[llvm-dev] [hexagon][PowerPC] code regression (sub-optimal code) on LLVM 9 when generating hardware loops, and the "llvm.uadd" intrinsic.

Krzysztof Parzyszek via llvm-dev llvm-dev at lists.llvm.org
Tue Jul 2 07:40:21 PDT 2019


Hi John,

The approach I took here was to deal with the intrinsics once they’re generated.  The hardware loop code tries to evaluate the iteration count, and when it fails to do so, it skips the loop.  The complication with unsigned overflow as a loop exit condition is that it makes calculating of the iteration count harder, and the current code for hardware loop doesn’t handle it.  It should be possible to expand it, but it would be a non-trivial amount of work.  Instead, I decided to rewrite the simple cases of unsigned add/sub, where the overflow condition can be rewritten in a way that is currently recognized.
Varying increments are not translatable into a hardware loop, but increments that are not 1 are, as long as we can calculate the iteration count (the hardware loop instruction takes a register containing the iteration count as an operand).  My guess is that if there was a loop with a non-unit increment, whose exit condition was an unsigned overflow, that loop would not have been handled by the hardware loop generation to begin with, so only dealing with +/-1 should be sufficient.  In the long term improving the hardware loop generation would be a better approach, but it’s more work.


--
Krzysztof Parzyszek  kparzysz at quicinc.com<mailto:kparzysz at quicinc.com>   LLVM compiler development

From: Joan Lluch <joan.lluch at icloud.com>
Sent: Tuesday, July 2, 2019 8:45 AM
To: Krzysztof Parzyszek <kparzysz at quicinc.com>
Cc: llvm-dev at lists.llvm.org; Sanjay Patel <spatel at rotateright.com>
Subject: [EXT] Re: [llvm-dev] [hexagon][PowerPC] code regression (sub-optimal code) on LLVM 9 when generating hardware loops, and the "llvm.uadd" intrinsic.

Hi Krzysztof,

Thank you very much for such a quick reaction. This is very much appreciated.

I have pulled your code from the main LLVM repo and found that it works fine!. However, after looking at it I have a question about it. My understanding is that your code only replaces uaddo, usubo with ‘1’ as the second operand. This certainly solves the hardware loop problem and I assume it’s enough, as there’s no possible loops with scalable increments?

I also want to mention that based on the reply I received from Sanjay, I also tried to override ‘shouldFormOverflowOp’ to always return false. This also solves the issue, but of course it prevents the ‘.with.overflow’ intrinsics to be generated at all. My understanding is that this fully mimics LLVM 7.0 behaviour, but I do not have the required knowledge on Hexagon to give an opinion about whether this is useful. I’m just posting this as a matter of information

Thanks again!

John


On 1 Jul 2019, at 17:51, Krzysztof Parzyszek <kparzysz at quicinc.com<mailto:kparzysz at quicinc.com>> wrote:

The Hexagon part is fixed in r364790.

--
Krzysztof Parzyszek  kparzysz at quicinc.com<mailto:kparzysz at quicinc.com>   LLVM compiler development

From: llvm-dev <llvm-dev-bounces at lists.llvm.org<mailto:llvm-dev-bounces at lists.llvm.org>> On Behalf Of Joan Lluch via llvm-dev
Sent: Sunday, June 30, 2019 2:04 PM
To: llvm-dev <llvm-dev at lists.llvm.org<mailto:llvm-dev at lists.llvm.org>>
Subject: [EXT] [llvm-dev] [hexagon][PowerPC] code regression (sub-optimal code) on LLVM 9 when generating hardware loops, and the "llvm.uadd" intrinsic.

Hi All,

The following code :

void hexagon2( int *a, int *res )
{
  int i = 100;
  while ( i-- ) {
    *res++ = *a++;
  }
}

gets compiled as a sub-optimal Software loop on LLVM 9.0 instead of a Hardware loop, whereas it was compiled as a Hardware Loop in LLVM 7.0.


