[LLVMdev] Re: Dependence Analysis
Naftali Schwartz
nschwart at cs.nyu.edu
Wed Jul 20 22:09:32 PDT 2005
> LLVM already includes this: the -indvars pass. It turns things like
this:
>
> int *P = for (...; ... ; ++P)
> *P
>
> to:
>
> int *P = ...
> for (int i = 0; ... ; ++i)
> P[i]
>
> If you're interested in dependence analysis, the next important step is
to
> start analyzing distance and direction vectors.
Well, specifically, I was thinking of a mechanism to turn this:
int A[100], B[100], C[100], X, Y, Z;
int *p_a = &A[0];
int *p_b = &B[0];
int *p_c = &C[0];
int i, j, k, f;
for ( k = 0; k < Z; k++ )
{
p_a = &A[0];
for ( i = 0; i < X; i++ )
{
p_b = &B[k*Y];
*p_c = *p_a++ * *p_b++;
for ( f = 0; f < Y-2; f++ )
*p_c += *p_a++ * *p_b++;
*p_c++ += *p_a++ * *p_b++;
}
}
...into:
int A[100], B[100], C[100], X, Y, Z;
int i, j, k, f;
for ( k = 0; k < Z; k++ )
for ( i = 0; i < X; i++ )
{
C[X*k+i] = A[Y*i] * B[Y*k];
for (f = 0; f < Y-2; f++ )
C[X*k+i] += A[Y*i+f+1] * B[Y*k+f+1];
C[X*k+i] += A[Y*i+Y-1] * B[Y*k+Y-1];
}
a la Frank and O'Boyle, which -indvars seems not to be able to handle
(unless I'm doing something wrong...)
Naftali
More information about the llvm-dev
mailing list