
Support for Scalable Vector Architectures in LLVM IR

ARM Manchester Design Center

4th November 2016

Background

ARMv8-A Scalable Vector Extensions is a vector ISA extension for AArch64, featuring lane predication,
scatter-gather, and speculative loads. It is intended to scale with hardware such that the same binary running
on a processor with wider vector registers can take advantage of the increased compute power without
recompilation. This document describes changes made to LLVM that allow its vectorizer to better target
SVE.

As the vector length is no longer a statically known value, the way in which the LLVM vectorizer generates
code required modifications such that certain values are now runtime evaluated expressions. The following
section documents the additional IR instructions needed to achieve this. During the design of these extensions,
we endeavoured to strike a balance between elegant and succinct design and the pragmatic realities of
generating efficient code for the SVE architecture. We believe that the current design has a relatively small
impact on the IR and type system given the unusual characteristics of the target.

Types

Overview:

IR Class Changes:

To represent a vector of unknown length a scaling property is added to the VectorType class whose
element count becomes an unknown multiple of a known minimum element count. To be specific unsigned
NumElements is replaced by class ElementCount with its two members:

• unsigned Min: the minimum number of elements.
• bool Scalable: is the element count an unknown multiple of Min?

For non-scalable vectors (Scalable=false) the scale is assumed to be one and thus Min becomes identical to
the original NumElements property.

This mixture of static and runtime quantities allow us to reason about the relationship between different
scalable vector types without knowing their exact length.

IR Interface:

static VectorType *get(Type *ELType, ElementCount EC);
// Legacy interface whilst code is migrated.
static VectorType *get(Type *ElType, unsigned NumEls, bool Scalable=false);

1

ElementCount getElementCount();
bool isScalable();

IR Textual Form:

The textual IR for vectors becomes:

<[n x] <m> x <type>>

where type is the scalar type of each element, m corresponds to Min and the optional string literal n x signifies
Scalable is true when present, false otherwise. The textual IR for non-scalable vectors is thus unchanged.

Scalable vectors with the same Min value have the same number of elements, and the same number of bytes if
Min * sizeof(type) is the same:

<n x 4 x i32> and <n x 4 x i8> have the same number of elements.

<n x 4 x i32> and <n x 8 x i16> have the same number of bytes.

SelectionDAG

New scalable vector MVTs are added, one for each existing vector type. Scalable vector MVTs are modelled
in the same way as the IR. Hence, <n x 4 x i32> becomes nxv4i32.

MVT Interface:

static MVT getVectorVT(MVT VT, ElementCount EC);
bool isScalableVector() const;
static mvt_range integer_scalable_valuetypes();
static mvt_range fp_scalable_valuetypes();

To minimise the effort required for common code to preserve the scalable flag we extend the helper functions
within MVT/EVT classes to cover more cases. For example:

/// Return a VT for a vector type whose attributes match ourselves
/// but with an element type chosen by the caller.
EVT changeVectorElementType(EVT EltVT)`

Instructions

The majority of instructions work seamlessly when applied to scalable vector types. However, on occasion
assumptions are made that allow vectorization logic to be reduced directly to constants completely bypassing
the IR (e.g. when the element count is known). These assumption are generally unsafe for scalable vectors
which forces a requirement to express more logic in IR. To help with this the following instruction are added
to the IR.

elementcount

Syntax:

<result> = elementcount <n x m x ty> <v1> as <ty2>

2

Overview:

This instruction returns the actual number of elements in the input vector of type <n x m x ty> as the
scalar type <ty2>. This is primarily used to increment induction variables and replaces many uses of VF
within the loop vectorizer.

IRBuilder Interface:

Value *CreateElementCount(Type *Ty, Value *V, const Twine &Name = "");

Fixed-Width Behaviour:

A constant with the value of Min is created.

SelectionDAG:

See ISD::ELEMENT_COUNT .

seriesvector

Syntax:

<result> = seriesvector <ty> <v1>, <v2> as <n x m x ty>

Overview:

This instruction returns a vector of type <n x m x ty> with elements forming the arithmetic series:

elt[z] = v1 + z * v2

where z is the element index and <ty> a scalar type. This is primarily used to represent a vector of induction
values leading to:

• Predicate creation using vector compares for fully predicated loops (see also: propff , test).
• Creating offset vectors for gather/scatter via getelementptr.
• Creating masks for shufflevector.

