[LLVMdev] Static functions for APInt

Neil Booth neil at daikokuya.co.uk
Tue Aug 14 14:48:27 PDT 2007


Neil Booth wrote:-

> This adds a bunch of static functions that implement unsigned
> two's complement bignum arithmetic.  They could be used to
> implement much of APInt, but the idea is they are enough to
> implement APFloat as well, which the current APInt interface
> is not suited for.

Attached patch fixes a comment typo and renames a function
consistently.

Neil.
-------------- next part --------------
Index: include/llvm/ADT/APInt.h
===================================================================
--- include/llvm/ADT/APInt.h	(revision 41083)
+++ include/llvm/ADT/APInt.h	(working copy)
@@ -19,8 +19,16 @@
 #include <cassert>
 #include <string>
 
+#define HOST_CHAR_BIT 8
+#define compileTimeAssert(cond) extern int CTAssert[(cond) ? 1 : -1]
+#define integerPartWidth (HOST_CHAR_BIT * sizeof(llvm::integerPart))
+
 namespace llvm {
 
+  /* An unsigned host type used as a single part of a multi-part
+     bignum.  */
+  typedef uint64_t integerPart;
+
 //===----------------------------------------------------------------------===//
 //                              APInt Class
 //===----------------------------------------------------------------------===//
@@ -1038,7 +1046,125 @@
       return -(*this);
     return *this;
   }
+
   /// @}
+
+  /// @}
+  /// @name Building-block Operations for APInt and APFloat
+  /// @{
+
+  // These building block operations operate on a representation of
+  // arbitrary precision, two's-complement, bignum integer values.
+  // They should be sufficient to implement APInt and APFloat bignum
+  // requirements.  Inputs are generally a pointer to the base of an
+  // array of integer parts, representing an unsigned bignum, and a
+  // count of how many parts there are.
+
+  /// Sets the least significant part of a bignum to the input value,
+  /// and zeroes out higher parts.  */
+  static void tcSet(integerPart *, integerPart, unsigned int);
+
+  /// Assign one bignum to another.
+  static void tcAssign(integerPart *, const integerPart *, unsigned int);
+
+  /// Returns true if a bignum is zero, false otherwise.
+  static bool tcIsZero(const integerPart *, unsigned int);
+
+  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
+  static int tcExtractBit(const integerPart *, unsigned int bit);
+
+  /// Set the given bit of a bignum.  Zero-based.
+  static void tcSetBit(integerPart *, unsigned int bit);
+
+  /// Returns the bit number of the least or most significant set bit
+  /// of a number.  If the input number has no bits set -1U is
+  /// returned.
+  static unsigned int tcLSB(const integerPart *, unsigned int);
+  static unsigned int tcMSB(const integerPart *, unsigned int);
+
+  /// Negate a bignum in-place.
+  static void tcNegate(integerPart *, unsigned int);
+
+  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
+  /// carry flag.
+  static integerPart tcAdd(integerPart *, const integerPart *,
+			   integerPart carry, unsigned);
+
+  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
+  /// carry flag.
+  static integerPart tcSubtract(integerPart *, const integerPart *,
+				integerPart carry, unsigned);
+
+  ///  DST += SRC * MULTIPLIER + PART   if add is true
+  ///  DST  = SRC * MULTIPLIER + PART   if add is false
+  ///
+  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
+  ///  they must start at the same point, i.e. DST == SRC.
+  ///
+  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
+  ///  returned.  Otherwise DST is filled with the least significant
+  ///  DSTPARTS parts of the result, and if all of the omitted higher
+  ///  parts were zero return zero, otherwise overflow occurred and
+  ///  return one.
+  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
+			    integerPart multiplier, integerPart carry,
+			    unsigned int srcParts, unsigned int dstParts,
+			    bool add);
+
+  /// DST = LHS * RHS, where DST has the same width as the operands
+  /// and is filled with the least significant parts of the result.
+  /// Returns one if overflow occurred, otherwise zero.  DST must be
+  /// disjoint from both operands.
+  static int tcMultiply(integerPart *, const integerPart *,
+			const integerPart *, unsigned);
+
+  /// DST = LHS * RHS, where DST has twice the width as the operands.
+  /// No overflow occurs.  DST must be disjoint from both operands.
+  static void tcFullMultiply(integerPart *, const integerPart *,
+			     const integerPart *, unsigned);
+
+  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
+  /// Otherwise set LHS to LHS / RHS with the fractional part
+  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
+  ///
+  ///  OLD_LHS = RHS * LHS + REMAINDER
+  ///
+  ///  SCRATCH is a bignum of the same size as the operands and result
+  ///  for use by the routine; its contents need not be initialized
+  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
+  ///  distinct.
+  static int tcDivide(integerPart *lhs, const integerPart *rhs,
+		      integerPart *remainder, integerPart *scratch,
+		      unsigned int parts);
+
+  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
+  /// There are no restrictions on COUNT.
+  static void tcShiftLeft(integerPart *, unsigned int parts,
+			  unsigned int count);
+
+  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
+  /// There are no restrictions on COUNT.
+  static void tcShiftRight(integerPart *, unsigned int parts,
+			   unsigned int count);
+
+  /// The obvious AND, OR and XOR and complement operations.
+  static void tcAnd(integerPart *, const integerPart *, unsigned int);
+  static void tcOr(integerPart *, const integerPart *, unsigned int);
+  static void tcXor(integerPart *, const integerPart *, unsigned int);
+  static void tcComplement(integerPart *, unsigned int);
+  
+  /// Comparison (unsigned) of two bignums.
+  static int tcCompare(const integerPart *, const integerPart *,
+		       unsigned int);
+
+  /// Increment a bignum in-place.  Return the carry flag.
+  static integerPart tcIncrement(integerPart *, unsigned int);
+
+  /// Set the least significant BITS and clear the rest.
+  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
+					unsigned int bits);
+
+  /// @}
 };
 
