[LLVMdev] [Vectorization] Mis match in code generated

suyog sarda sardask01 at gmail.com
Sun Nov 9 12:58:42 PST 2014


Hi Arnold, Nadav, Hal,
all,

Restarting this thread with few more observations on horizontal reduction
store
(after using flags - slp-vectorize-hor-store and -slp-vectorize-hor, thanks
Arnold for pointing out earlier).

The SLP vectorizer does vectorize straight line code :

(this code may result as part of loop unrolling as stated earlier in the
thread.
Though for loop vectorization , trip count should be atleast 16, taking
smaller
code here to put some findings.)


*float a[4], sum;*

*void foo() {*

* int i;*

* for(i=0;i<4;i++);*

*   sum += a[i];}*

after loop unrolling




*- float a[4], sum;void foo() {  sum = a[0]+a[1]+a[2]+a[3];}*

This code gets vectorized depending on how we organize the code, and
subsequently
how the expression tree is formed.

*case 1:*






*float a[4], sum;void foo() {  sum = a[0]+a[1]+a[2]+a[3];}*
The expression tree for this will be

    a[0]    a[1]
       \       /
        \     /
           +      a[2]
            \     /
             \   /
               +       a[3]
                 \      /
                  \    /
                    +
                     |
                     |
                     ↓
                     sum

This doesn't vectorize, because in function tryToVectorizeList(), we check
if the
scalar instruction are of the same type. In above case, it will be fadd and
load,
and hence no vectorization takes place.

*case 2:*




*float a[4], sum;void foo() {  sum = (a[0]+a[1])+(a[2]+a[3]);}*

The expression tree for this will be (notice brackets above):

a[0]    a[1]      a[2]    a[3]
   \       /            \        /
    \     /              \      /
       +                   +
         \                /
          \              /
           \            /
                 +
                  |
                  |
                  ↓
                 sum

In this case, in function tryToVectorizeList(), both the scalar
instructions are
same i.e. fadd. Hence we proceed for vectorization ahead.

But this still doesn't vectorizes the code. Ahead, while trying to schedule
bundle of code,
it checks whether the loads are for consecutive memory access across two
subtrees from
same base pointer.

For above code, it checks if (a[0],a[2]) and (a[1],a[3]) are consecutive
memory
access (which, obviously, they are not). This cancels scheduling of bundle
of loads,
and hence calculated cost for non-consecutive loads comes greater
increasing overall
cost of vectorization (and hence no vectorization).

Seems this check for consecutive memory access was written keeping in mind
following sort of code :
*sum = (a[0] + b[0]) + (a[1] + b[1]);*


Finally,

*case 3:*




*float a[4], sum;void foo() {  sum = (a[0]+a[2])+(a[1]+a[3]);}*

The expression tree for this will be (notice brackets above):

a[0]    a[2]      a[1]    a[3]
   \       /            \        /
    \     /              \      /
       +                   +
         \                /
          \              /
           \            /
                 +
                  |
                  |
                  ↓
                 sum


This code gets vectorized, as tryToVectorizeList() gets both scalar
operation as fadd,
as well as there is a consecutive memory access across subtress rooted at
both fadd.

case 1 IR after SLP vectorization :













*define void @foo() #0 {entry:  %0 = load float* getelementptr inbounds ([8
x float]* @a, i64 0, i64 0), align 16, !tbaa !1  %1 = load float*
getelementptr inbounds ([8 x float]* @a, i64 0, i64 1), align 4, !tbaa !1
%add = fadd float %0, %1  %2 = load float* getelementptr inbounds ([8 x
float]* @a, i64 0, i64 2), align 8, !tbaa !1  %add1 = fadd float %add, %2
%3 = load float* getelementptr inbounds ([8 x float]* @a, i64 0, i64 3),
align 4, !tbaa !1  %add2 = fadd float %add1, %3  store float %add2, float*
@sum, align 4, !tbaa !1  ret void}*
*case 2 IR after SLP vectorization :*