For the following loop, a seriesvector instruction based on i is used to create the data vector to store:
unsigned a[LIMIT];

for (unsigned i = 0; i < LIMIT; i++) {
a[i] = i;

}

seriesvector instructions can optionally have NUW and NSW flags attached to them. The semantics of these
flags are intended to match those of the usual scalar instruction wrap flags, but apply element-wise to the
result vector. If any element addition of the current value and step results in a signed or unsigned overflow
with the corresponding flag set, then the result is a poison value for the entire vector. However, this feature
is not currently used.

3

IRBuilder Interface:

Value *CreateSeriesVector(VectorType::ElementCount EC, Value *Start,
Value* Step, const Twine &Name = "",
bool HasNUW = false, bool HasNSW = false);

Fixed-Width Behaviour:

A constant vector is created with the same arithmetic series.

SelectionDAG:

See ISD::SERIES_VECTOR.

test

Syntax:

<result> = test <cond> <ty> <v1>

Overview:

This instruction returns a scalar boolean value based on the comparison of a boolean or vector boolean
operand. It allows us to reason about a value as a whole rather than the per scalar comparison obtained
from say icmp. The most common use is testing the result of icmp/fcmp.

We use this for the controlling predicate of fully predicated loops. Loops with a termination condition as
follows:

for (i = 0; i < LIMIT; ++i)

are handled by testing their control predicate for first true to signify another iteration is required.

Support for scalar booleans is simply to provide symmetry so that all variants of icmp/fcmp can be passed as
input to test.

Supported Conditions:

• all false
• all true
• any false
• any true
• first false
• first true
• last false
• last true

IRBuilder Interface:

Value *CreateTest(TestInst::Predicate P, Value *V, const Twine &Name = "");

4

Fixed-Width Behaviour

Same as scalable.

SelectionDAG:

See ISD::TEST_VECTOR.

propff

Syntax:

<result> = propff <ty> <v1>, <v2>

Overview:

This instruction creates a partitioned boolean vector based on the position of the first boolean false value in
the concatenation of input boolean vectors v1 and v2. Given vectors of length k, an element x[i] in the
result vector is true if, and only if, each element y[0]...y[i+k] in the concatenated input vector y=v1:v2 is
true.

The following examples show the results for a full v1 and a v2 which has reached a termination condition,
and a v1 which previously reached a termination condition with any v2.

5

A core use of this instruction is to protect against integer overflow that can occur when maintaining the
induction vector of a fully predicated loop. For SVE the issue is further compounded with its support of
non-power-of-2 vector lengths.

We believe propff to be the least complex partitioning instruction to provide sufficient abstraction yet achieve
the expected SVE code quality. Although other partitioning schemes can be modelled using propff we feel a
more capable partitioning instruction is worth highlighting because it can simplify the vectorization of more
loops.

IRBuilder Interface:

Value *CreatePropFF(Value* P1, Value *P2, const Twine &Name = "");

Fixed-Width Behaviour:

Same as scalable.

SelectionDAG:

See ISD::PROPAGATE_FIRST_ZERO.

shufflevector

Syntax:

<result> = shufflevector <ty1> <v1>, <ty1> <v2>, <ty2> <mask>

Overview:

Not a new instruction but shufflevector is extended to accept non-constant masks. For code that expects the
original restriction ShuffleVectorInst::getMaskValue has changed to guard against unsafe uses.

// [old] Returns the mask value.
static int getMaskValue(Constant *Mask, unsigned i);
// [new] Returns true when Result contains the mask value, false otherwise.
static bool getMaskValue(Value *Mask, unsigned i, int &Result);

Similar changes are made to related interfaces and their users.

IRBuilder Interface:

Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
const Twine &Name = "");

Fixed-Width Behaviour:

No change.

6

SelectionDAG:

See ISD::VECTOR_SHUFFLE_VAR.

Constants

Scalable vectors of known constants cannot be represented within LLVM due to their unknown element
count. Optimizations performed on scalable vectors become much more reliant on ConstantExprs. Most of
the instructions talked about in this document also have a matching ConstantExpr with the most common
constant folds duplicated to work with them.