 inline bool operator==(uint64_t V1, const APInt& V2) {
Index: lib/Support/APInt.cpp
===================================================================
--- lib/Support/APInt.cpp	(revision 41083)
+++ lib/Support/APInt.cpp	(working copy)
@@ -2012,3 +2012,569 @@
        << ")\n" << std::setbase(10);
 }
 #endif
+
+// This implements a variety of operations on a representation of
+// arbitrary precision, two's-complement, bignum integer values.
+
+/* Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
+   and unrestricting assumption.  */
+compileTimeAssert(integerPartWidth % 2 == 0);
+
+#define lowBitMask(bits) (~(integerPart) 0 >> (integerPartWidth - (bits)))
+#define lowHalf(part) ((part) & lowBitMask(integerPartWidth / 2))
+#define highHalf(part) ((part) >> (integerPartWidth / 2))
+
+/* Some handy functions local to this file.  */
+namespace {
+
+  /* Returns the bit number of the most significant bit of a part.  If
+     the input number has no bits set -1U is returned.  */
+  unsigned int
+  PartMSB(integerPart value)
+  {
+    unsigned int n, msb;
+
+    if (value == 0)
+      return -1U;
+
+    n = integerPartWidth / 2;
+
+    msb = 0;
+    do {
+      if (value >> n) {
+        value >>= n;
+        msb += n;
+      }
+
+      n >>= 1;
+    } while (n);
+
+    return msb;
+  }
+
+  /* Returns the bit number of the least significant bit of a part.
+     If the input number has no bits set -1U is returned.  */
+  unsigned int
+  partLSB(integerPart value)
+  {
+    unsigned int n, lsb;
+
+    if (value == 0)
+      return -1U;
+
+    lsb = integerPartWidth - 1;
+    n = integerPartWidth / 2;
+
+    do {
+      if (value << n) {
+        value <<= n;
+        lsb -= n;
+      }
+
+      n >>= 1;
+    } while (n);
+
+    return lsb;
+  }
+}
+
+/* Sets the least significant part of a bignum to the input value, and
+   zeroes out higher parts.  */
+void
+APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
+{
+  unsigned int i;
+
+  dst[0] = part;
+  for(i = 1; i < parts; i++)
+    dst[i] = 0;
+}
+
+/* Assign one bignum to another.  */
+void
+APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] = src[i];
+}
+
+/* Returns true if a bignum is zero, false otherwise.  */
+bool
+APInt::tcIsZero(const integerPart *src, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    if (src[i])
+      return false;
+
+  return true;
+}
+
+/* Extract the given bit of a bignum; returns 0 or 1.  */
+int
+APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
+{
+  return(parts[bit / integerPartWidth]
+         & ((integerPart) 1 << bit % integerPartWidth)) != 0;
+}
+
+/* Set the given bit of a bignum.  */
+void
+APInt::tcSetBit(integerPart *parts, unsigned int bit)
+{
+  parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
+}
+
+/* Returns the bit number of the least significant bit of a number.
+   If the input number has no bits set -1U is returned.  */
+unsigned int
+APInt::tcLSB(const integerPart *parts, unsigned int n)
+{
+  unsigned int i, lsb;
+
+  for(i = 0; i < n; i++) {
+      if (parts[i] != 0) {
+          lsb = partLSB(parts[i]);
+
+          return lsb + i * integerPartWidth;
+      }
+  }
+
+  return -1U;
+}
+
+/* Returns the bit number of the most significant bit of a number.  If
+   the input number has no bits set -1U is returned.  */
+unsigned int
+APInt::tcMSB(const integerPart *parts, unsigned int n)
+{
