[Mlir-commits] [mlir] da5fe23 - [mlir][LowerToAffineLoops] Handle tensors of rank 0
Djordje Todorovic
llvmlistbot at llvm.org
Mon Apr 6 05:51:24 PDT 2020
Author: Djordje Todorovic
Date: 2020-04-06T14:51:03+02:00
New Revision: da5fe23e84c829243162ea2c51fd62d229b19ea4
URL: https://github.com/llvm/llvm-project/commit/da5fe23e84c829243162ea2c51fd62d229b19ea4
DIFF: https://github.com/llvm/llvm-project/commit/da5fe23e84c829243162ea2c51fd62d229b19ea4.diff
LOG: [mlir][LowerToAffineLoops] Handle tensors of rank 0
This will fix the case:
$ toyc -emit=jit test.toy
$ cat test.toy
def main() {
var a = 1;
print(a);
}
Without this patch it would trigger an assertion.
Differential Revision: https://reviews.llvm.org/D77464
Added:
Modified:
mlir/examples/toy/Ch5/mlir/LowerToAffineLoops.cpp
mlir/examples/toy/Ch6/mlir/LowerToAffineLoops.cpp
mlir/examples/toy/Ch7/mlir/LowerToAffineLoops.cpp
Removed:
################################################################################
diff --git a/mlir/examples/toy/Ch5/mlir/LowerToAffineLoops.cpp b/mlir/examples/toy/Ch5/mlir/LowerToAffineLoops.cpp
index 249f17b0fc71..0614f3ac043b 100644
--- a/mlir/examples/toy/Ch5/mlir/LowerToAffineLoops.cpp
+++ b/mlir/examples/toy/Ch5/mlir/LowerToAffineLoops.cpp
@@ -155,9 +155,15 @@ struct ConstantOpLowering : public OpRewritePattern<toy::ConstantOp> {
// operations.
auto valueShape = memRefType.getShape();
SmallVector<Value, 8> constantIndices;
- for (auto i : llvm::seq<int64_t>(
- 0, *std::max_element(valueShape.begin(), valueShape.end())))
- constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
+
+ if (!valueShape.empty()) {
+ for (auto i : llvm::seq<int64_t>(
+ 0, *std::max_element(valueShape.begin(), valueShape.end())))
+ constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
+ } else {
+ // This is the case of a tensor of rank 0.
+ constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, 0));
+ }
// The constant operation represents a multi-dimensional constant, so we
// will need to generate a store for each of the elements. The following
diff --git a/mlir/examples/toy/Ch6/mlir/LowerToAffineLoops.cpp b/mlir/examples/toy/Ch6/mlir/LowerToAffineLoops.cpp
index 249f17b0fc71..4292d14ec3ed 100644
--- a/mlir/examples/toy/Ch6/mlir/LowerToAffineLoops.cpp
+++ b/mlir/examples/toy/Ch6/mlir/LowerToAffineLoops.cpp
@@ -155,10 +155,15 @@ struct ConstantOpLowering : public OpRewritePattern<toy::ConstantOp> {
// operations.
auto valueShape = memRefType.getShape();
SmallVector<Value, 8> constantIndices;
- for (auto i : llvm::seq<int64_t>(
- 0, *std::max_element(valueShape.begin(), valueShape.end())))
- constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
+ if (!valueShape.empty()) {
+ for (auto i : llvm::seq<int64_t>(
+ 0, *std::max_element(valueShape.begin(), valueShape.end())))
+ constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
+ } else {
+ // This is the case of a tensor of rank 0.
+ constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, 0));
+ }
// The constant operation represents a multi-dimensional constant, so we
// will need to generate a store for each of the elements. The following
// functor recursively walks the dimensions of the constant shape,
diff --git a/mlir/examples/toy/Ch7/mlir/LowerToAffineLoops.cpp b/mlir/examples/toy/Ch7/mlir/LowerToAffineLoops.cpp
index 249f17b0fc71..0614f3ac043b 100644
--- a/mlir/examples/toy/Ch7/mlir/LowerToAffineLoops.cpp
+++ b/mlir/examples/toy/Ch7/mlir/LowerToAffineLoops.cpp
@@ -155,9 +155,15 @@ struct ConstantOpLowering : public OpRewritePattern<toy::ConstantOp> {
// operations.
auto valueShape = memRefType.getShape();
SmallVector<Value, 8> constantIndices;
- for (auto i : llvm::seq<int64_t>(
- 0, *std::max_element(valueShape.begin(), valueShape.end())))
- constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
+
+ if (!valueShape.empty()) {
+ for (auto i : llvm::seq<int64_t>(
+ 0, *std::max_element(valueShape.begin(), valueShape.end())))
+ constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
+ } else {
+ // This is the case of a tensor of rank 0.
+ constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, 0));
+ }
// The constant operation represents a multi-dimensional constant, so we
// will need to generate a store for each of the elements. The following
More information about the Mlir-commits
mailing list