This is most prevalent when considering vector splats. These are simulated via a sequence of
insertelementand shufflevector that are usually resolved to a Constant. For scalable vectors this cannot
be done and the original sequence is maintained. To mitigate this, PatternMatch is extended to better
support ConstantExprs along with new helpers like:

#define m_SplatVector(X) \
m_ShuffleVector(\

m_InsertElement(m_Undef(), X, m_Zero()), \
m_Value(), \
m_Zero()) \

Zero is the exception with zeroinitializer applying equally well to scalable and non-scalable vectors.

Predicated floating point arithmetic

When a loop is fully predicated it becomes necessary to have masked versions of faulting instructions. Today
we use the existing masked memory intrinsics to ensure we do not access memory that would not have been
accessed by the original scalar loop.

The same principle applies to floating point instructions whereby we should not trigger an exception that
would not have been produced by the original scalar loop.

We don’t handle this today but are seeking advice as to the preferred method. Options include:

1. Add masked versions of the affected instructions.
2. Extend existing instructions to take a predicate.
3. Construct IR that contains “safe” values for undefined locations.

Given the choice, Option 1 is our preferred route as it’s in line with the introduction of the masked memory
intrinsics. Although, given the greater potential for optimization, instruction forms may be preferable to
intrinsics.

See also Predicated floating point intrinsics

Intrinsics

llvm.masked.spec.load

Syntax:

<result> = call {<data>, <pred>} @llvm.masked.spec.load.<type>(<ptr>, <align>,
<mask>, <merge>)

7

Overview:

This intrinsic represents a load whereby only the first active lane is expected to succeed with remaining lanes
loaded speculatively. Along with the data this intrinsic returns a predicate indicating which lanes of data are
valid.

Interface:

CallInst *CreateMaskedSpecLoad(Value *Ptr, unsigned Align, Value *Mask,
Value *PassThru = 0, const Twine &Name = "");

Fixed-Width Behaviour:

Same as scalable.

llvm.ctvpop

Syntax:

Overview:

This intrinsic returns a count of the set bits across a complete vector. It’s most useful when operating on
predicates as it allows a portable way to create predicate vectors that are partitioned differently (e.g. including
the lane with the first change, rather than propff ’s exclusive behaviour).

Interface:

CallInst *CreateCntVPop(Value *Vec, const Twine &Name);

Fixed-Width Behaviour

Same as scalable. However, it can also be modelled using *llvm.ctpop* followed by a scalarized horizontal
reduction. This is not possible with scalable vectors because scalarization is not an option.

horizontal reductions

Loops containing reductions are first vectorized as if no such reduction exists, thus building a vector of
accumulated results. When exiting the vector loop a final in-vector reduction is done by effectively scalarizing
the operation across each of the result vector’s elements.

For scalable vectors, whose element count is unknown, such scalarization is not possible. For this reason
we introduce target specific intrinsics to support common reductions (e.g. horizontal add), along with
TargetTransformInfo extensions to query their availability. If a scalable vector loop requires a reduction
that’s not provided by the target its vectorization is prevented.

When fully predicated vectorization is required, additional work is done within the vector loop to ensure
inactive lanes don’t affect the accumulated result. See also Predicated floating point arithmetic.

8

Predicated floating point intrinsics

Libcalls not directly supported by the code generator must be serialized (See here). Also, for fully predicated
loops the scalar calls must only occur for active lanes so we introduce predicated versions of the most common
routines (e.g. *llvm.pow). This is mostly transparent to the loop vectorizer beyond the requirement to pass
an extra parameter.

TTI Interface:

bool canReduceInVector(const RecurrenceDescriptor &Desc, bool NoNaN) const;
Value* getReductionIntrinsic(IRBuilder<> &Builder,

const RecurrenceDescriptor& Desc, bool NoNaN,
Value* Src) const;

SelectionDAG Nodes

ISD::BUILD_VECTOR

BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...)

This node takes as input a set of scalars to concatenate into a single vector. By its very nature this node
is incompatible with scalable vectors because we don’t know how many scalars it will takes to fill one. All
common code using this node has either been rewritten or bypassed.

ISD::ELEMENT_COUNT

ELEMENT_COUNT(TYPE)

See elementcount.

ISD::EXTRACT_SUBVECTOR

EXTRACT_SUBVECTOR(VECTOR, IDX)

Usage of this node is typically linked to legalization where it’s used to split vectors. The index parameter is
often absolute and proportional to the input vector’s element count.