+  unsigned int msb;
+
+  do {
+      --n;
+
+      if (parts[n] != 0) {
+          msb = PartMSB(parts[n]);
+
+          return msb + n * integerPartWidth;
+      }
+  } while (n);
+
+  return -1U;
+}
+
+/* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
+integerPart
+APInt::tcAdd(integerPart *dst, const integerPart *rhs,
+             integerPart c, unsigned int parts)
+{
+  unsigned int i;
+
+  assert(c <= 1);
+
+  for(i = 0; i < parts; i++) {
+    integerPart l;
+
+    l = dst[i];
+    if (c) {
+      dst[i] += rhs[i] + 1;
+      c = (dst[i] <= l);
+    } else {
+      dst[i] += rhs[i];
+      c = (dst[i] < l);
+    }
+  }
+
+  return c;
+}
+
+/* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
+integerPart
+APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
+                  integerPart c, unsigned int parts)
+{
+  unsigned int i;
+
+  assert(c <= 1);
+
+  for(i = 0; i < parts; i++) {
+    integerPart l;
+
+    l = dst[i];
+    if (c) {
+      dst[i] -= rhs[i] + 1;
+      c = (dst[i] >= l);
+    } else {
+      dst[i] -= rhs[i];
+      c = (dst[i] > l);
+    }
+  }
+
+  return c;
+}
+
+/* Negate a bignum in-place.  */
+void
+APInt::tcNegate(integerPart *dst, unsigned int parts)
+{
+  tcComplement(dst, parts);
+  tcIncrement(dst, parts);
+}
+
+/*  DST += SRC * MULTIPLIER + PART   if add is true
+    DST  = SRC * MULTIPLIER + PART   if add is false
+
+    Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
+    they must start at the same point, i.e. DST == SRC.
+
+    If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
+    returned.  Otherwise DST is filled with the least significant
+    DSTPARTS parts of the result, and if all of the omitted higher
+    parts were zero return zero, otherwise overflow occurred and
+    return one.  */
+int
+APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
+                      integerPart multiplier, integerPart carry,
+                      unsigned int srcParts, unsigned int dstParts,
+                      bool add)
+{
+  unsigned int i, n;
+
+  /* Otherwise our writes of DST kill our later reads of SRC.  */
+  assert(dst <= src || dst >= src + srcParts);
+  assert(dstParts <= srcParts + 1);
+
+  /* N loops; minimum of dstParts and srcParts.  */
+  n = dstParts < srcParts ? dstParts: srcParts;
+
+  for(i = 0; i < n; i++) {
+    integerPart low, mid, high, srcPart;
+
+      /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
+
+         This cannot overflow, because
+
+         (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
+
+         which is less than n^2.  */
+
+    srcPart = src[i];
+
+    if (multiplier == 0 || srcPart == 0)        {
+      low = carry;
+      high = 0;
+    } else {
+      low = lowHalf(srcPart) * lowHalf(multiplier);
+      high = highHalf(srcPart) * highHalf(multiplier);
+
+      mid = lowHalf(srcPart) * highHalf(multiplier);
+      high += highHalf(mid);
+      mid <<= integerPartWidth / 2;
+      if (low + mid < low)
+        high++;
+      low += mid;
+
+      mid = highHalf(srcPart) * lowHalf(multiplier);
+      high += highHalf(mid);
+      mid <<= integerPartWidth / 2;
+      if (low + mid < low)
+        high++;
+      low += mid;
+
+      /* Now add carry.  */
+      if (low + carry < low)
+        high++;
+      low += carry;
+    }
+
+    if (add) {
+      /* And now DST[i], and store the new low part there.  */
