[LLVMdev] Re: Dependence Analysis
Chris Lattner
sabre at nondot.org
Wed Jul 20 23:32:10 PDT 2005
On Thu, 21 Jul 2005, Naftali Schwartz wrote:
>> If you're interested in dependence analysis, the next important step is
> to
>> start analyzing distance and direction vectors.
>
> Well, specifically, I was thinking of a mechanism to turn this:
The indvars pass is *intentionally* restricted to only promoting affine
expressions to array subscripts, not arbitrary expressions. To enable
this, remove the two if's at IndVarSimplify.cpp:647 (unconditionally
pushing the discovered indvar on the IndVars list).
See the comments in that code for a justification.
-Chris
> int A[100], B[100], C[100], X, Y, Z;
>
> int *p_a = &A[0];
> int *p_b = &B[0];
> int *p_c = &C[0];
>
> int i, j, k, f;
> for ( k = 0; k < Z; k++ )
> {
> p_a = &A[0];
> for ( i = 0; i < X; i++ )
> {
> p_b = &B[k*Y];
> *p_c = *p_a++ * *p_b++;
> for ( f = 0; f < Y-2; f++ )
> *p_c += *p_a++ * *p_b++;
> *p_c++ += *p_a++ * *p_b++;
> }
> }
>
> ...into:
>
> int A[100], B[100], C[100], X, Y, Z;
>
> int i, j, k, f;
> for ( k = 0; k < Z; k++ )
> for ( i = 0; i < X; i++ )
> {
> C[X*k+i] = A[Y*i] * B[Y*k];
> for (f = 0; f < Y-2; f++ )
> C[X*k+i] += A[Y*i+f+1] * B[Y*k+f+1];
> C[X*k+i] += A[Y*i+Y-1] * B[Y*k+Y-1];
> }
>
> a la Frank and O'Boyle, which -indvars seems not to be able to handle (unless
> I'm doing something wrong...)
>
> Naftali
>
> _______________________________________________
> LLVM Developers mailing list
> LLVMdev at cs.uiuc.edu http://llvm.cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev
>
-Chris
--
http://nondot.org/sabre/
http://llvm.org/
More information about the llvm-dev
mailing list