For scalable vectors an absolute index makes little sense. We have changed this parameter’s meaning to
become implicitly multiplied by n to match its main usage.

The change has no effect when applied to non-scalable vectors, because n == 1. No target specific code is
affected and in many cases common code becomes compatible with scalable vectors. For example:

nxv2i64 extract_subvector(nxv4i64, 2)

The real first lane becomes n * 2, resulting in the extraction of the top half of the input vector. This
maintains the intension of the original code for both scalable and non-scalable vectors.

For common code that truly requires an absolute index we recommend a new distinct ISD node to better
differentiate such patterns.

9

ISD::INSERT_SUBVECTOR

INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX)

We have made the equivalent change to this node’s index parameter to match the behaviour of
ISD::EXTRACT_SUBVECTOR.

ISD::PROPAGATE_FIRST_ZERO

PROPAGATE_FIRST_ZERO(VEC1, VEC2)

See propff .

ISD::SERIES_VECTOR

SERIES_VECTOR(INITIAL, STEP)

See seriesvector .

ISD::SPLAT_VECTOR

SPLAT_VECTOR(VAL)

Within the code generator a splat is represented by ISD::BUILD_VECTOR and is thus incompatible with
scalable vectors.

We initially made use of ISD::SERIES_VECTOR with a zero stride but that brings with it a requirement for
ISD::SERIES_VECTOR to support floating-point types. For this reason we created an explicit node that
also allowed less complex looking legalization/selection code.

ISD::TEST_VECTOR

TEST_VECTOR(VEC, PRED)

VEC is the boolean vector being tested, and PRED is a TestCode enum under the llvm::ISD namespace which
contains all the supported conditions.

See test.

ISD::VECTOR_SHUFFLE_VAR

VECTOR_SHUFFLE_VAR(VEC1, VEC2, VEC3)

See shufflevector .

AArch64 Specific Changes

Instruction Selection

In order to allow proper instruction selection there must be a direct mapping from MVTs to SVE registers.
SVE data registers have a length in multiples of 128bits (with 128bits being the minimum) and predicate
registers have a bit for every byte of a data register.

10

Given the 128bit minimum we map scalable vector MVTs whose static component is also 128bits
(e.g. MVT::nxv4i32) directly to SVE data registers. Scalable vector MVTs with an i1 element type and a
static element count of 16 (128/8 = 16) or fewer (e.g. MVT::nxv4i1) are mapped to SVE predicate registers.

All other integer MVTs are considered illegal and are either split or promoted accordingly. A similar
rule applies to vector floating point MVTs but those types whose static component is less that 128bits
(MVT::nx2f32) are also mapped directly to SVE data registers but in a form whereby elements are effectively
interleaved with enough undefined elements to fulfil the 128bit requirement.

We do this so that predicate bits correctly align to their data counterpart. For example, for all vector MVTs
with two elements, a predicate of nxv2i1 is used, regardless of the data vector’s element type.

Stack Regions for SVE Objects

As SVE registers have an unknown size their associated fill/spill instructions require an offset that will be
implicitly scaled by the vector length instead of bytes or element size. To accommodate this we introduce the
concept of Stack Regions that are areas on the stack associated with specific data types or register classes.

Each Stack Region controls its own allocation, deallocation and internal offset calculations. For SVE we
create separate Stack Regions for its data and predicate registers. Objects not belonging to a Stack Region
use a default so that existing targets are not affected.

SVE-Specific Optimizations

The following SVE specific IR transformation passes are added to better guide code generation. In some
instances this has affected how loops are vectorized because it’s assumed they will occur. They also point to
work other target’s may wish to consider.

SVE Post-Vectorization Optimization Pass

This pass is responsible for converting generically vectorized loops into a form that more closely resembles
SVE’s style of vectorization. For example, rewriting a vectorized loop’s control flow to utilize SVE’s while
instruction.

NOTE: This pass is very sensitive to the wrap flags (i.e. NSW/NUW). Much effort has gone into ensuring
they are preserved during vectorization to the extent of introducing llvm.assume calls when beneficial.

SVE Expand Libcall Pass

In order to keep the loop vectorizer generic we maintain the ability to vectorize libcalls we know the code
generator cannot handle because scalable vectors cannot be scalarized. This pass serializes such calls by
introducing loops using SVE’s predicate iteration instructions.

