<16x16xf32>, %a: index, %b: i
 
 // -----
 
-// CHECK-LABEL: func @extract_from_tensor_from_elements
-func @extract_from_tensor_from_elements(%element : index) -> index {
+// CHECK-LABEL: func @extract_element_from_tensor_from_elements
+func @extract_element_from_tensor_from_elements(%element : index) -> index {
   // CHECK-SAME: ([[ARG:%.*]]: index)
   %c0 = constant 0 : index
   %tensor = tensor_from_elements %element : tensor<1xindex>
-  %extracted_element = tensor.extract %tensor[%c0] : tensor<1xindex>
+  %extracted_element = extract_element %tensor[%c0] : tensor<1xindex>
   // CHECK: [[ARG]] : index
   return %extracted_element : index
 }
 
 // -----
 
-// CHECK-LABEL: func @extract_from_dynamic_tensor_from_elements
+// CHECK-LABEL: func @extract_element_from_dynamic_tensor_from_elements
 // CHECK-SAME: %[[IDX:.*]]: index, %[[TENSOR:.*]]: tensor<*xf32>
-func @extract_from_dynamic_tensor_from_elements(%idx: index, %tensor: tensor<*xf32>) -> index {
+func @extract_element_from_dynamic_tensor_from_elements(%idx: index, %tensor: tensor<*xf32>) -> index {
   %size = rank %tensor : tensor<*xf32>
   // CHECK-NEXT: %[[RES:.*]] = dim %[[TENSOR]], %[[IDX]]
   %0 = dynamic_tensor_from_elements %size {
@@ -1062,16 +1062,16 @@ func @extract_from_dynamic_tensor_from_elements(%idx: index, %tensor: tensor<*xf
     %1 = dim %tensor, %arg0 : tensor<*xf32>
     yield %1 : index
   } : tensor<?xindex>
-  %1 = tensor.extract %0[%idx] : tensor<?xindex>
+  %1 = extract_element %0[%idx] : tensor<?xindex>
   // CHECK-NEXT: return %[[RES]]
   return %1 : index
 }
 
 // -----
 
-// CHECK-LABEL: func @extract_from_dynamic_tensor_from_elements_2d
+// CHECK-LABEL: func @extract_element_from_dynamic_tensor_from_elements_2d
 // CHECK-SAME: %[[IDX0:.*]]: index, %[[IDX1:.*]]: index, %[[TENSOR:.*]]: tensor<*xf32>
-func @extract_from_dynamic_tensor_from_elements_2d(%idx0: index, %idx1: index, %tensor: tensor<*xf32>) -> index {
+func @extract_element_from_dynamic_tensor_from_elements_2d(%idx0: index, %idx1: index, %tensor: tensor<*xf32>) -> index {
   %size = rank %tensor : tensor<*xf32>
   // CHECK-NEXT: %[[DIM0:.*]] = dim %[[TENSOR]], %[[IDX0]]
   // CHECK-NEXT: %[[DIM1:.*]] = dim %[[TENSOR]], %[[IDX1]]
@@ -1083,16 +1083,16 @@ func @extract_from_dynamic_tensor_from_elements_2d(%idx0: index, %idx1: index, %
     %3 = addi %1, %2 : index
     yield %3 : index
   } : tensor<?x?xindex>
-  %4 = tensor.extract %0[%idx0, %idx1] : tensor<?x?xindex>
+  %4 = extract_element %0[%idx0, %idx1] : tensor<?x?xindex>
   // CHECK-NEXT: return %[[RES]]
   return %4 : index
 }
 
 // -----
 
-// CHECK-LABEL: func @extract_from_dynamic_tensor_from_elements_sideeffects
+// CHECK-LABEL: func @extract_element_from_dynamic_tensor_from_elements_sideeffects
 // CHECK-SAME: %[[IDX:.*]]: index
-func @extract_from_dynamic_tensor_from_elements_sideeffects(%idx: index, %tensor: tensor<*xf32>) -> index {
+func @extract_element_from_dynamic_tensor_from_elements_sideeffects(%idx: index, %tensor: tensor<*xf32>) -> index {
   %size = rank %tensor : tensor<*xf32>
   %mem = alloc(%size) : memref<?xindex>
   // CHECK: %[[DTENSOR:.*]] = dynamic_tensor_from_elements
@@ -1102,8 +1102,8 @@ func @extract_from_dynamic_tensor_from_elements_sideeffects(%idx: index, %tensor
     store %1, %mem[%arg0] : memref<?xindex>
     yield %1 : index
   } : tensor<?xindex>
-  // CHECK: %[[RES:.*]] = tensor.extract %[[DTENSOR]][%[[IDX]]]
-  %1 = tensor.extract %0[%idx] : tensor<?xindex>
+  // CHECK: %[[RES:.*]] = extract_element %[[DTENSOR]][%[[IDX]]]
+  %1 = extract_element %0[%idx] : tensor<?xindex>
   // CHECK-NEXT: return %[[RES]]
   return %1 : index
 }
@@ -1205,14 +1205,14 @@ func @subtensor(%t: tensor<8x16x4xf32>, %arg0 : index, %arg1 : index)
 