*define void @foo() #0 {entry:  %0 = load float* getelementptr inbounds ([8
x float]* @a, i64 0, i64 0), align 16, !tbaa !1  %1 = load float*
getelementptr inbounds ([8 x float]* @a, i64 0, i64 1), align 4, !tbaa !1
%add = fadd float %0, %1  %2 = load float* getelementptr inbounds ([8 x
float]* @a, i64 0, i64 2), align 8, !tbaa !1  %3 = load float*
getelementptr inbounds ([8 x float]* @a, i64 0, i64 3), align 4, !tbaa !1
%add1 = fadd float %2, %3  %add2 = fadd float %add, %add1  store float
%add2, float* @sum, align 4, !tbaa !1  ret void}*
*case 3 IR after SLP vectorization :*











*define void @foo() #0 {entry:  %0 = load <2 x float>* bitcast ([4 x
float]* @a to <2 x float>*), align 16, !tbaa !1  %1 = load <2 x float>*
bitcast (float* getelementptr inbounds ([4 x float]* @a, i64 0, i64 2) to
<2 x float>*), align 8, !tbaa !1  %2 = fadd <2 x float> %0, %1  %3 =
extractelement <2 x float> %2, i32 0  %4 = extractelement <2 x float> %2,
i32 1  %add2 = fadd float %3, %4  store float %add2, float* @sum, align 4,
!tbaa !1  ret void}*


Few cases of improvements, as visible from above (noting down roughly,
didn't give detail thought on it yet):

1. The IR expression tree can be re-organized to cater above need (some
kind of balancing like AVL tree).
    Alternatively, parse the expression tree without changing it and  look
upward tree if we encounter a
    load instruction.
2. Seems, there is a case for improvement in checking if memory access are
consecutive.
    This needs to take into consideration all the loads of all the subtree .
     If all the loads are from same base pointer, then are the memory
access in same subtree as
     well as across the subtree consecutive. (i will try to write some code
on this, any suggestions are welcomed)


I am not sure how much all this will improve the code quality for
horizontal reduction
(donno how frequently such pattern of horizontal reduction from same array
occurs in real world/SPECS).
Perhaps the best case i can think of is when loops are unrolled as noted
earlier in the thread.

Adding few more people to pitch in !!

Comments/Suggestions are most welcomed.

Regards,
Suyog



On Sat, Sep 20, 2014 at 12:05 AM, suyog sarda <sardask01 at gmail.com> wrote:

> Hi Arnold,
>
> Thanks for your reply.
>
> I tried test case as suggested by you.
>
>
>
>
>
> *void foo(int *a, int *sum) {*sum =
> a[0]+a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8]+a[9]+a[10]+a[11]+a[12]+a[13]+a[14]+a[15];}*
> so that it has a 'store' in its IR.
>
>
>
> *IR before vectorization :*target datalayout =
> "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"
> target triple = "x86_64-pc-linux-gnu"
>
> ; Function Attrs: nounwind
> define void @foo(i32* nocapture readonly %a, i32* nocapture %sum) #0 {
>
> entry:
>   %0 = load i32* %a, align 4, !tbaa !1
>   %arrayidx1 = getelementptr inbounds i32* %a, i32 1
>   %1 = load i32* %arrayidx1, align 4, !tbaa !1
>   %add = add nsw i32 %1, %0
>   %arrayidx2 = getelementptr inbounds i32* %a, i32 2
>   %2 = load i32* %arrayidx2, align 4, !tbaa !1
>   %add3 = add nsw i32 %add, %2
>   %arrayidx4 = getelementptr inbounds i32* %a, i32 3
>   %3 = load i32* %arrayidx4, align 4, !tbaa !1
>   %add5 = add nsw i32 %add3, %3
>   %arrayidx6 = getelementptr inbounds i32* %a, i32 4
>   %4 = load i32* %arrayidx6, align 4, !tbaa !1
>   %add7 = add nsw i32 %add5, %4
>   %arrayidx8 = getelementptr inbounds i32* %a, i32 5
>   %5 = load i32* %arrayidx8, align 4, !tbaa !1
>   %add9 = add nsw i32 %add7, %5
>   %arrayidx10 = getelementptr inbounds i32* %a, i32 6
>   %6 = load i32* %arrayidx10, align 4, !tbaa !1
>   %add11 = add nsw i32 %add9, %6
>   %arrayidx12 = getelementptr inbounds i32* %a, i32 7
>   %7 = load i32* %arrayidx12, align 4, !tbaa !1
>   %add13 = add nsw i32 %add11, %7
>   %arrayidx14 = getelementptr inbounds i32* %a, i32 8
>   %8 = load i32* %arrayidx14, align 4, !tbaa !1
>   %add15 = add nsw i32 %add13, %8
>   %arrayidx16 = getelementptr inbounds i32* %a, i32 9
>   %9 = load i32* %arrayidx16, align 4, !tbaa !1
>   %add17 = add nsw i32 %add15, %9
>   %arrayidx18 = getelementptr inbounds i32* %a, i32 10
>   %10 = load i32* %arrayidx18, align 4, !tbaa !1
>   %add19 = add nsw i32 %add17, %10
>   %arrayidx20 = getelementptr inbounds i32* %a, i32 11
>   %11 = load i32* %arrayidx20, align 4, !tbaa !1
>   %add21 = add nsw i32 %add19, %11
>   %arrayidx22 = getelementptr inbounds i32* %a, i32 12
>   %12 = load i32* %arrayidx22, align 4, !tbaa !1
>   %add23 = add nsw i32 %add21, %12
>   %arrayidx24 = getelementptr inbounds i32* %a, i32 13
>   %13 = load i32* %arrayidx24, align 4, !tbaa !1
>   %add25 = add nsw i32 %add23, %13
>   %arrayidx26 = getelementptr inbounds i32* %a, i32 14
>   %14 = load i32* %arrayidx26, align 4, !tbaa !1
>   %add27 = add nsw i32 %add25, %14
>   %arrayidx28 = getelementptr inbounds i32* %a, i32 15
>   %15 = load i32* %arrayidx28, align 4, !tbaa !1
>   %add29 = add nsw i32 %add27, %15
>   store i32 %add29, i32* %sum, align 4, !tbaa !1
>   ret void
> }
>
>
>
> *IR after SLP vectorization with appropriate flags :*
> $ opt -S -slp-vectorizer -slp-vectorize-hor=1 -slp-vectorize-hor-store=1
> test.ll -debug
>
> (I hope i am passing the args correctly to opt)
>
> Subtarget features: SSELevel 3, 3DNowLevel 0, 64bit 1
> SLP: Analyzing blocks in foo.
> SLP: Found 1 stores to vectorize.
> SLP: Vectorizing a list of length = 2.
> ; ModuleID = 'test.ll'
> target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"
> target triple = "x86_64-pc-linux-gnu"
>
> ; Function Attrs: nounwind
> define void @foo(i32* nocapture readonly %a, i32* nocapture %sum) #0 {
>
> entry:
>   %0 = load i32* %a, align 4, !tbaa !1
>   %arrayidx1 = getelementptr inbounds i32* %a, i32 1
>   %1 = load i32* %arrayidx1, align 4, !tbaa !1
>   %add = add nsw i32 %1, %0
>   %arrayidx2 = getelementptr inbounds i32* %a, i32 2