Note that although such serialization can be achieved generically using extractelement/insertelement,
our experiments showed no route to efficient code generation.

SVE Addressing Modes Pass

This pass alleviates the negative effects of Loop Strength Reduction on address computations for SVE
targeted loops, leading to better code quality.

11

Full Example

The following section shows how a C loop with a sum reduction is represented in scalable IR (assuming
-Ofast) and the final generated code.

int SimpleReduction(int *a, int count) {
int res = 0;
for (int i = 0; i < count; ++i)

res += a[i];

return res;
}

The IR representation shows each of the new instructions being used to control the loop, along with one
of the horizontal reduction intrinsics. The main sequence (noted by the ;; Control comments below) for
controlling loop iterations is:

1. Using elementcount to increment the induction variable
2. Using seriesvector starting from the current induction variable value to compare against a splat of the

loop’s trip count
3. Using propff to ensure the resulting predicate strictly partitions the predicate and does not wrap
4. Using test to determine whether the first lane is active (and thus at least one more iteration is required)
define i32 @SimpleReduction(i32* nocapture readonly %a, i32 %count) #0 {
entry:

%cmp6 = icmp sgt i32 %count, 0
br i1 %cmp6, label %min.iters.checked, label %for.cond.cleanup

min.iters.checked:
%0 = add i32 %count, -1
%1 = zext i32 %0 to i64
%2 = add nuw nsw i64 %1, 1
%wide.end.idx.splatinsert = insertelement <n x 4 x i64> undef, i64 %2, i32 0
%wide.end.idx.splat = shufflevector <n x 4 x i64> %wide.end.idx.splatinsert,

<n x 4 x i64> undef, <n x 4 x i32> zeroinitializer
%3 = icmp ugt <n x 4 x i64> %wide.end.idx.splat, seriesvector (i64 0, i64 1)
%predicate.entry = propff <n x 4 x i1> shufflevector (<n x 4 x i1> insertelement

(<n x 4 x i1> undef, i1 true, i32 0), <n x 4 x i1> undef,
<n x 4 x i32> zeroinitializer), %3

br label %vector.body

vector.body:
%min.iters.checked

%index = phi i64 [0, %min.iters.checked], [%index.next, %vector.body]
%predicate = phi <n x 4 x i1> [%predicate.entry, %min.iters.checked],

[%predicate.next, %vector.body]
%vec.phi = phi <n x 4 x i32> [zeroinitializer, %min.iters.checked],

[%8, %vector.body]
%4 = icmp ult i64 %index, 4294967296
call void @llvm.assume(i1 %4)
%5 = getelementptr inbounds i32, i32* %a, i64 %index
%6 = bitcast i32* %5 to <n x 4 x i32>*
%wide.masked.load = call <n x 4 x i32> @llvm.masked.load.nxv4i32(<n x 4 x i32>* %6,

i32 4, <n x 4 x i1> %predicate, <n x 4 x i32> undef), !tbaa !1
%7 = select <n x 4 x i1> %predicate, <n x 4 x i32> %wide.masked.load,

12

<n x 4 x i32> zeroinitializer
%8 = add nsw <n x 4 x i32> %vec.phi, %7
%index.next = add nuw nsw i64 %index, elementcount (<n x 4 x i64> undef) ;; Control 1
%9 = add nuw nsw i64 %index, elementcount (<n x 4 x i64> undef)
%10 = seriesvector i64 %9, i64 1 as <n x 4 x i64> ;; Control 2
%11 = icmp ult <n x 4 x i64> %10, %wide.end.idx.splat
%predicate.next = propff <n x 4 x i1> %predicate, %11 ;; Control 3
%12 = test first true <n x 4 x i1> %predicate.next ;; Control 4
br i1 %12, label %vector.body, label %middle.block, !llvm.loop !5

middle.block:
%.lcssa = phi <n x 4 x i32> [%8, %vector.body]
%13 = call i64 @llvm.aarch64.sve.uaddv.nxv4i32(<n x 4 x i1> shufflevector

(<n x 4 x i1> insertelement (<n x 4 x i1> undef, i1 true, i32 0),
<n x 4 x i1> undef, <n x 4 x i32> zeroinitializer), <n x 4 x i32> %.lcssa)

%14 = trunc i64 %13 to i32
br label %for.cond.cleanup

for.cond.cleanup:
%res.0.lcssa = phi i32 [0, %entry], [%14, %middle.block]
ret i32 %res.0.lcssa

}

The main vector body of the resulting code is one instruction longer than it would be for NEON, but no
scalar tail is required and performance will scale with register length. The seriesvector, shufflevector(splat),
icmp, propff, test sequence has been recognized and transformed into the whilelo instruction.