+      if (low + dst[i] < low)
+        high++;
+      dst[i] += low;
+    } else
+      dst[i] = low;
+
+    carry = high;
+  }
+
+  if (i < dstParts) {
+    /* Full multiplication, there is no overflow.  */
+    assert(i + 1 == dstParts);
+    dst[i] = carry;
+    return 0;
+  } else {
+    /* We overflowed if there is carry.  */
+    if (carry)
+      return 1;
+
+    /* We would overflow if any significant unwritten parts would be
+       non-zero.  This is true if any remaining src parts are non-zero
+       and the multiplier is non-zero.  */
+    if (multiplier)
+      for(; i < srcParts; i++)
+        if (src[i])
+          return 1;
+
+    /* We fitted in the narrow destination.  */
+    return 0;
+  }
+}
+
+/* DST = LHS * RHS, where DST has the same width as the operands and
+   is filled with the least significant parts of the result.  Returns
+   one if overflow occurred, otherwise zero.  DST must be disjoint
+   from both operands.  */
+int
+APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
+                  const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+  int overflow;
+
+  assert(dst != lhs && dst != rhs);
+
+  overflow = 0;
+  tcSet(dst, 0, parts);
+
+  for(i = 0; i < parts; i++)
+    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
+                               parts - i, true);
+
+  return overflow;
+}
+
+/* DST = LHS * RHS, where DST has twice the width as the operands.  No
+   overflow occurs.  DST must be disjoint from both operands.  */
+void
+APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
+                      const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+  int overflow;
+
+  assert(dst != lhs && dst != rhs);
+
+  overflow = 0;
+  tcSet(dst, 0, parts);
+
+  for(i = 0; i < parts; i++)
+    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
+                               parts + 1, true);
+
+  assert(!overflow);
+}
+
+/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
+   Otherwise set LHS to LHS / RHS with the fractional part discarded,
+   set REMAINDER to the remainder, return zero.  i.e.
+
+   OLD_LHS = RHS * LHS + REMAINDER
+
+   SCRATCH is a bignum of the same size as the operands and result for
+   use by the routine; its contents need not be initialized and are
+   destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
+*/
+int
+APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
+                integerPart *remainder, integerPart *srhs,
+                unsigned int parts)
+{
+  unsigned int n, shiftCount;
+  integerPart mask;
+
+  assert(lhs != remainder && lhs != srhs && remainder != srhs);
+
+  shiftCount = tcMSB(rhs, parts);
+  if (shiftCount == -1U)
+    return true;
+
+  shiftCount = parts * integerPartWidth - shiftCount - 1;
+  n = shiftCount / integerPartWidth;
+  mask = (integerPart) 1 << (shiftCount % integerPartWidth);
+
+  tcAssign(srhs, rhs, parts);
+  tcShiftLeft(srhs, parts, shiftCount);
+  tcAssign(remainder, lhs, parts);
+  tcSet(lhs, 0, parts);
+
+  /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
+     the total.  */
+  for(;;) {
+      int compare;
+
+      compare = tcCompare(remainder, srhs, parts);
+      if (compare >= 0) {
+        tcSubtract(remainder, srhs, 0, parts);
+        lhs[n] |= mask;
+      }
+
+      if (shiftCount == 0)
+        break;
+      shiftCount--;
+      tcShiftRight(srhs, parts, 1);