 // -----
 
-// CHECK-LABEL: func @extract_from_tensor_cast
+// CHECK-LABEL: func @extract_element_from_tensor_cast
 // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>
-func @extract_from_tensor_cast(%tensor: tensor<*xf32>) -> f32 {
+func @extract_element_from_tensor_cast(%tensor: tensor<*xf32>) -> f32 {
   // CHECK-NEXT: %[[C0:.*]] = constant 0 : index
   %c0 = constant 0 : index
   // CHECK-NOT: tensor_cast
   %casted = tensor_cast %tensor : tensor<*xf32> to tensor<?xf32>
-  // CHECK-NEXT: tensor.extract %[[TENSOR]][%[[C0]]]
-  %result = tensor.extract %casted[%c0] : tensor<?xf32>
+  // CHECK-NEXT: extract_element %[[TENSOR]][%[[C0]]]
+  %result = extract_element %casted[%c0] : tensor<?xf32>
   return %result : f32
 }

diff  --git a/mlir/test/Transforms/constant-fold.mlir b/mlir/test/Transforms/constant-fold.mlir
index 31e58bf5c577..234717863046 100644
--- a/mlir/test/Transforms/constant-fold.mlir
+++ b/mlir/test/Transforms/constant-fold.mlir
@@ -716,6 +716,38 @@ func @cmpf_inf() -> (i1, i1, i1, i1, i1, i1, i1, i1, i1, i1, i1, i1, i1, i1, i1,
 
 // -----
 
+// CHECK-LABEL: func @fold_extract_element
+func @fold_extract_element(%arg0 : index) -> (f32, f16, f16, i32) {
+  %const_0 = constant 0 : index
+  %const_1 = constant 1 : index
+  %const_3 = constant 3 : index
+
+  // Fold an extract into a splat.
+  // CHECK-NEXT: [[C4:%.+]] = constant 4.{{0*}}e+00 : f32
+  %0 = constant dense<4.0> : tensor<4xf32>
+  %ext_1 = extract_element %0[%arg0] : tensor<4xf32>
+
+  // Fold an extract into a sparse with a sparse index.
+  // CHECK-NEXT: [[CM2:%.+]] = constant -2.{{0*}}e+00 : f16
+  %1 = constant sparse<[[0, 0, 0], [1, 1, 1]],  [-5.0, -2.0]> : vector<4x4x4xf16>
+  %ext_2 = extract_element %1[%const_1, %const_1, %const_1] : vector<4x4x4xf16>
+
+  // Fold an extract into a sparse with a non sparse index.
+  // CHECK-NEXT: [[C0:%.+]] = constant 0.{{0*}}e+00 : f16
+  %2 = constant sparse<[[1, 1, 1]],  [-2.0]> : vector<1x1x1xf16>
+  %ext_3 = extract_element %2[%const_0, %const_0, %const_0] : vector<1x1x1xf16>
+
+  // Fold an extract into a dense tensor.
+  // CHECK-NEXT: [[C64:%.+]] = constant 64 : i32
+  %3 = constant dense<[[[1, -2, 1, 36]], [[0, 2, -1, 64]]]> : tensor<2x1x4xi32>
+  %ext_4 = extract_element %3[%const_1, %const_0, %const_3] : tensor<2x1x4xi32>
+
+  // CHECK-NEXT: return [[C4]], [[CM2]], [[C0]], [[C64]]
+  return %ext_1, %ext_2, %ext_3, %ext_4 : f32, f16, f16, i32
+}
+
+// -----
+
 // CHECK-LABEL: func @fold_rank
 func @fold_rank() -> (index) {
   %const_0 = constant dense<[[[1, -2, 1, 36]], [[0, 2, -1, 64]]]> : tensor<2x1x4xi32>

diff  --git a/mlir/utils/vim/syntax/mlir.vim b/mlir/utils/vim/syntax/mlir.vim
index 1db630c0223f..056d58e3d8b6 100644
--- a/mlir/utils/vim/syntax/mlir.vim
+++ b/mlir/utils/vim/syntax/mlir.vim
@@ -38,7 +38,7 @@ syn match mlirType /x\s*\zsvector/
 " TODO: this list is not exhaustive.
 syn keyword mlirOps alloc alloca addf addi and call call_indirect cmpf cmpi
 syn keyword mlirOps constant dealloc divf dma_start dma_wait dim exp
-syn keyword mlirOps getTensor index_cast load log memref_cast
+syn keyword mlirOps extract_element getTensor index_cast load log memref_cast
 syn keyword mlirOps memref_shape_cast mulf muli negf powf prefetch rsqrt sitofp
 syn keyword mlirOps splat store select sqrt subf subi subview tanh tensor_cast
 syn keyword mlirOps view


        


More information about the Mlir-commits mailing list