>   %2 = load i32* %arrayidx2, align 4, !tbaa !1
>   %add3 = add nsw i32 %add, %2
>   %arrayidx4 = getelementptr inbounds i32* %a, i32 3
>   %3 = load i32* %arrayidx4, align 4, !tbaa !1
>   %add5 = add nsw i32 %add3, %3
>   %arrayidx6 = getelementptr inbounds i32* %a, i32 4
>   %4 = load i32* %arrayidx6, align 4, !tbaa !1
>   %add7 = add nsw i32 %add5, %4
>   %arrayidx8 = getelementptr inbounds i32* %a, i32 5
>   %5 = load i32* %arrayidx8, align 4, !tbaa !1
>   %add9 = add nsw i32 %add7, %5
>   %arrayidx10 = getelementptr inbounds i32* %a, i32 6
>   %6 = load i32* %arrayidx10, align 4, !tbaa !1
>   %add11 = add nsw i32 %add9, %6
>   %arrayidx12 = getelementptr inbounds i32* %a, i32 7
>   %7 = load i32* %arrayidx12, align 4, !tbaa !1
>   %add13 = add nsw i32 %add11, %7
>   %arrayidx14 = getelementptr inbounds i32* %a, i32 8
>   %8 = load i32* %arrayidx14, align 4, !tbaa !1
>   %add15 = add nsw i32 %add13, %8
>   %arrayidx16 = getelementptr inbounds i32* %a, i32 9
>   %9 = load i32* %arrayidx16, align 4, !tbaa !1
>   %add17 = add nsw i32 %add15, %9
>   %arrayidx18 = getelementptr inbounds i32* %a, i32 10
>   %10 = load i32* %arrayidx18, align 4, !tbaa !1
>   %add19 = add nsw i32 %add17, %10
>   %arrayidx20 = getelementptr inbounds i32* %a, i32 11
>   %11 = load i32* %arrayidx20, align 4, !tbaa !1
>   %add21 = add nsw i32 %add19, %11
>   %arrayidx22 = getelementptr inbounds i32* %a, i32 12
>   %12 = load i32* %arrayidx22, align 4, !tbaa !1
>   %add23 = add nsw i32 %add21, %12
>   %arrayidx24 = getelementptr inbounds i32* %a, i32 13
>   %13 = load i32* %arrayidx24, align 4, !tbaa !1
>   %add25 = add nsw i32 %add23, %13
>   %arrayidx26 = getelementptr inbounds i32* %a, i32 14
>   %14 = load i32* %arrayidx26, align 4, !tbaa !1
>   %add27 = add nsw i32 %add25, %14
>   %arrayidx28 = getelementptr inbounds i32* %a, i32 15
>   %15 = load i32* %arrayidx28, align 4, !tbaa !1
>   %add29 = add nsw i32 %add27, %15
>   store i32 %add29, i32* %sum, align 4, !tbaa !1
>   ret void
> }
>
> As observed above, SLP vectorization doesn't vectorize this code.
>
> I tried debugging, just mentioning what i found -
> the code hits vectorizeChainsInBlock() ->
> if(ShouldStartVectorizeHorAtStore) ->
> tryToVectorize() -> tryToVectorizePair() -> tryToVectorizeList() - inside
> this function, it iterates in the
> for loop for checking if scalar instructions are of same type. It exits
> for 2nd iteration in the loop as
> OpCode does not match , one opcode is 'add' and second is 'load'. So it
> exits from function
> 'tryToVectorizeList()', and comes back to function 'tryToVectorize()', but
> fails to satisfy any of the
> further 'if' in that function and returns back without vectorizing any of
> the code.
>
> I will try to dig more into it and try to understand where the code can be
> implemented.
>
> Comments/suggestions/explanations are always welcomed !!
>
> On Fri, Sep 19, 2014 at 1:49 AM, Arnold <aschwaighofer at apple.com> wrote:
>
>> There is experimental code to handle horizontal reductions hidden behind
>> a flag "slp-vectorize-hor" you could try to enable that. It won't
>> currently work for your example though because we only start to look for
>> reductions at phis and stores "slp-vectorize-hor-stores".
>>
>> You could start off by rewriting your example with a store and see
>> whether the tree match works after using both flags.
>>
>>
>>
>> *F(int *sum ...){*sum =
>> a[0]+a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8]+a[9]+a[10]+a[11]+a[12]+a[13]+a[14]+a[15];}*
>>
>> If it works we would only need to look for horizontal reductions at