This is the final assembly code generated by LLVM 9.0 :


                        .text
                        .file                "main.c"
                        .globl            hexagon2                // -- Begin function hexagon2
                        .p2align      2
                        .type             hexagon2, at function
hexagon2:                               // @hexagon2
// %bb.0:                               // %entry.old
                        {
                                                p0 = cmp.gtu(r0,r1); if (p0.new) jump:nt .LBB0_5
                                                r2 = r0
                                                allocframe(#0)
                        }                               // encoding: [A,0x41'A',A,0x15'A',0x00,0x3c,0x02,0x70]
                                        //   fixup A - offset: 0, value: .LBB0_5, kind: fixup_Hexagon_B9_PCREL
// %bb.1:                               // %entry.old
                        {
                                                r0 = sub(r1,r0)
                        }                               // encoding: [0x00,0xc1,0x20,0xf3]
                        {
                                                if (p0.new) jump:nt .LBB0_5
                                                p0 = cmp.gt(r0,#399)
                        }                               // encoding: [A,0x48'A',A,0x5c'A',0xe0,0xf1,0x40,0x75]
                                        //   fixup A - offset: 0, value: .LBB0_5, kind: fixup_Hexagon_B15_PCREL
// %bb.2:
                        {
                                                r0 = #-100
                        }                               // encoding: [0x80,0xf3,0xdf,0x78]
.LBB0_3:                                // %while.body
                                        // =>This Inner Loop Header: Depth=1
                        {
                                                r3 = add(r0,#1)
                                                r4 = memw(r2++#4)
                                                memw(r1++#4) = r4.new
                        }                               // encoding: [0x23,0x40,0x00,0xb0,0x24,0x40,0x82,0x9b,0x08,0xd2,0xa1,0xab]
                        {
                                                p0 = cmp.gtu(r0,r3); if (!p0.new) jump:t .LBB0_3
                                                r0 = r3
                        }                               // encoding: [A,0x63'A',0x40'A',0x15'A',0x00,0xc0,0x63,0x70]
                                        //   fixup A - offset: 0, value: .LBB0_3, kind: fixup_Hexagon_B9_PCREL
// %bb.4:                               // %while.end
                        {
                                                r31:30 = dealloc_return(r30):raw
                        }                               // encoding: [0x1e,0xc0,0x1e,0x96]
.LBB0_5:                                // %while.body.rtli
                        {
                                                call memmove
                                                r1:0 = combine(r2,r1)
                                                r2 = #400
                        }                               // encoding: [A,0x40'A',A,0x5a'A',0x00,0x41,0x02,0xf5,0x02,0xf2,0x00,0x78]
                                        //   fixup A - offset: 0, value: memmove, kind: fixup_Hexagon_B22_PCREL
                        {
                                                r31:30 = dealloc_return(r30):raw
                        }                               // encoding: [0x1e,0xc0,0x1e,0x96]
.Lfunc_end0:
                        .size              hexagon2, .Lfunc_end0-hexagon2
                                        // -- End function



This is the assembly code generated by LLVM 7.0 :

                        .text
                        .file                "main.c"
                        .globl            hexagon2                // -- Begin function hexagon2
                        .p2align      2
                        .type             hexagon2, at function
hexagon2:                               // @hexagon2
// %bb.0:                               // %entry.old
                        {
                                                p0 = cmp.gtu(r0,r1); if (p0.new) jump:nt .LBB0_5
                                                r2 = r0
                                                allocframe(#0)
                        }                               // encoding: [A,0x41'A',A,0x15'A',0x00,0x3c,0x02,0x70]
                                        //   fixup A - offset: 0, value: .LBB0_5, kind: fixup_Hexagon_B9_PCREL
// %bb.1:                               // %entry.old
                        {
                                                r0 = sub(r1,r0)
                        }                               // encoding: [0x00,0xc1,0x20,0xf3]
                        {
                                                if (p0.new) jump:nt .LBB0_5
                                                p0 = cmp.gt(r0,#399)
                        }                               // encoding: [A,0x48'A',A,0x5c'A',0xe0,0xf1,0x40,0x75]
                                        //   fixup A - offset: 0, value: .LBB0_5, kind: fixup_Hexagon_B15_PCREL
// %bb.2:                               // %while.body.preheader
                        {
                                                loop0(.LBB0_3,#100)
                        }                               // encoding: [0x20'A',0xc0'A',0x03'A',0x69'A']
                                        //   fixup A - offset: 0, value: .LBB0_3, kind: fixup_Hexagon_B7_PCREL
.Ltmp0:                                 // Block address taken
.LBB0_3:                                // %while.body
                                        // =>This Inner Loop Header: Depth=1
                        {
                                                r0 = memw(r2++#4)
                                                memw(r1++#4) = r0.new
                        } :endloop0                     // encoding: [0x20,0x80,0x82,0x9b,0x08,0xd2,0xa1,0xab]
// %bb.4:                               // %while.end
                        {
                                                r31:30 = dealloc_return(r30):raw
                        }                               // encoding: [0x1e,0xc0,0x1e,0x96]
.LBB0_5:                                // %while.body.rtli
                        {
                                                call memmove
                                                r1:0 = combine(r2,r1)
                                                r2 = #400
                        }                               // encoding: [A,0x40'A',A,0x5a'A',0x00,0x41,0x02,0xf5,0x02,0xf2,0x00,0x78]
                                        //   fixup A - offset: 0, value: memmove, kind: fixup_Hexagon_B22_PCREL
                        {
                                                r31:30 = dealloc_return(r30):raw
                        }                               // encoding: [0x1e,0xc0,0x1e,0x96]
.Lfunc_end0:
                        .size              hexagon2, .Lfunc_end0-hexagon2
                                        // -- End function


The code generated by LLVM 7.0 is better than LLVM 9.0 because 9.0 did not made use of Hardware loops.  This is in my opinion a bad regression from some earlier version. This is not an isolated case, more cases of the same LLVM 9 ‘defect’ are easy to find.

I have investigated the issue and I identified the root cause of it, which is related with the initial use of the “llvm.uadd" intrinsic in LLVM 9.0 to increment the loop Induction Variable, instead of an “add” instruction like LLVM 7.0.


This is the while.body excerpt after "CodeGen Prepare” in LLVM 9.0

while.body:                                       ; preds = %entry.old, %while.body
  %lsr.iv = phi i32 [ %math, %while.body ], [ -100, %entry.old ]
  %res.addr.04 = phi i32* [ %cgep1, %while.body ], [ %res, %entry.old ]
  %a.addr.03 = phi i32* [ %cgep, %while.body ], [ %a, %entry.old ]
  %6 = load i32, i32* %a.addr.03, align 4, !tbaa !2
  store i32 %6, i32* %res.addr.04, align 4, !tbaa !2
  %7 = call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %lsr.iv, i32 1)
  %math = extractvalue { i32, i1 } %7, 0
  %ov = extractvalue { i32, i1 } %7, 1
  %cgep = getelementptr inbounds i32, i32* %a.addr.03, i32 1
  %cgep1 = getelementptr inbounds i32, i32* %res.addr.04, i32 1
  br i1 %ov, label %while.end, label %while.body


And this is the same excerpt on  LLVM 7.0

while.body:                                       ; preds = %while.body.preheader, %while.body
  %lsr.iv = phi i32 [ -100, %while.body.preheader ], [ %lsr.iv.next, %while.body ]
  %res.addr.04 = phi i32* [ %cgep1, %while.body ], [ %res, %while.body.preheader ]
  %a.addr.03 = phi i32* [ %cgep, %while.body ], [ %a, %while.body.preheader ]
  %6 = load i32, i32* %a.addr.03, align 4, !tbaa !2
  store i32 %6, i32* %res.addr.04, align 4, !tbaa !2
  %lsr.iv.next = add nsw i32 %lsr.iv, 1
  %tobool = icmp eq i32 %lsr.iv.next, 0
  %cgep = getelementptr inbounds i32, i32* %a.addr.03, i32 1
  %cgep1 = getelementptr inbounds i32, i32* %res.addr.04, i32 1
  br i1 %tobool, label %while.end, label %while.body


LLVM 9 uses “llvm.uadd”. This finally prevents the “Hexagon Hardware Loops” pass to recognise a hardware loop pattern, resulting in sub-optimal code, specially compared with what LLVM 7.0 produces.

The code (excerpt) just before the Hexagon Hardware Loops pass on LLVM 9 is this:

bb.5:
; predecessors: %bb.1
  successors: %bb.3(0x80000000); %bb.3(100.00%)

  %8:intregs = A2_tfrsi -100
  J2_jump %bb.3, implicit-def $pc



bb.3.while.body:
; predecessors: %bb.3, %bb.5
  successors: %bb.4(0x04000000), %bb.3(0x7c000000); %bb.4(3.12%), %bb.3(96.88%)

  %0:intregs = PHI %8:intregs, %bb.5, %3:intregs, %bb.3
  %1:intregs = PHI %7:intregs, %bb.5, %5:intregs, %bb.3
  %2:intregs = PHI %6:intregs, %bb.5, %4:intregs, %bb.3
  %13:intregs, %4:intregs = L2_loadri_pi %2:intregs(tied-def 1), 4 :: (load 4 from %ir.a.addr.03, !tbaa !2)
  %5:intregs = S2_storeri_pi %1:intregs(tied-def 0), 4, %13:intregs :: (store 4 into %ir.res.addr.04, !tbaa !2)
  %3:intregs = A2_addi %0:intregs, 1
  %14:predregs = C2_cmpgtu %0:intregs, %3:intregs
  J2_jumpf %14:predregs, %bb.3, implicit-def dead $pc
  J2_jump %bb.4, implicit-def dead $pc




The same code on LLVM 7 is this:



bb.2.while.body.preheader:
; predecessors: %bb.1
  successors: %bb.4(0x80000000); %bb.4(200.00%)

  %11:intregs = A2_tfrsi -100
  J2_jump %bb.4, implicit-def dead $pc



bb.4.while.body:
; predecessors: %bb.2, %bb.4
  successors: %bb.5(0x04000000), %bb.4(0x7c000000); %bb.5(3.12%), %bb.4(96.88%)

  %0:intregs = PHI %11:intregs, %bb.2, %3:intregs, %bb.4
  %1:intregs = PHI %7:intregs, %bb.2, %5:intregs, %bb.4
  %2:intregs = PHI %6:intregs, %bb.2, %4:intregs, %bb.4
  %12:intregs, %4:intregs = L2_loadri_pi %2:intregs, 4 :: (load 4 from %ir.a.addr.03, !tbaa !2)
  %5:intregs = S2_storeri_pi %1:intregs, 4, %12:intregs :: (store 4 into %ir.res.addr.04, !tbaa !2)
  %3:intregs = A2_addi %0:intregs, 1
  %13:predregs = C2_cmpeqi %3:intregs, 0
  J2_jumpf %13:predregs, %bb.4, implicit-def dead $pc
  J2_jump %bb.5, implicit-def dead $pc


The differences above allow LLVM 7 to turn %13, %3, %11 into a hardware Loop as shown in the assembly code earlier in this message. However, LLVM 9 can’t identify a Hardware loop pattern due to the odd C2_cmpgtu instruction that gets generated. This instruction is a consequence of the introduction of the “llvm.addu” intrinsic that I showed earlier.

I am presenting here the case of Hexagon, but I suspect the same sub-optimal code may happen for the PowerPC (not checked yet).

All the code excerpts were obtained with -Os flags

I’m highly interested in getting in contact with someone familiar with the Hexagon/PowerPC targets regarding this subject. Any pointers to the right persons would be appreciated. My interest comes from the fact that I am proposing an improvement on the LSR pass that affects all targets and I need hardware loops to be properly generated in LLVM 9 like they used to be in LLVM 7.

Thanks

John.

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20190702/02fe7532/attachment-0001.html>


More information about the llvm-dev mailing list