+      if ((mask >>= 1) == 0)
+        mask = (integerPart) 1 << (integerPartWidth - 1), n--;
+  }
+
+  return false;
+}
+
+/* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero.
+   There are no restrictions on COUNT.  */
+void
+APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
+{
+  unsigned int jump, shift;
+
+  /* Jump is the inter-part jump; shift is is intra-part shift.  */
+  jump = count / integerPartWidth;
+  shift = count % integerPartWidth;
+
+  while (parts > jump) {
+    integerPart part;
+
+    parts--;
+
+    /* dst[i] comes from the two parts src[i - jump] and, if we have
+       an intra-part shift, src[i - jump - 1].  */
+    part = dst[parts - jump];
+    if (shift) {
+      part <<= shift;
+        if (parts >= jump + 1)
+          part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
+      }
+
+    dst[parts] = part;
+  }
+
+  while (parts > 0)
+    dst[--parts] = 0;
+}
+
+/* Shift a bignum right COUNT bits in-place.  Shifted in bits are
+   zero.  There are no restrictions on COUNT.  */
+void
+APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
+{
+  unsigned int i, jump, shift;
+
+  /* Jump is the inter-part jump; shift is is intra-part shift.  */
+  jump = count / integerPartWidth;
+  shift = count % integerPartWidth;
+
+  /* Perform the shift.  This leaves the most significant COUNT bits
+     of the result at zero.  */
+  for(i = 0; i < parts; i++) {
+    integerPart part;
+
+    if (i + jump >= parts) {
+      part = 0;
+    } else {
+      part = dst[i + jump];
+      if (shift) {
+        part >>= shift;
+        if (i + jump + 1 < parts)
+          part |= dst[i + jump + 1] << (integerPartWidth - shift);
+      }
+    }
+
+    dst[i] = part;
+  }
+}
+
+/* Bitwise and of two bignums.  */
+void
+APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] &= rhs[i];
+}
+
+/* Bitwise inclusive or of two bignums.  */
+void
+APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] |= rhs[i];
+}
+
+/* Bitwise exclusive or of two bignums.  */
+void
+APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] ^= rhs[i];
+}
+
+/* Complement a bignum in-place.  */
+void
+APInt::tcComplement(integerPart *dst, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    dst[i] = ~dst[i];
+}
+
+/* Comparison (unsigned) of two bignums.  */
+int
+APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
+                 unsigned int parts)
+{
+  while (parts) {
+      parts--;
+      if (lhs[parts] == rhs[parts])
+        continue;
+
+      if (lhs[parts] > rhs[parts])
+        return 1;
+      else
+        return -1;
+    }
+
+  return 0;
+}
+
+/* Increment a bignum in-place, return the carry flag.  */
+integerPart
+APInt::tcIncrement(integerPart *dst, unsigned int parts)
+{
+  unsigned int i;
+
+  for(i = 0; i < parts; i++)
+    if (++dst[i] != 0)
+      break;
+
+  return i == parts;
+}
+
+/* Set the least significant BITS bits of a bignum, clear the
+   rest.  */
+void
+APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
+                                 unsigned int bits)
+{
+  unsigned int i;
+
+  i = 0;
+  while (bits > integerPartWidth) {
+    dst[i++] = ~(integerPart) 0;
+    bits -= integerPartWidth;
+  }
+
+  if (bits)
+    dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
+
+  while (i < parts)
+    dst[i++] = 0;
+}


More information about the llvm-dev mailing list