>> returns.
>>
>> Sent from my iPhone
>>
>> On Sep 18, 2014, at 12:24 PM, suyog sarda <sardask01 at gmail.com> wrote:
>>
>> Hi Nadav,
>>
>> Thanks for the quick reply !!
>>
>> Ok, so as of now we are lacking capability to handle flat large
>> reductions.
>>
>> I did go through function vectorizeChainsInBlock() (line number 2862). In
>> this function,
>> we try to vectorize if we have phi nodes in the IR (several if's check
>> for phi nodes) i.e we try to
>> construct tree that starts at chains.
>>
>> Any pointers on how to join multiple trees? I will also try to dig more
>> into it.
>>
>> Comments/Suggestions are most welcomed !!
>>
>> On Fri, Sep 19, 2014 at 12:23 AM, Nadav Rotem <nrotem at apple.com> wrote:
>>
>>>
>>> On Sep 18, 2014, at 11:48 AM, suyog sarda <sardask01 at gmail.com> wrote:
>>>
>>> Hi,
>>>
>>> I am trying to understand LLVM vectorization implementation and was
>>> looking into both loop and SLP vectorization.
>>>
>>> test case 1:
>>>
>>>
>>>
>>>
>>>
>>>
>>> *int foo(int *a) {int sum = 0,i;for(i=0; i<16; i++)  sum += a[i];return
>>> sum;}*
>>>
>>> This code is vectorized by loop vectorizer where we calculate scalar
>>> loop cost as 4 and vector loop cost as 2.
>>> Since vector loop cost is less and above reduction is legal to
>>> vectorize, loop vectorizer produces vectorized code :
>>>
>>> *IR without vectorization:*
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>> *target datalayout =
>>> "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"target triple =
>>> "x86_64-pc-linux-gnu"; Function Attrs: nounwind readonlydefine i32
>>> @foo(i32* nocapture readonly %a, i32 %n) #0 {entry:  br label
>>> %for.bodyfor.body:                                         ; preds =
>>> %for.body, %entry  %i.05 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
>>> %sum.04 = phi i32 [ 0, %entry ], [ %add, %for.body ]  %arrayidx =
>>> getelementptr inbounds i32* %a, i32 %i.05  %0 = load i32* %arrayidx, align
>>> 4, !tbaa !1  %add = add nsw i32 %0, %sum.04  %inc = add nsw i32 %i.05, 1
>>> %exitcond = icmp eq i32 %i.05, 15  br i1 %exitcond, label %for.end, label
>>> %for.bodyfor.end:                                          ; preds =
>>> %for.body  ret i32 %add}*
>>>
>>>
>>> *IR after vectorization:*
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>> *target datalayout =
>>> "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"target triple =
>>> "x86_64-pc-linux-gnu"; Function Attrs: nounwind readonlydefine i32
>>> @foo(i32* nocapture readonly %a, i32 %n) #0 {entry:  %backedge.overflow =
>>> icmp eq i32 15, -1  %overflow.check.anchor = add i32 0, 0  br i1
>>> %backedge.overflow, label %scalar.ph <http://scalar.ph/>, label
>>> %overflow.checkedoverflow.checked:                                 ; preds
>>> = %entry  br i1 false, label %middle.block, label %vector.ph
>>> <http://vector.ph/>vector.ph
>>> <http://vector.ph/>:                                        ; preds =
>>> %overflow.checked  br label
>>> %vector.bodyvector.body:                                      ; preds =
>>> %vector.body, %vector.ph <http://vector.ph/>  %index = phi i32 [ 0,
>>> %vector.ph <http://vector.ph/> ], [ %index.next, %vector.body ]  %vec.phi =
>>> phi <4 x i32> [ zeroinitializer, %vector.ph <http://vector.ph/> ], [ %14,
>>> %vector.body ]  %broadcast.splatinsert = insertelement <4 x i32> undef, i32
>>> %index, i32 0  %broadcast.splat = shufflevector <4 x i32>
>>> %broadcast.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer
>>> %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
>>> %0 = extractelement <4 x i32> %induction, i32 0  %1 = getelementptr