13

SimpleReduction:
// BB#0:

subs w9, w1, #1
b.lt .LBB0_4

// BB#1:
add x9, x9, #1
mov x8, xzr
whilelo p0.s, xzr, x9
mov z0.s, #0

.LBB0_2:
ld1w {z1.s}, p0/z, [x0, x8, lsl #2]
incw x8
add z0.s, p0/m, z0.s, z1.s
whilelo p0.s, x8, x9
b.mi .LBB0_2

// BB#3:
ptrue p0.s
uaddv d0, p0, z0.s
fmov w0, s0
ret

.LBB0_4:
mov w0, wzr
ret

Appendix

The following is an alternative to the propff instruction described above. We haven’t implemented this (or
worked out all the specific details) since we can synthesize the initial partitions required with extra operations,
although matching those and transforming to appropriate AArch64 SVE instructions is fragile given other
optimization passes. This instruction is more complex, but would allow us to explicitly specify the exact
partition desired.

partition

Syntax:

<result> = partition first <part_on> [inclusive] <ty> <p> [, propagating
<pprop>]

<result> = partition next <part_on> [inclusive] <ty> <p> from <pcont>

Overview:

This instruction creates a partitioned boolean vector based on an input vector p. There are two main modes
to consider. The first mode is an extended version of propff where part_on is a boolean which determines
whether the partition is made based on the first false value or the first true value. Propagating from a
previous vector is optional. The inclusive option produces a partition which includes the first true or false
value; the default is an exclusive partition which only covers the elements before the first true or false value.

In cases where there are multiple subsets of data in a vector which must be processed independently, we
need a way to take the original boolean vector and an existing partition to create the next partition to work

14

on. This is provided by the next form of partition. The pcont argument is the existing partitioned vector,
generated either by a partition first or another partition next. If there are no more partitions after the current
one, a boolean vector of all false will be returned.

Fixed-Width Behaviour:

Same as scalable.

15

	Background
	Types
	Overview:
	IR Class Changes:
	IR Interface:
	IR Textual Form:
	SelectionDAG
	MVT Interface:

	Instructions
	elementcount
	Syntax:
	Overview:
	IRBuilder Interface:
	Fixed-Width Behaviour:
	SelectionDAG:

	seriesvector
	Syntax:
	Overview:
	IRBuilder Interface:
	Fixed-Width Behaviour:
	SelectionDAG:

	test
	Syntax:
	Overview:
	IRBuilder Interface:
	Fixed-Width Behaviour
	SelectionDAG:

	propff
	Syntax:
	Overview:
	IRBuilder Interface:
	Fixed-Width Behaviour:
	SelectionDAG:

	shufflevector
	Syntax:
	Overview:
	IRBuilder Interface:
	Fixed-Width Behaviour:
	SelectionDAG:

	Constants
	Predicated floating point arithmetic
	Intrinsics
	llvm.masked.spec.load
	Syntax:
	Overview:
	Interface:
	Fixed-Width Behaviour:

	llvm.ctvpop
	Syntax:
	Overview:
	Interface:
	Fixed-Width Behaviour

	horizontal reductions
	Predicated floating point intrinsics
	TTI Interface:

	SelectionDAG Nodes
	ISD::BUILD_VECTOR
	ISD::ELEMENT_COUNT
	ISD::EXTRACT_SUBVECTOR
	ISD::INSERT_SUBVECTOR
	ISD::PROPAGATE_FIRST_ZERO
	ISD::SERIES_VECTOR
	ISD::SPLAT_VECTOR
	ISD::TEST_VECTOR
	ISD::VECTOR_SHUFFLE_VAR

	AArch64 Specific Changes
	Instruction Selection
	Stack Regions for SVE Objects
	SVE-Specific Optimizations
	SVE Post-Vectorization Optimization Pass
	SVE Expand Libcall Pass
	SVE Addressing Modes Pass

	Full Example
	Appendix
	partition
	Syntax:
	Overview:
	Fixed-Width Behaviour:

