[llvm-dev] KNL Assembly Code for Matrix Multiplication

hameeza ahmed via llvm-dev llvm-dev at lists.llvm.org
Fri Jun 30 17:03:50 PDT 2017


Thank You,

It means  vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 =
[8,9,10,11,12,13,14,15] zmm22 will contain 64 bit constant values which are
indexes here zmm22=8, 9, 10, 11, 12,13,14,15. not the values loaded from
these locations. and zmm2 contains constant 4000. so,

vpmuludq zmm14, zmm10, zmm2 ; will multiply the indexes values with 4000,
as for array b the stride is 4000.
zmm14= 3200, 3600, 40000, ............28000.

now as you said
vpsrlq zmm15, zmm10, 32 ; will shift zmm10(=zmm22) each 64 bit element by
32bit so

zmm15=? (can you compute the value of zmm15 here)?









On Sat, Jul 1, 2017 at 4:45 AM, Craig Topper <craig.topper at gmail.com> wrote:

> If you see a comment after an instruction that contains LCP in the
> address, the comment indicates what static value we loading from the
> constant pool. So after this instruction bits 63:0 will contain the value
> 8. Bits 127:64 will contain the value 9. Bits 192:128 will contain 10. And
> so on. The CP in LCP stands for Constant Pool.
>
> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 =
> [8,9,10,11,12,13,14,15]
>
> ~Craig
>
> On Fri, Jun 30, 2017 at 4:11 PM, hameeza ahmed <hahmed2305 at gmail.com>
> wrote:
>
>> Further, I need to understand it with putting actual values since it is
>> very confusing...
>>
>> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0]  ; i am supposing this
>> will move 64 bit values from mentioned indexes though i still believe each
>> value is required to be 32 bit. Now the indexes are [8, 9, 10, 11, 12, 13,
>> 14, 15]. now when these indexes are added with rip it points to the value
>> actually present at these locations so zmm22 will contain values not
>> indexes. suppose [8]={1}, [9]={5}, [10]={4}...... so zmm22 will become
>> zmm22={1, 5, 4, 3, 8, 7, 6, 2}......these are those 64 bit values loaded
>> from memory indexes.
>>
>> vpbroadcastq zmm2, qword ptr [rip + .LCPI0_2]; here .LCPI0_2=4000 means
>> broadcast value at this index for eg this location contains 2 so
>> zmm2={2,2,2,2.....2}.
>>
>> vpmuludq zmm14, zmm10, zmm2 ; this step is value multiplication not
>> index, there seems no point in multiplying these values here since we
>> havent used A and B yet???
>>
>>
>>
>> Please clarify my understanding about these initial steps; if these get
>> cleared then only i will be able to move forward.....
>>
>>
>> Thank You
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>> On Sat, Jul 1, 2017 at 3:47 AM, hameeza ahmed <hahmed2305 at gmail.com>
>> wrote:
>>
>>>
>>> ---------- Forwarded message ----------
>>> From: hameeza ahmed <hahmed2305 at gmail.com>
>>> Date: Sat, Jul 1, 2017 at 3:46 AM
>>> Subject: Re: [llvm-dev] KNL Assembly Code for Matrix Multiplication
>>> To: Craig Topper <craig.topper at gmail.com>
>>>
>>>
>>> Thank You.
>>>
>>> in this step;
>>> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 =
>>> [8,9,10,11,12,13,14,15]
>>> the indexes are 64 bit but the element stored at these position is 32
>>> bit since we are dealing with integers and ir also shows this.
>>> here we are loading 32 bit value from those 64 bit indexes which means
>>> zmm22 will hold values 32 bit from these 64 bit position so there is
>>> capacity of 16 32 bit elements then why all this??
>>>
>>> this is mentioned in IR as
>>>
>>>   %5 = getelementptr inbounds [1000 x i32], [1000 x i32]* %0, i64
>>> %indvars.iv34, i64 %4
>>>   %6 = bitcast i32* %5 to <16 x i32>*
>>>   %wide.load = load <16 x i32>, <16 x i32>* %6, align 4, !tbaa !1
>>>
>>>
>>> here indvars are 64 bit values but the values loaded from these indexes
>>> (step 3) is 32 bit???
>>>
>>> Please correct me.
>>>
>>>
>>>
>>>
>>>
>>> On Fri, Jun 30, 2017 at 8:59 PM, Craig Topper <craig.topper at gmail.com>
>>> wrote:
>>>
>>>> Some comments inline, I'll need to look more later.
>>>>
>>>> ~Craig
>>>>
>>>> On Fri, Jun 30, 2017 at 5:28 AM, hameeza ahmed via llvm-dev <
>>>> llvm-dev at lists.llvm.org> wrote:
>>>>
>>>>> Hello, I want some help in understanding knl intel assembly of matrix
>>>>> multiplication code. some of the things are not clear;
>>>>>
>>>>> here .c file:
>>>>>
>>>>> #include <stdio.h>
>>>>> #define N 1000
>>>>>
>>>>> // This function multiplies A[][] and B[][], and stores
>>>>> // the result in C[][]
>>>>> void multiply(int A[][N], int B[][N], int C[][N])
>>>>> {
>>>>>     int i, j, k, r;
>>>>>     for (i = 0; i < N; i++)
>>>>>     {
>>>>>         for (j = 0; j < N; j++)
>>>>>         {
>>>>>             r = 0;
>>>>>             for (k = 0; k < N; k++) {
>>>>>                 r += A[i][k]*B[k][j];}
>>>>>                 C[i][j] = r;
>>>>>
>>>>>         }
>>>>>
>>>>>     }
>>>>> }
>>>>>
>>>>> here .s file: * the code that i want to ask is in red color.*
>>>>>
>>>>> .text
>>>>> .intel_syntax noprefix
>>>>> .file "matn_o3.ll"
>>>>> .section .rodata,"a", at progbits
>>>>> .p2align 6
>>>>> .LCPI0_0:
>>>>> .quad 8                       # 0x8
>>>>> .quad 9                       # 0x9
>>>>> .quad 10                      # 0xa
>>>>> .quad 11                      # 0xb
>>>>> .quad 12                      # 0xc
>>>>> .quad 13                      # 0xd
>>>>> .quad 14                      # 0xe
>>>>> .quad 15                      # 0xf
>>>>> .LCPI0_1:
>>>>> .quad 0                       # 0x0
>>>>> .quad 1                       # 0x1
>>>>> .quad 2                       # 0x2
>>>>> .quad 3                       # 0x3
>>>>> .quad 4                       # 0x4
>>>>> .quad 5                       # 0x5
>>>>> .quad 6                       # 0x6
>>>>> .quad 7                       # 0x7
>>>>> .section .rodata.cst8,"aM", at progbits,8
>>>>> .p2align 3
>>>>> .LCPI0_2:
>>>>> .quad 4000                    # 0xfa0
>>>>> .LCPI0_3:
>>>>> .quad 64000                   # 0xfa00
>>>>> .LCPI0_4:
>>>>> .quad 128000                  # 0x1f400
>>>>> .LCPI0_5:
>>>>> .quad 192000                  # 0x2ee00
>>>>> .LCPI0_6:
>>>>> .quad 64                      # 0x40
>>>>> .text
>>>>> .globl multiply
>>>>> .p2align 4, 0x90
>>>>> .type multiply, at function
>>>>> multiply:                               # @multiply
>>>>> .cfi_startproc
>>>>> # BB#0:
>>>>> push rbp
>>>>> .Lcfi0:
>>>>> .cfi_def_cfa_offset 16
>>>>> push r15
>>>>> .Lcfi1:
>>>>> .cfi_def_cfa_offset 24
>>>>> push r14
>>>>> .Lcfi2:
>>>>> .cfi_def_cfa_offset 32
>>>>> push r12
>>>>> .Lcfi3:
>>>>> .cfi_def_cfa_offset 40
>>>>> push rbx
>>>>> .Lcfi4:
>>>>> .cfi_def_cfa_offset 48
>>>>> .Lcfi5:
>>>>> .cfi_offset rbx, -48
>>>>> .Lcfi6:
>>>>> .cfi_offset r12, -40
>>>>> .Lcfi7:
>>>>> .cfi_offset r14, -32
>>>>> .Lcfi8:
>>>>> .cfi_offset r15, -24
>>>>> .Lcfi9:
>>>>> .cfi_offset rbp, -16
>>>>> lea r8, [rdi + 3856]
>>>>> xor r9d, r9d
>>>>> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 =
>>>>> [8,9,10,11,12,13,14,15]
>>>>> vmovdqa64 zmm23, zmmword ptr [rip + .LCPI0_1] # zmm23 =
>>>>> [0,1,2,3,4,5,6,7]
>>>>> vpbroadcastq zmm2, qword ptr [rip + .LCPI0_2]
>>>>> vpbroadcastq zmm3, rsi
>>>>> add rsi, 3856000
>>>>> vpbroadcastq zmm4, qword ptr [rip + .LCPI0_3]
>>>>> vpbroadcastq zmm5, qword ptr [rip + .LCPI0_4]
>>>>> vpbroadcastq zmm6, qword ptr [rip + .LCPI0_5]
>>>>> kxnorw k1, k0, k0
>>>>> kshiftrw k1, k1, 8
>>>>> vpbroadcastq zmm7, qword ptr [rip + .LCPI0_6]
>>>>> .p2align 4, 0x90
>>>>> .LBB0_1:                                # %.preheader26
>>>>>                                         # =>This Loop Header: Depth=1
>>>>>                                         #     Child Loop BB0_2 Depth 2
>>>>>                                         #       Child Loop BB0_3 Depth
>>>>> 3
>>>>>                                         #       Child Loop BB0_5 Depth
>>>>> 3
>>>>> xor r11d, r11d
>>>>> .p2align 4, 0x90
>>>>> .LBB0_2:                                # %.preheader
>>>>>                                         #   Parent Loop BB0_1 Depth=1
>>>>>                                         # =>  This Loop Header: Depth=2
>>>>>                                         #       Child Loop BB0_3 Depth
>>>>> 3
>>>>>                                         #       Child Loop BB0_5 Depth
>>>>> 3
>>>>> vpxord zmm8, zmm8, zmm8
>>>>> mov ecx, 960
>>>>> vmovdqa64 zmm9, zmm23
>>>>> vmovdqa64 zmm10, zmm22
>>>>> vpxord zmm11, zmm11, zmm11
>>>>> vpxord zmm12, zmm12, zmm12
>>>>> vpxord zmm13, zmm13, zmm13
>>>>> .p2align 4, 0x90
>>>>> .LBB0_3:                                # %vector.body
>>>>>                                         #   Parent Loop BB0_1 Depth=1
>>>>>                                         #     Parent Loop BB0_2 Depth=2
>>>>>                                         # =>    This Inner Loop
>>>>> Header: Depth=3
>>>>>                                         # this bb will run 15 times
>>>>> vmovq rax, xmm9
>>>>> imul r10, r9, 4000
>>>>> lea rbx, [rdi + r10]
>>>>> *vpmuludq zmm14, zmm10, zmm2       ; this is BB for vector here we
>>>>> have to do gather for B due to arbitrary addresses so here
>>>>> zmm10=[8,9,10,11,12,13,14,15]. it means zmm10 contains 8 values present in
>>>>> these indexes? and zmm2=[4000, 4000,.....4000]. these are the indexes for B
>>>>> we need to multiple indexes with stride=4000. i know here these indexes are
>>>>> 64 bit but the values stored in these locations are 32 bits then  the load
>>>>> using zmm10 index will give 8 elements of 32 bits present in these
>>>>> locations, so do the registers contain 8 elements of 32 bits present at
>>>>> specified indexes?? so after multiplication we get indexes for higher 8
>>>>> elements of B i.e [3200,3600,40000,.......54000].*
>>>>>
>>>>> * vpsrlq zmm15, zmm10, 32              ; i dont understand the need
>>>>> for this step, please explain the purpose of all these steps. here vpsrlq
>>>>> will shift right zmm10 values by 256 bits (32*8)....zmmm10 initially=**[8,9,10,11,12,13,14,15].
>>>>> it will now become [0,0,0,0,8,9,10,11]...Am I correct? Please explain me
>>>>> the purpose of this step.*
>>>>> * vpmuludq zmm15, zmm15, zmm2  ;    similarly **dont understand the
>>>>> need for this step.*
>>>>> * vpsllq zmm15, zmm15, 32    ; **dont understand the need for this
>>>>> step*
>>>>> * vpaddq zmm14, zmm14, zmm3  ; *
>>>>> * vpaddq zmm14, zmm15, zmm14 ; **dont understand the need for this
>>>>> step*
>>>>>
>>>>
>>>> vpsrlq zmm15, zmm10, 32 shifts every 64-bit element in zmm10 right by
>>>> 32 bits. I believe this effectively taking every odd numbered 32-bit
>>>> element and moving them to the next lowest even numbered 32-bit element.
>>>>
>>>> vmuludq multiplies all even numbered 32-bit elements and creates 64-bit
>>>> results.
>>>>
>>>> The combination of the shifts, vpmuludq, and vpaddq is to multiply
>>>> 64-bit elements and create a 64-bit elements result. We don't have an
>>>> instruction for this so we have to multiply the low 32-bits of each element
>>>> and the high 32-bits of each element separately and add the results
>>>> together. Looks like we determined that the high 32-bits of one of the
>>>> inputs is all zeros so we skipped 1 of the multiplies and adds that would
>>>> normally be required for this operation.
>>>>
>>>>
>>>>
>>>>> * vpbroadcastq zmm15, r11 ; **r11 changes when loop variable j
>>>>> changes whats the need of this step?*
>>>>> * vpsllq zmm15, zmm15, 2   ; **dont understand the need for this step*
>>>>> * vpaddq zmm14, zmm14, zmm15 ; **dont understand the need for this
>>>>> step*
>>>>> * vpmuludq zmm16, zmm9, zmm2 ; **here same as before the lower 8
>>>>> elements of B indexes are computed as Zmm16=[0,4000,8000,.......28000]*
>>>>> * vpsrlq zmm17, zmm9, 32   **; **dont understand the need for this
>>>>> step*
>>>>> * vpmuludq zmm17, zmm17, zmm2  **; **dont understand the need for
>>>>> this step*
>>>>> * vpsllq zmm17, zmm17, 32  **; **dont understand the need for this
>>>>> step*
>>>>> * vpaddq zmm16, zmm16, zmm3  *
>>>>> * vpaddq zmm16, zmm17, zmm16  **; **dont understand the need for this
>>>>> step*
>>>>> * vpaddq zmm15, zmm16, zmm15  **; **dont understand the need for this
>>>>> step*
>>>>> * vpaddq zmm16, zmm15, zmm4*
>>>>> * vpaddq zmm17, zmm14, zmm4*
>>>>> * vpaddq zmm18, zmm15, zmm5*
>>>>> * vpaddq zmm19, zmm14, zmm5*
>>>>> * vpaddq zmm20, zmm15, zmm6*
>>>>> * vpaddq zmm21, zmm14, zmm6*
>>>>> * kmovw k2, k1  **; **dont understand the need for this step*
>>>>>
>>>>
>>>> The gather instruction requires a mask of which elements to read. When
>>>> the gather completes, if there are no faults it will have written the mask
>>>> register to 0. So it needs to reloaded for each gather.