>>> inbounds i32* %a, i32 %0  %2 = insertelement <4 x i32*> undef, i32* %1, i32
>>> 0  %3 = extractelement <4 x i32> %induction, i32 1  %4 = getelementptr
>>> inbounds i32* %a, i32 %3  %5 = insertelement <4 x i32*> %2, i32* %4, i32 1
>>> %6 = extractelement <4 x i32> %induction, i32 2  %7 = getelementptr
>>> inbounds i32* %a, i32 %6  %8 = insertelement <4 x i32*> %5, i32* %7, i32 2
>>> %9 = extractelement <4 x i32> %induction, i32 3  %10 = getelementptr
>>> inbounds i32* %a, i32 %9  %11 = insertelement <4 x i32*> %8, i32* %10, i32
>>> 3  %12 = getelementptr i32* %1, i32 0  %13 = bitcast i32* %12 to <4 x
>>> i32>*  %wide.load = load <4 x i32>* %13, align 4, !tbaa !1  %14 = add nsw
>>> <4 x i32> %wide.load, %vec.phi  %15 = add nsw <4 x i32> %induction, <i32 1,
>>> i32 1, i32 1, i32 1>  %16 = icmp eq <4 x i32> %induction, <i32 15, i32 15,
>>> i32 15, i32 15>  %index.next = add i32 %index, 4  %17 = icmp eq i32
>>> %index.next, 16  br i1 %17, label %middle.block, label %vector.body,
>>> !llvm.loop !5middle.block:                                     ; preds =
>>> %vector.body, %overflow.checked  %resume.val = phi i32 [ 0,
>>> %overflow.checked ], [ 16, %vector.body ]  %trunc.resume.val = phi i32 [ 0,
>>> %overflow.checked ], [ 16, %vector.body ]  %rdx.vec.exit.phi = phi <4 x
>>> i32> [ zeroinitializer, %overflow.checked ], [ %14, %vector.body ]
>>> %rdx.shuf = shufflevector <4 x i32> %rdx.vec.exit.phi, <4 x i32> undef, <4
>>> x i32> <i32 2, i32 3, i32 undef, i32 undef>  %bin.rdx = add <4 x i32>
>>> %rdx.vec.exit.phi, %rdx.shuf  %rdx.shuf1 = shufflevector <4 x i32>
>>> %bin.rdx, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32
>>> undef>  %bin.rdx2 = add <4 x i32> %bin.rdx, %rdx.shuf1  %18 =
>>> extractelement <4 x i32> %bin.rdx2, i32 0  %cmp.n = icmp eq i32 16,
>>> %resume.val  br i1 %cmp.n, label %for.end, label %scalar.ph
>>> <http://scalar.ph/>scalar.ph
>>> <http://scalar.ph/>:                                        ; preds =
>>> %middle.block, %entry  %bc.resume.val = phi i32 [ %resume.val,
>>> %middle.block ], [ 0, %entry ]  %bc.trunc.resume.val = phi i32 [
>>> %trunc.resume.val, %middle.block ], [ 0, %entry ]  %bc.merge.rdx = phi i32
>>> [ 0, %entry ], [ %18, %middle.block ]  br label
>>> %for.bodyfor.body:                                         ; preds =
>>> %for.body, %scalar.ph <http://scalar.ph/>  %i.05 = phi i32 [
>>> %bc.trunc.resume.val, %scalar.ph <http://scalar.ph/> ], [ %inc, %for.body
>>> ]  %sum.04 = phi i32 [ %bc.merge.rdx, %scalar.ph <http://scalar.ph/> ], [
>>> %add, %for.body ]  %arrayidx = getelementptr inbounds i32* %a, i32 %i.05
>>> %19 = load i32* %arrayidx, align 4, !tbaa !1  %add = add nsw i32 %19,
>>> %sum.04  %inc = add nsw i32 %i.05, 1  %exitcond = icmp eq i32 %i.05, 15  br
>>> i1 %exitcond, label %for.end, label %for.body, !llvm.loop
>>> !8for.end:                                          ; preds =
>>> %middle.block, %for.body  %add.lcssa = phi i32 [ %add, %for.body ], [ %18,
>>> %middle.block ]  ret i32 %add.lcssa}*
>>>
>>>
>>> Now for test case 2, where we unroll the loop totally :
>>>
>>>
>>>
>>>
>>>
>>> *int foo(int *a) {int sum = 0;sum =
>>> a[0]+a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8]+a[9]+a[10]+a[11]+a[12]+a[13]+a[14]+a[15];return
>>> sum;}*
>>>
>>> This code is not vectorized by SLP vectorization.
>>>
>>> *IR before vectorization: *
>>>
>>> test.ll
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>> *target datalayout =
>>> "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"target triple =
>>> "x86_64-pc-linux-gnu"; Function Attrs: nounwind readonlydefine i32
>>> @foo(i32* nocapture readonly %a, i32 %n) #0 {entry:  %0 = load i32* %a,
>>> align 4, !tbaa !1  %arrayidx1 = getelementptr inbounds i32* %a, i32 1  %1 =
>>> load i32* %arrayidx1, align 4, !tbaa !1  %add = add nsw i32 %1, %0
>>> %arrayidx2 = getelementptr inbounds i32* %a, i32 2  %2 = load i32*
>>> %arrayidx2, align 4, !tbaa !1  %add3 = add nsw i32 %add, %2  %arrayidx4 =
>>> getelementptr inbounds i32* %a, i32 3  %3 = load i32* %arrayidx4, align 4,
>>> !tbaa !1  %add5 = add nsw i32 %add3, %3  %arrayidx6 = getelementptr
>>> inbounds i32* %a, i32 4  %4 = load i32* %arrayidx6, align 4, !tbaa !1
>>> %add7 = add nsw i32 %add5, %4  %arrayidx8 = getelementptr inbounds i32* %a,
>>> i32 5  %5 = load i32* %arrayidx8, align 4, !tbaa !1  %add9 = add nsw i32
>>> %add7, %5  %arrayidx10 = getelementptr inbounds i32* %a, i32 6  %6 = load
>>> i32* %arrayidx10, align 4, !tbaa !1  %add11 = add nsw i32 %add9, %6
>>> %arrayidx12 = getelementptr inbounds i32* %a, i32 7  %7 = load i32*
>>> %arrayidx12, align 4, !tbaa !1  %add13 = add nsw i32 %add11, %7
>>> %arrayidx14 = getelementptr inbounds i32* %a, i32 8  %8 = load i32*
>>> %arrayidx14, align 4, !tbaa !1  %add15 = add nsw i32 %add13, %8
>>> %arrayidx16 = getelementptr inbounds i32* %a, i32 9  %9 = load i32*
>>> %arrayidx16, align 4, !tbaa !1  %add17 = add nsw i32 %add15, %9
>>> %arrayidx18 = getelementptr inbounds i32* %a, i32 10  %10 = load i32*
>>> %arrayidx18, align 4, !tbaa !1  %add19 = add nsw i32 %add17, %10
>>> %arrayidx20 = getelementptr inbounds i32* %a, i32 11  %11 = load i32*
>>> %arrayidx20, align 4, !tbaa !1  %add21 = add nsw i32 %add19, %11
>>> %arrayidx22 = getelementptr inbounds i32* %a, i32 12  %12 = load i32*
>>> %arrayidx22, align 4, !tbaa !1  %add23 = add nsw i32 %add21, %12
>>> %arrayidx24 = getelementptr inbounds i32* %a, i32 13  %13 = load i32*
>>> %arrayidx24, align 4, !tbaa !1  %add25 = add nsw i32 %add23, %13
>>> %arrayidx26 = getelementptr inbounds i32* %a, i32 14  %14 = load i32*
>>> %arrayidx26, align 4, !tbaa !1  %add27 = add nsw i32 %add25, %14
>>> %arrayidx28 = getelementptr inbounds i32* %a, i32 15  %15 = load i32*
>>> %arrayidx28, align 4, !tbaa !1  %add29 = add nsw i32 %add27, %15  ret i32
>>> %add29}*
>>> $ opt -S -slp-vectorizer -slp-vectorize-hor test.ll -debug -o test2.ll
>>>
>>> Features:+64bit,+sse2
>>> CPU:generic
>>>
>>> Subtarget features: SSELevel 3, 3DNowLevel 0, 64bit 1
>>> SLP: Analyzing blocks in foo.
>>>
>>> *test2.ll (IR after SLP vectorization) :*
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>> *target datalayout =
>>> "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"target triple =
>>> "x86_64-pc-linux-gnu"; Function Attrs: nounwind readonlydefine i32
>>> @foo(i32* nocapture readonly %a, i32 %n) #0 {entry:  %0 = load i32* %a,
>>> align 4, !tbaa !1  %arrayidx1 = getelementptr inbounds i32* %a, i32 1  %1 =
>>> load i32* %arrayidx1, align 4, !tbaa !1  %add = add nsw i32 %1, %0
>>> %arrayidx2 = getelementptr inbounds i32* %a, i32 2  %2 = load i32*
>>> %arrayidx2, align 4, !tbaa !1  %add3 = add nsw i32 %add, %2  %arrayidx4 =
>>> getelementptr inbounds i32* %a, i32 3  %3 = load i32* %arrayidx4, align 4,
>>> !tbaa !1  %add5 = add nsw i32 %add3, %3  %arrayidx6 = getelementptr
>>> inbounds i32* %a, i32 4  %4 = load i32* %arrayidx6, align 4, !tbaa !1
>>> %add7 = add nsw i32 %add5, %4  %arrayidx8 = getelementptr inbounds i32* %a,
>>> i32 5  %5 = load i32* %arrayidx8, align 4, !tbaa !1  %add9 = add nsw i32
>>> %add7, %5  %arrayidx10 = getelementptr inbounds i32* %a, i32 6  %6 = load
>>> i32* %arrayidx10, align 4, !tbaa !1  %add11 = add nsw i32 %add9, %6
>>> %arrayidx12 = getelementptr inbounds i32* %a, i32 7  %7 = load i32*
>>> %arrayidx12, align 4, !tbaa !1  %add13 = add nsw i32 %add11, %7
>>> %arrayidx14 = getelementptr inbounds i32* %a, i32 8  %8 = load i32*
>>> %arrayidx14, align 4, !tbaa !1  %add15 = add nsw i32 %add13, %8
>>> %arrayidx16 = getelementptr inbounds i32* %a, i32 9  %9 = load i32*
>>> %arrayidx16, align 4, !tbaa !1  %add17 = add nsw i32 %add15, %9
>>> %arrayidx18 = getelementptr inbounds i32* %a, i32 10  %10 = load i32*
>>> %arrayidx18, align 4, !tbaa !1  %add19 = add nsw i32 %add17, %10
>>> %arrayidx20 = getelementptr inbounds i32* %a, i32 11  %11 = load i32*
>>> %arrayidx20, align 4, !tbaa !1  %add21 = add nsw i32 %add19, %11
>>> %arrayidx22 = getelementptr inbounds i32* %a, i32 12  %12 = load i32*
>>> %arrayidx22, align 4, !tbaa !1  %add23 = add nsw i32 %add21, %12
>>> %arrayidx24 = getelementptr inbounds i32* %a, i32 13  %13 = load i32*
>>> %arrayidx24, align 4, !tbaa !1  %add25 = add nsw i32 %add23, %13
>>> %arrayidx26 = getelementptr inbounds i32* %a, i32 14  %14 = load i32*
>>> %arrayidx26, align 4, !tbaa !1  %add27 = add nsw i32 %add25, %14
>>> %arrayidx28 = getelementptr inbounds i32* %a, i32 15  %15 = load i32*
>>> %arrayidx28, align 4, !tbaa !1  %add29 = add nsw i32 %add27, %15  ret i32
>>> %add29}*
>>> Shouldn't the SLP vectorizer vectorize above code? Am I missing out
>>> something?
>>> How does loop unrolling affect the final vectorization of code?
>>>
>>>
>>> Hi Suyog,
>>>
>>> Thank you for taking the time to investigate the performance of the
>>> vectorizers. You are correct that the SLP-vectorizer should be able to do
>>> something about the second case (the unrolled one).  Please look into line
>>> 2861 in the SLP-vectorizer. This is where we try to analyze reductions and
>>> vectorize them. At the moment we don’t have support for a flat yet large
>>> reduction that is the result of unrolled loops because the current
>>> algorithm tries to construct trees that start at the chains, and it does
>>> not support joining multiple trees.
>>>
>>> http://llvm.org/docs/doxygen/html/SLPVectorizer_8cpp_source.html#l02861
>>>
>>> Thanks,
>>> Nadav
>>>
>>>
>>> I tried to debug above IR. Since there is no store in above IR, SLP
>>> vectorization doesn't call
>>> vectorizeStoreChains(). In vectorizeChainsInBlock(), as there is no phi
>>> node in above IR, it
>>> also fails to vectorize the IR.
>>>
>>> If it is perfectly legal to vectorize above IR, are we lacking code for
>>> it right now? Or its not
>>> possible to vectorize above code (as far as i know, it is perfectly
>>> possible to vectorize above code)?
>>> If its possible, can someone help me/point out specifics how to start
>>> for implementing vectorization for such code?
>>> (We do have function calls isConsecutiveAccess() to identify it. Is it a
>>> case for horizontal reduction, though the term
>>> 'reduction' is associated with loops/phi nodes.)
>>>
>>> This brings to me another question - if we perform aggressive loop
>>> unrolling, we might loose opportunity for
>>> vectorization as visible above !!
>>>
>>> (I was looking into bug 20035, when i encountered above issue. Though
>>> both are not related.)
>>>
>>> Your comments/suggestions are most awaited.
>>>
>>>
>>> --
>>> With regards,
>>> Suyog Sarda
>>>
>>>
>>>
>>
>>
>> --
>> With regards,
>> Suyog Sarda
>>
>>
>
>
> --
> With regards,
> Suyog Sarda
>



-- 
With regards,
Suyog Sarda
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20141110/1ce8396d/attachment.html>


More information about the llvm-dev mailing list