>>>>
>>>>
>>>>> * vpgatherqd ymm0 {k2}, zmmword ptr [zmm14] ; since zmm14 contains 8
>>>>> indexes ( or values at these 8 indexes???) so it will load 8 elements not
>>>>> 16. here it should be zmm14**=[3200,3600,40000,.......54000]. but by
>>>>> the above computation these indexes are changes??*
>>>>> * kxnorw k2, k0, k0  **; **dont understand the need for this step*
>>>>>
>>>> * vpgatherqd ymm14 {k2}, zmmword ptr [zmm15]   **; **here again issues
>>>>> with index zmm15. it should be **[0,4000,8000,.......28000] but its
>>>>> different due to above computation.*
>>>>> * vinserti64x4 zmm0, zmm14, ymm0, 1*
>>>>> * kmovw k2, k1*
>>>>> * vpgatherqd ymm14 {k2}, zmmword ptr [zmm17]*
>>>>> * kxnorw k2, k0, k0*
>>>>> * vpgatherqd ymm15 {k2}, zmmword ptr [zmm16]*
>>>>> * vinserti64x4 zmm14, zmm15, ymm14, 1*
>>>>> * kmovw k2, k1*
>>>>> * vpgatherqd ymm15 {k2}, zmmword ptr [zmm19]*
>>>>> * kxnorw k2, k0, k0*
>>>>> * vpgatherqd ymm16 {k2}, zmmword ptr [zmm18]*
>>>>> * vinserti64x4 zmm15, zmm16, ymm15, 1*
>>>>> * kmovw k2, k1*
>>>>> * vpgatherqd ymm1 {k2}, zmmword ptr [zmm21]*
>>>>> * kxnorw k2, k0, k0*
>>>>> * vpgatherqd ymm16 {k2}, zmmword ptr [zmm20]*
>>>>> * vinserti64x4 zmm1, zmm16, ymm1, 1*
>>>>> * vpmulld zmm0, zmm0, zmmword ptr [rbx + 4*rax]*
>>>>> vpmulld zmm14, zmm14, zmmword ptr [rbx + 4*rax + 64]
>>>>> vpmulld zmm15, zmm15, zmmword ptr [rbx + 4*rax + 128]
>>>>> vpmulld zmm1, zmm1, zmmword ptr [rbx + 4*rax + 192]
>>>>> vpaddd zmm8, zmm0, zmm8
>>>>> vpaddd zmm11, zmm14, zmm11
>>>>> vpaddd zmm12, zmm15, zmm12
>>>>> vpaddd zmm13, zmm1, zmm13
>>>>> vpaddq zmm9, zmm9, zmm7        #zmm7=64
>>>>> vpaddq zmm10, zmm10, zmm7
>>>>> add rcx, -64     #decrement counter by 64
>>>>> jne .LBB0_3       # if rcx not equal to zero goto .lbbo_3
>>>>> # BB#4:                                 # %middle.block
>>>>>                                         #   in Loop: Header=BB0_2
>>>>> Depth=2
>>>>> vpaddd zmm0, zmm11, zmm8
>>>>> vpaddd zmm0, zmm12, zmm0
>>>>> vpaddd zmm0, zmm13, zmm0
>>>>> *vshufi64x2 zmm1, zmm0, zmm0, 14 # zmm1 = zmm0[4,5,6,7,0,1,0,1]   ;
>>>>> please explain how shuffle instructions work here. i know of llvm ir
>>>>> shuffle, but these assembly ones are difficult for me to understand*
>>>>>
>>>>
>>>> You have to look at the size of the register being mentioned and the
>>>> number of elements in brackets. In this case the regsiter is 512-bits and
>>>> the number of elements is 8. 512/8 is 64. So its a shuffle of a v8i64
>>>> vector. Then we read the element numbers from left to write just like the
>>>> shuffle IR instruction.
>>>>
>>>> So element 0 of zmm1 gets the value of element 4 of zmm0. Element 1 of
>>>> zmm1 gets the value of element 5 of zmm5, etc.
>>>>
>>>>
>>>>> * vpaddd zmm0, zmm0, zmm1*
>>>>> * vshufi64x2 zmm1, zmm0, zmm0, 1 # zmm1 = zmm0[2,3,0,1,0,1,0,1]*
>>>>> * vpaddd zmm0, zmm0, zmm1*
>>>>> * vpshufd zmm1, zmm0, 238         # zmm1 =
>>>>> zmm0[2,3,2,3,6,7,6,7,10,11,10,11,14,15,14,15]*
>>>>> * vpaddd zmm0, zmm0, zmm1*
>>>>> * vpshufd zmm1, zmm0, 229         # zmm1 =
>>>>> zmm0[1,1,2,3,5,5,6,7,9,9,10,11,13,13,14,15]*
>>>>> vpaddd zmm0, zmm0, zmm1
>>>>> vmovd ebx, xmm0
>>>>> mov rax, r8
>>>>> xor r14d, r14d
>>>>> .p2align 4, 0x90
>>>>> .LBB0_5:                                #   Parent Loop BB0_1 Depth=1
>>>>>                                         #     Parent Loop BB0_2 Depth=2
>>>>>                                         # =>    This Inner Loop
>>>>> Header: Depth=3
>>>>> lea r15, [rsi + r14]
>>>>> mov r12d, dword ptr [r15 + 4*r11 - 16000]
>>>>> imul r12d, dword ptr [rax - 16]
>>>>> mov ecx, dword ptr [r15 + 4*r11 - 12000]
>>>>> imul ecx, dword ptr [rax - 12]
>>>>> mov ebp, dword ptr [r15 + 4*r11 - 8000]
>>>>> imul ebp, dword ptr [rax - 8]
>>>>> add r12d, ebx
>>>>> add ecx, r12d
>>>>> add ebp, ecx
>>>>> mov ecx, dword ptr [r15 + 4*r11 - 4000]
>>>>> imul ecx, dword ptr [rax - 4]
>>>>> add ecx, ebp
>>>>> mov ebx, dword ptr [r15 + 4*r11]
>>>>> imul ebx, dword ptr [rax]
>>>>> add ebx, ecx
>>>>> add r14, 20000
>>>>> add rax, 20
>>>>> cmp r14, 160000
>>>>> jne .LBB0_5
>>>>> # BB#6:                                 # %.loopexit
>>>>>                                         #   in Loop: Header=BB0_2
>>>>> Depth=2
>>>>> add r10, rdx                #rdx is c[][]
>>>>> mov dword ptr [r10 + 4*r11], ebx
>>>>> inc r11
>>>>> cmp r11, 1000
>>>>> jne .LBB0_2
>>>>> # BB#7:                                 #   in Loop: Header=BB0_1
>>>>> Depth=1
>>>>> inc r9
>>>>> add r8, 4000
>>>>> cmp r9, 1000
>>>>> jne .LBB0_1
>>>>> # BB#8:
>>>>> pop rbx
>>>>> pop r12
>>>>> pop r14
>>>>> pop r15
>>>>> pop rbp
>>>>> ret
>>>>>
>>>>>
>>>>> Looking forward to your reply
>>>>>
>>>>> Thank You
>>>>>
>>>>>
>>>>>
>>>>> _______________________________________________
>>>>> LLVM Developers mailing list
>>>>> llvm-dev at lists.llvm.org
>>>>> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-dev
>>>>>
>>>>>
>>>>
>>>
>>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20170701/f6e6a95e/attachment-0001.html>


More information about the llvm-dev mailing list